
1082 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Improved binary similaritymeasures for

software modularization∗

Rashid NASEEM†1, Mustafa Bin Mat DERIS1, Onaiza MAQBOOL2, Jing-peng LI3,

Sara SHAHZAD4, Habib SHAH5

(1Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia,

Parit Raja 86400, Malaysia)

(2Department of Computer Science, Quaid-i-Azam University, Islamabad 45320, Pakistan)

(3Division of Computer Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK)

(4Department of Computer Science, University of Peshawar, Peshawar 25120, Pakistan)

(5Faculty of Computer and Information Systems, Islamic University Madina, Madina POBox 170, KSA)

†E-mail: rnsqau@gmail.com

Received Oct. 30, 2015; Revision accepted Apr. 12, 2016; Crosschecked Aug. 4, 2017

Abstract: Various binary similarity measures have been employed in clustering approaches to make homogeneous

groups of similar entities in the data. These similarity measures are mostly based only on the presence or absence of

features. Binary similarity measures have also been explored with different clustering approaches (e.g., agglomera-

tive hierarchical clustering) for software modularization to make software systems understandable and manageable.

Each similarity measure has its own strengths and weaknesses which improve and deteriorate the clustering results,

respectively. We highlight the strengths of some well-known existing binary similarity measures for software mod-

ularization. Furthermore, based on these existing similarity measures, we introduce several improved new binary

similarity measures. Proofs of the correctness with illustration and a series of experiments are presented to evaluate

the effectiveness of our new binary similarity measures.

Key words: Binary similarity measure; Binary features; Combination of measures; Software modularization

http://dx.doi.org/10.1631/FITEE.1500373 CLC number: TP311

1 Introduction

Clustering is an approach that makes clusters

of similar entities in the data. Entities in a cluster

are similar to each other (based on characteristics

or features) while they are distinct from entities in

other clusters. In the software domain, an impor-

tant application of clustering is to modularize a soft-

ware system or to recover the module architecture

or components of the software systems by clustering

* Project supported by the Office of Research, Innovation, Com-

mercialization and Consultancy (ORICC), Universiti Tun Hus-

sein Onn Malaysia (UTHM), Malaysia (No. U063)

ORCID: Rashid NASEEM, http://orcid.org/0000-0002-4952-

8100

c©Zhejiang University and Springer-Verlag GmbH Germany 2017

the software entities, e.g., functions, files, or classes,

in the source code. Recovery is very important when

no up-to-date documentation of a software system

is available (Shtern and Tzerpos, 2014). Besides

clustering, other approaches have also been used for

software modularization, e.g., supervised clustering

(Hall et al., 2012), optimization techniques (Pradit-

wong et al., 2011), role-based recovery (Dugerdil and

Jossi, 2008), graph-based techniques (Bittencourt

and Guerrero, 2009), association-based approaches

(Vasconcelos and Werner, 2007), spectral method

(Xanthos and Goodwin, 2006), rough set theory

(Jahnke, 2004), concept analysis (Tonella, 2001), and

visualization tools (Synytskyy et al., 2005).

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1083

A key activity in software clustering consists of

gathering the entities from source code of software

systems into meaningful and independent modules.

The process of software clustering usually starts with

the selection of entities and their features by parsing

the source code of software systems. Then entities

are organized into cohesive clusters by employing a

particular clustering algorithm (Mitchell and Man-

coridis, 2006).

Agglomerative hierarchical clustering (AHC) al-

gorithms have been widely used by researchers to

cluster software systems (Wiggerts, 1997; Anquetil

and Lethbridge, 1999; Mitchell, 2006; Maqbool and

Babri, 2007; Patel et al., 2009; Shtern and Tzerpos,

2010; Muhammad et al., 2012). AHC comprises two

main factors, a similarity measure to find the associ-

ation between two entities and a linkage method to

update the similarity values between entities in each

iteration. However, selection of a similarity measure

is an important factor in AHC (Jackson et al., 1989;

Cui and Chae, 2011), which has a major influence

on the clustering results (Naseem et al., 2010; Shtern

and Tzerpos, 2012).

There exist a large number of binary similarity

measures (Cheetham and Hazel, 1969; Seung-Seok

et al., 2010). Nevertheless, for software modulariza-

tion, the comparative studies have reported that Jac-

card (JC) binary similarity measure produces better

clustering results (Davey and Burd, 2000; Tzerpos

and Holt, 2000; Lung et al., 2004; Shtern and Tzer-

pos, 2012). In our previous study (Naseem et al.,

2010), we proposed a new binary similarity measure,

called JaccardNM (JNM), which can overcome some

deficiencies of the JC binary similarity measure. We

also examined the Russell&Rao (RR) binary simi-

larity measure for software modularization for the

first time, and found that it can generate better re-

sults as compared to JC and JNM binary similarity

measures for some of the test software systems. In

Naseem et al. (2013), we proposed the COUSM (co-

operative only update similarity matrix) clustering

algorithm, which combines two similarity measures

in a single clustering process based on AHC.

In this paper, we explore the integration of the

existing binary similarity measures for AHC algo-

rithms using linkage methods (e.g., complete linkage

(CL), single linkage (SL), and weighted average link-

age (WL) methods). For example, we select the JC

similarity measure, which produces a relatively large

number of clusters (Saeed et al., 2003; Maqbool and

Babri, 2004), and the JNM binary similarity mea-

sure, which takes a smaller number of arbitrary deci-

sions (Naseem et al., 2010) during the clustering pro-

cess. During the clustering process, creating a large

number of clusters means that a clustering approach

may create compact clusters, hence improving the

quality of clustering results (Maqbool and Babri,

2007). Arbitrary decision is the arbitrary cluster-

ing of two entities when there exist more than two

equally similar entities; hence, arbitrary decisions

create problems and reduce the quality of cluster-

ing results (Maqbool and Babri, 2007; Naseem et al.,

2010). This analysis leads us to introduce better bi-

nary similarity measures by combining the JC and

JNM measures.

We focus mainly on the identification of the

strengths of the existing binary similarity mea-

sures. Moreover, the improved similarity measures

are based on the integration of JC, JNM, and RR

similarity measures. While in our previous studies

(Naseem et al., 2010; 2011), the main focus was to ex-

plore the deficiencies (i.e., creating a large number of

equal similarity values and giving no importance to

a pair of entities sharing a large number of features)

of some well-known binary similarity measures and

then to solve these deficiencies by adding the total

proportion of features to the denominator in the JC

similarity measure.

The contributions of this paper can be summa-

rized as follows:

1. We analyze the Jaccard and JaccardNM

(Naseem et al., 2010) similarity measures for binary

features and compare their strengths.

2. We integrate the strengths of existing binary

similarity measures to form new binary similarity

measures for software clustering.

3. We introduce four improved binary similarity

measures that yield more effective solutions than the

existing binary similarity measures. They are

(1) JCJNM: add the JC and JNM binary simi-

larity measures;

(2) JCRR: add the JC and RR binary similarity

measures;

(3) JNMRR: add the JNM and RR binary sim-

ilarity measures;

(4) JCJNMRR: add the JC, JNM, and RR bi-

nary similarity measures.

4. We provide additional evidence to support the

1084 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

correctness of the new binary similarity measures.

5. We conduct an experimental study which

presents external and internal evaluations of the pro-

posed and existing similarity measures.

6. For all evaluation criteria, on average, our new

similarity measures outperform the existing similar-

ity measures.

2 Software modularization using AHC

Clustering algorithms can be broadly catego-

rized into hierarchical and partitional. As stated in

Section 1, AHC has been commonly used for software

modularization. AHC considers each entity to be a

singleton cluster and groups the two most similar

clusters at every step. At the end, it makes one large

cluster, which contains all the entities, as shown in

Algorithm 1.

Algorithm 1 Agglomerative hierarchical clustering

Input: Feature matrix, F

Output: Hierarchy of clusters (dendrogram)

1: Create a similarity matrix by calculating similarity

using a Similarity Measure between each pair of

entities.

2: repeat

3: Group the most similar (singleton) clusters into

one cluster (using the maximum value of similarity

in the similarity matrix).

4: Update the similarity matrix by recalculating sim-

ilarity using a Linkage Method between a newly

formed cluster and existing (singleton) clusters.

5: until the required number of clusters or a single

large cluster is formed.

Partitional clustering produces flat clusters with

no hierarchy, and it requires prior knowledge of the

number of clusters. In the software domain, parti-

tional clustering has also been used (Lakhotia, 1997;

Kanellopoulos et al., 2007; Shah et al., 2013); how-

ever, there are some advantages of using AHC. For

example, AHC does not require prior information

about the number of clusters. Moreover, Wiggerts

(1997) stated that the process of AHC is very simi-

lar to the approach of reverse engineering where the

architecture of a software system is recovered in a

bottom-up fashion. AHC provides different levels of

abstraction and can be useful for end users to select

the desired number of clusters when the modulariza-

tion results are meaningful to them (Lutellier et al.,

2015). Since a maintainer may not have the knowl-

edge of the number of clusters in advance, viewing

the architecture at different abstraction levels facili-

tates understanding. Techniques have also been pro-

posed to select an appropriate abstraction level; for

example, Chong et al. (2013) proposed a dendrogram

cutting approach for this purpose.

When AHC is used for software modularization,

the first step that occurs is the selection of the enti-

ties to be clustered where each entity is described by

different features. The steps are presented in detail

in the following subsections.

2.1 Selection of entities and features

Selecting the entities and features associated

with entities depends on the type of the software

system and the desired architecture (e.g., layered/

module architectures) to be recovered. For soft-

ware modularization, researchers have used different

types of entities, for example, methods (Saeed et al.,

2003), classes (Bauer and Trifu, 2004), and files (An-

quetil and Lethbridge, 1999; Andritsos and Tzerpos,

2005). Researchers have also used different types of

features to describe the entities such as global vari-

ables used by an entity (Muhammad et al., 2012) and

procedure calls (Andritsos and Tzerpos, 2005). Fea-

tures are based on the relationships between entities,

for example, containment and inheritance. Features

may be in the binary or non-binary format. A bi-

nary feature represents the presence or absence of a

relationship between two entities, while non-binary

features are weighted features using different weight-

ing schemes, for example, absolute or relative (Cui

and Chae, 2011), to demonstrate the strength of the

relationship between entities. Binary features are

widely used in software modularization (Wiggerts,

1997; Mitchell and Mancoridis, 2006; Cui and Chae,

2011).

To apply AHC, a software system must be

parsed to extract the selected entities and features

associated with entities. This process results in a

feature matrix of size N × P , where N is the to-

tal number of entities and P the total number of

features. Each entity in the feature matrix has a fea-

ture vector fi = [f1, f2, . . . , fP]. More generally, F

presents a general feature matrix, which takes values

from {0, 1}P ; in other words, F = {0, 1}P , where ‘1’

means the presence of a feature and ‘0’ otherwise.

AHC takes F as the input, as shown in Algorithm 1.

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1085

Table 1 shows an example feature matrix F of a very

small imaginary software system, which contains five

entities (E1–E5) and seven binary features (f1–f7).

In Table 1, for example, f1 is present in entities E1,

E2, and E3 while absent in entities E4 and E5.

Table 1 An example feature matrix (F)

Entity f1 f2 f3 f4 f5 f6 f7

E1 1 1 0 0 0 0 0

E2 1 1 0 0 0 0 0

E3 1 0 1 1 0 0 0

E4 0 0 1 1 1 0 0

E5 0 0 0 0 0 1 0

2.2 Selection of similarity measure

The first step of the AHC process is to calculate

the similarity between each pair of entities to obtain

a similarity matrix by using a similarity measure, as

shown in step 1 of Algorithm 1. Following are some

well-known binary similarity measures for software

modularization:

Jaccard (JC) =
a

a+ b+ c
, (1)

JaccardNM (JNM) =
a

2(a+ b+ c) + d
, (2)

Russell&Rao (RR) =
a

a+ b+ c+ d
. (3)

All the existing binary similarity measures are

expressed as functions of the following four quan-

tities associated with the pair of entities (Ei, Ej),

∀Ei, Ej ∈ F (Lesot et al., 2009):

1. The number of features common to both

entities, denoted by a;

2. The number of features present in Ei, but

not in Ej , denoted by b;

3. The number of features present in Ej , but

not in Ei, denoted by c;

4. The number of features absent in both enti-

ties, denoted by d.

Note that a+ b+ c+ d is a constant value and

is equal to the total number of features P ; a+ b = 0

occurs only when Ei has the feature vector fi =

[0, 0, . . . , 0]. Likewise, a + c = 0 shows that Ej has

feature vector fj = [0, 0, . . . , 0].

Definition 1 A binary similarity measure, SM, is

a function whose domain is {0, 1}P , and whose range

is R
+; that is, SM: {0, 1}P → R

+ (Veal, 2011), with

the following properties:

(P1) Positivity: SM(Ei, Ej) ≥ 0, ∀Ei, Ej ∈ F ;

(P2) Symmetry: SM(Ei, Ej) = SM(Ej , Ei),

∀Ei, Ej ∈ F ;

(P3) Maximality: SM(Ei, Ei) ≥ SM(Ei, Ej),

∀Ei, Ej ∈ F .

To illustrate the calculation, for instance, of the

JC measure as defined in Eq. (1), Table 2 gives the

similarity matrix of the feature matrix, as shown

in Table 1. The similarity between E1 and E2 is

calculated using the quantities defined by a, b, c,

and d, and in this case a = 2, b = 0, c = 0, and

d = 5. Putting all these values in the JC similarity

measure, we obtain similarity value ‘1’ (shown in

Table 2). Likewise, similarity values are calculated

for each pair of entities and are presented in Table 2.

Now, AHC will group the most similar entities in

Table 2, according to step 2 in Algorithm 1. E1 and

E2 have the highest similarity value, and thus AHC

groups these entities in a single cluster (E1E2). A

new cluster is therefore formed, and AHC will update

the similarity values ofE1E2 and all other (singleton)

clusters, that is, E3, E4, and E5. To update these

similarity values, different linkage methods can be

used, which will be described in the next subsection.

Table 2 Similarity matrix derived from the matrix in

Table 1 by using the JC similarity measure

Entity E1 E2 E3 E4 E5

E1

E2 1

E3 0.25 0.25

E4 0 0 0.5

E5 0 0 0 0.2

2.3 Selection of the linkage method

When a new cluster is formed, the similarities

between the new and existing clusters are updated

using a linkage method, as shown in step 3 of Algo-

rithm 1. There exist a number of methods, which up-

date similarities differently. However, in this study,

we discuss only those methods that are widely used

for software modularization. They are listed below,

where (EiEj) represents a new cluster and Ek repre-

sents an existing singleton cluster:

1. Complete linkage:

CL(EiEj , Ek) = min
{
sim(Ei, Ek), sim(Ej , Ek)

}
;

2. Single linkage:

SL(EiEj , Ek) = max
{
sim(Ei, Ek), sim(Ej , Ek)

}
;

1086 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

3. Weighted average linkage:

WL(EiEj , Ek) = 0.5(sim(Ei, Ek) + sim(Ej , Ek)).

In the illustrative example, we update similar-

ity values between a new cluster (E1E2) and existing

singleton clusters using the CL method. The up-

dated similarity matrix is shown in Table 3. For

example, the CL method returns the minimum simi-

larity value between E1 and E3 (0.25) and E2 and E3

(0.25). These two returned values are the same (if

there was a minimum, then that value would be se-

lected). Therefore, AHC selects this similarity value

as the new similarity between (E1E2) and E3 (Ta-

ble 3). Similarly, all similarity values are updated

between (E1E2) and E4, and between (E1E2) and

E5.

Table 3 Updated similarity matrix from the values in

Table 2 using the complete linkage (CL) method

Entity E1E2 E3 E4 E5

E1E2

E3 0.25

E4 0 0.5

E5 0 0 0.2

AHC repeats steps 2 and 3 until all entities are

merged in one large cluster, or the desired number

of clusters are obtained. At the end, AHC results in

a hierarchy of clusters, also known as dendrogram,

which is shown for the current example in Fig. 1.

The obtained hierarchy is then evaluated to assess

the quality of the automatically formed clusters, and

the performance of similarity measures and methods.

1

4

3

2

It
e

ra
ti
o

n

1 5432

Entity

Fig. 1 Hierarchy created using the JC measure and

CL method

2.4 Assessment of the results

Assessment of the clustering results is usually

carried out using two approaches: external or inter-

nal assessment. The external assessment approach

finds the association between automated results (de-

composition) and the authoritative decomposition

prepared by a human expert (e.g., original devel-

oper of the test software system). This approach

is also known as authoritativeness. The automated

decomposition should resemble the authoritative de-

composition as much as possible (Wu et al., 2005).

To find the authoritativeness, different measures may

be used, such as precision, recall (Sartipi and Konto-

giannis, 2003), MoJo, and MoJoFM. Here, the widely

used MoJoFM (Wen and Tzerpos, 2004) is discussed.

MoJoFM is the updated version of MoJo (Tzerpos

and Holt, 1999; Wen and Tzerpos, 2003), which cal-

culates the move and join operations to convert the

automated decomposition (M) into authoritative de-

composition (N):

MoJoFM(M,N)=(
1−

mno(M,N)

max
{
mno(∀M,N)

}
)
×100%,

(4)

where mno(M,N) is the minimum number of ‘move’

and ‘join’ operations required to translate M into

N and max
{
mno(∀M,N)

}
is the maximum of

mno(∀M,N). MoJoFM produces the percentage

of the similarity between two decompositions. A

higher percentage shows greater correspondence be-

tween the two decompositions and hence better re-

sults, while a lower percentage indicates that the

decompositions are different.

Internal assessment is to evaluate the quality of

the internal characteristics of the clusters in auto-

mated decomposition. There exist a number of mea-

sures to evaluate the cluster quality internally, for

example, the number of arbitrary decisions (Wang

et al., 2010), the number of clusters (Wang et al.,

2010), size of clusters (extremity) (Glorie et al.,

2009), modularization quality (Praditwong, 2011),

and coupling and cohesion (Cui and Chae, 2011).

In this study, we intend to use the number of arbi-

trary decisions and number of clusters. Arbitrary

decisions are taken by AHC when there exist more

than one maximum similarity value in the simi-

larity matrix during iteration. Thus, the decision

of selecting the maximum value is arbitrary, since

more than one pair of entities are equally similar.

A large number of arbitrary decisions shows poor

characteristic of the clusters, while a small num-

ber of arbitrary decisions means good characteris-

tic, in terms of authoritativeness (Naseem et al.,

2013). The number of clusters is another internal

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1087

assessment criterion that is used to evaluate clus-

ter quality. If an AHC algorithm produces a large

number of clusters during the clustering process,

it means that clusters are compact and have good

quality (Maqbool and Babri, 2007). A small num-

ber of clusters during clustering means that they are

large in size and less compact, and hence are consid-

ered having poor quality.

3 New similarity measures

As discussed in Section 1, we define new simi-

larity measures that have the combined strengths of

existing similarity measures JC, JNM, and RR de-

fined in Eqs. (1)–(3), respectively. These three sim-

ilarity measures have shown better results for soft-

ware modularization as compared to other measures

(Cui and Chae, 2011). To highlight the strengths of

these existing measures, we first present a small ex-

ample case study, and then define our new similarity

measures.

3.1 An example case study

To illustrate the strengths of existing similarity

measures, we take a small example of an imaginary

feature matrix from Naseem et al. (2013). The ex-

ample feature matrix is shown in Table 4, with eight

entities (E1–E8) and 13 features (f1–f13). Using the

feature matrix shown in Table 4, we illustrate the

strengths of the JC and JNM similarity measures.

We use the CL method in AHC, using JC with the

CL and JNM with the CL on the feature matrix in

Table 4.

3.1.1 JC with the CL clustering process

First, we illustrate the JC measure with the CL

method. The first step of AHC is to create the sim-

ilarity matrix using a similarity measure. After ap-

Table 4 An example feature matrix

Entity f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

E1 0 0 0 0 0 1 1 1 1 1 1 1 1

E2 0 0 0 0 0 1 1 1 1 1 1 1 1

E3 1 1 0 0 0 0 0 0 0 0 0 0 0

E4 1 1 0 0 0 0 0 0 0 0 0 0 0

E5 1 1 1 1 1 0 0 0 0 0 0 0 0

E6 1 1 1 1 0 0 0 0 0 0 0 0 0

E7 0 0 1 1 1 1 1 0 0 1 0 1 0

E8 0 0 1 1 1 1 0 1 1 0 1 0 0

plying the JC measure to the feature matrix in Ta-

ble 4, we obtain the similarity matrix (Table 5). In

the first iteration of AHC, a maximum similarity

value from the similarity matrix (Table 5) is selected

to make a new cluster or update a cluster. So, AHC

searches for a maximum similarity value in Table 5

but it finds maximum similarity value ‘1’ twice (i.e.,

for (E1E2) and (E3E4)). AHC may select either, but

we enforce AHC to select the last occurring value,

that is, similarity value of (E3E4) (Table 6).

The CL method is used to update the similarity

values between the new cluster (E3E4) and all ex-

isting singleton clusters, and the updated similarity

matrix is shown in Table 6. In the second itera-

tion, AHC searches again for the maximum value

in the updated similarity matrix (Table 6). This

time it makes (E1E2) as a new cluster and updates

its similarity value with all other existing clusters

(Table 7). In iterations 3 and 4, it makes clusters

Table 5 Similarity matrix of Table 4 using the Jaccard

(JC) similarity measure

Entity E1 E2 E3 E4 E5 E6 E7 E8

E1

E2 1

E3 0 0

E4 0 0 1

E5 0 0 0.4 0.4

E6 0 0 0.5 0.5 0.8

E7 0.363 0.363 0 0 0.333 0.222

E8 0.363 0.363 0 0 0.333 0.222 0.4

Table 6 Iteration 1: updated similarity matrix of

Table 5 using the CL method

Entity E1 E2 (E3E4) E5 E6 E7 E8

E1

E2 1

(E3E4) 0 0

E5 0 0 0.4

E6 0 0 0.5 0.8

E7 0.363 0.363 0 0.333 0.222

E8 0.363 0.363 0 0.333 0.222 0.4

Table 7 Iteration 2: updated similarity matrix of

Table 6 using the CL method

Entity (E1E2) (E3E4) E5 E6 E7 E8

(E1E2)

(E3E4) 0

E5 0 0.4

E6 0 0.5 0.8

E7 0.363 0 0.333 0.222

E8 0.363 0 0.33 0.222 0.4

1088 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

of (E5E6) and (E7E8), as shown in Tables 8 and

9, respectively. From Table 8, it can be seen that

there are two maximum values (0.4); hence, AHC

may select either again. As stated earlier, AHC will

select a value that occurs later; therefore, it makes

a cluster (E7E8). In the remaining iterations, AHC

makes clusters of ((E3E4)(E5E6)), ((E1E2)(E7E8)),

and (((E1E2)(E7E8))((E3E4)(E5E6))), as shown in

Tables 10–12.

Table 8 Iteration 3: updated similarity matrix of

Table 7 using the CL method

Entity (E1E2) (E3E4) (E5E6) E7 E8

(E1E2)

(E3E4) 0

(E5E6) 0 0.4

E7 0.363 0 0.222

E8 0.363 0 0.222 0.4

Table 9 Iteration 4: updated similarity matrix of

Table 8 using the CL method

Entity (E1E2) (E3E4) (E5E6) (E7E8)

(E1E2)

(E3E4) 0

(E5E6) 0 0.4

(E7E8) 0.363 0 0.2

Table 10 Iteration 5: updated similarity matrix of

Table 9 using the CL method

Entity (E1E2) ((E3E4)(E5E6)) (E7E8)

(E1E2)

((E3E4)(E5E6)) 0

(E7E8) 0.363 0

Table 11 Iteration 6: updated similarity matrix of

Table 10 using the CL method

Entity ((E1E2)(E7E8)) ((E3E4)(E5E6))

((E1E2)(E7E8))

((E3E4)(E5E6)) 0

Table 12 Iteration 7: updated similarity matrix of

Table 11 using the CL method

Entity (((E1E2)(E7E8))((E3E4)(E5E6)))

(((E1E2)(E7E8))((E3E4)(E5E6)))

3.1.2 JNM with the CL clustering process

Now we apply the JNM measure on the fea-

ture matrix given in Table 4, and obtain a simi-

larity matrix that can be seen in Table 13. The

process for making clusters is the same as discussed

in Section 3.1.1. As per the AHC, the first cluster

formed is (E1E2), second is (E5E6), third is (E7E8),

fourth is ((E1E2)(E7E8)), fifth is (E3E4), sixth is

((E3E4)(E5E6)), and the last is (((E1E2)(E7E8))

((E3E4)(E5E6))). The similarity matrices during it-

erations, from the first iteration to the seventh (n−1)

iteration, are given in Tables 14–20. In each itera-

tion, the CL method is used to update the similarity

between the newly formed and existing (singleton)

clusters.

Table 13 Similarity matrix of the feature matrix in

Table 4 using the JNM similarity measure

Entity E1 E2 E3 E4 E5 E6 E7 E8

E1

E2 0.381

E3 0 0

E4 0 0 0.133

E5 0 0 0.111 0.111

E6 0 0 0.118 0.118 0.222

E7 0.166 0.166 0 0 0.136 0.09

E8 0.166 0.166 0 0 0.136 0.09 0.173

Table 14 Iteration 1: updated similarity matrix of

Table 13 using the CL method

Entity (E1E2) E3 E4 E5 E6 E7 E8

(E1E2)

E3 0

E4 0 0.133

E5 0 0.111 0.111

E6 0 0.118 0.118 0.222

E7 0.166 0 0 0.136 0.09

E8 0.166 0 0 0.136 0.09 0.173

Table 15 Iteration 2: updated similarity matrix of

Table 14 using the CL method

Entity (E1E2) E3 E4 (E5E6) E7 E8

(E1E2)

E3 0

E4 0 0.133

(E5E6) 0 0.111 0.111

E7 0.166 0 0 0.09

E8 0.166 0 0 0.09 0.173

Table 16 Iteration 3: updated similarity matrix of

Table 15 using the CL method

Entity (E1E2) E3 E4 (E5E6) (E7E8)

(E1E2)

E3 0

E4 0 0.133

(E5E6) 0 0.111 0.111

(E7E8) 0.166 0 0 0.09

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1089

Table 17 Iteration 4: updated similarity matrix of

Table 16 using the CL method

Entity ((E1E2)(E7E8)) E3 E4 (E5E6)

((E1E2)(E7E8))

E3 0

E4 0 0.133

(E5E6) 0 0.111 0.111

Table 18 Iteration 5: updated similarity matrix of

Table 17 using the CL method

Entity ((E1E2)(E7E8)) (E3E4) (E5E6)

((E1E2)(E7E8))

(E3E4) 0

(E5E6) 0 0.111

Table 19 Iteration 6: updated similarity matrix of

Table 18 using the CL method

Entity ((E1E2)(E7E8)) ((E3E4)(E5E6))

((E1E2)(E7E8))

((E3E4)(E5E6)) 0

Table 20 Iteration 7: updated similarity matrix of

Table 19 using the CL method

Entity

(
((E1E2)(E7E8))

((E3E4)(E5E6))
)

(
((E1E2)(E7E8))

((E3E4)(E5E6))
)

3.1.3 Discussion on the results of the JC and JNM

measures

In Sections 3.1.1 and 3.1.2, we can observe that

the JC measure results in more clusters during clus-

tering as compared to the JNM measure. Fig. 2

shows the maximum number of clusters achieved and

the total number of arbitrary decisions made during

the clustering process for both measures. It can be

seen from Fig. 2 that the JNM measure produces a

smaller number of arbitrary decisions as compared to

the JC measure. JNM produces results as expected

because the main intuition of introducing this mea-

sure is to reduce the number of arbitrary decisions

(Naseem et al., 2010). Hence, from these results

we can easily conclude that the JC measure has the

strength to create more clusters during the cluster-

ing process, while the JNM measure has the strength

to reduce the number of arbitrary decisions.

It has been shown that if a clustering approach

results in a large number of clusters during the clus-

tering process, it increases the cohesiveness of the

clusters and hence increases the authoritativeness of

N
u

m
b

e
r

o
f
c
lu

s
te

rs
/a

rb
it
ra

ry
 d

e
c
is

io
n

s

0

1

2

3

4

Fig. 2 The number of clusters (for black bar) and the

number of arbitrary decisions (for grey bar) created

by JC and JNM

the results (Maqbool and Babri, 2007). Second, in

our previous study, we showed that if a clustering

approach reduces the number of arbitrary decisions,

it would create more authoritative results (Naseem

et al., 2013). This analysis leads us to define the new

measures that may have the characteristics of these

existing similarity measures. It would be useful to

integrate the existing similarity measures and come

up with the new measures to increase the number of

clusters and reduce the number of arbitrary decisions

during the clustering process.

3.2 New binary similarity measures

According to the aforementioned discussion, the

JC measure has the strength of creating a large num-

ber of clusters during the clustering process, while

the JNM measure has the strength of creating clus-

ters with a small number of arbitrary decisions. We

also consider the RR measure because for some case

studies, it has produced better clustering results for

software modularization (Naseem et al., 2010). RR

reduces the number of arbitrary decisions that JC

creates when, for example, the values of a among

the entities are different and b + c = 0. To com-

bine the strengths of these existing similarity mea-

sures, the add operation is used to combine the ex-

isting similarity measures. We introduce four new

similarity measures: JCJNM, JCRR, JNMRR, and

ICJNMRR.

3.2.1 Addition of the JC and JNM measures:

‘JCJNM’ similarity measure

The strengths of similarity measures shown in

Section 3.1 can be combined by adding the JC and

JNM similarity measures to obtain the ‘JCJNM’ bi-

nary similarity measure. Our new measure ‘JCJNM’

1090 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

is defined as follows:

JCJNM = JC + JNM =
a

s
+

a

2s+ d
=

a(3s+ d)

s(2s+ d)
,

(5)

where s = a+ b+ c.

3.2.2 An example case study and JCJNM measure

To demonstrate the strength of our new mea-

sure, we now apply the JCJNM similarity measure

to the example feature matrix shown in Table 4. The

corresponding similarity matrix using the JCJNM

similarity measure is shown in Table 21. The CL

method is used to update the similarity matrix dur-

ing the clustering process. We can see from Ta-

ble 21 that JCJNM prioritizes the similarity values

between the pair of entities (E1E2) and (E3E4), as

done by JNM in the similarity matrix given in Ta-

ble 13. Hence, the decision to cluster the entities is

no longer arbitrary. Entities E1 and E2 have a high

value of similarity and are grouped first (Table 22).

Then in the subsequent iterations (Tables 23–28),

AHC makes clusters of (E3E4), (E5E6), (E7E8), etc.

Note that in iteration 3 as given in Table 8, the JC

measure creates arbitrary decisions while our new

measure JCJNM does not, as shown in Table 24.

It is interesting to note that the JCJNM mea-

sure creates clusters as created by the JC measure

(four clusters) and similar to the JNM measure, mak-

ing no arbitrary decisions. It can be inferred that

our new measure has the strength to create a large

number of clusters while reducing the number of ar-

bitrary decisions made by AHC during the clustering

process. Therefore, JCJNM outperforms the exist-

ing similarity measures.

Proposition 1 Let the range of JCJNM be z (P

represents the total number of features). Then we

have

JCJNM(Ei, Ej) =

⎧⎪⎪⎨
⎪⎪⎩
z = 1.5, a = P,

z ∈ (0, 1.5), 0 < a < P,

z = 0, a = 0.

(6)

Proof As JCJNM is the combined function of

four quantities a, b, c, and d, as shown in Eq. (5),

substituting s = a+ b+ c into Eq. (5), we have

JCJNM(Ei, Ej) =
a[3(a+ b+ c) + d]

(a+ b+ c)[2(a+ b+ c) + d]
.

(7)

Table 21 Similarity matrix of the feature matrix in

Table 4 using the JCJNM similarity measure

Entity E1 E2 E3 E4 E5 E6 E7 E8

E1

E2 1.381

E3 0 0

E4 0 0 1.133

E5 0 0 0.511 0.511

E6 0 0 0.618 0.618 1.022

E7 0.526 0.526 0 0 0.466 0.31

E8 0.526 0.526 0 0 0.466 0.31 0.573

Table 22 Iteration 1: updated similarity matrix of

Table 21 using the CL method

Entity (E1E2) E3 E4 E5 E6 E7 E8

(E1E2)

E3 0

E4 0 1.133

E5 0 0.511 0.511

E6 0 0.618 0.618 1.022

E7 0.526 0 0 0.466 0.31

E8 0.526 0 0 0.466 0.31 0.573

Table 23 Iteration 2: updated similarity matrix of

Table 22 using the CL method

Entity (E1E2) (E3E4) E5 E6 E7 E8

(E1E2)

(E3E4) 0

E5 0 0.511

E6 0 0.618 1.022

E7 0.526 0 0.466 0.31

E8 0.526 0 0.466 0.31 0.573

If all features are present in feature vectors of

Ei and Ej , i.e., b = c = d = 0 and a = P , then the

above equation reduces to

JCJNM(Ei, Ej) =
a · (3a)

a · (2a)
= 1.5. (8)

Therefore, the maximum similarity value that

JCJNM can produce is 1.5.

Now, if no common feature is present in feature

vectors of Ei and Ej , i.e., a = 0 and b + c + d ≥ 0,

then Eq. (7) reduces to

JCJNM(Ei, Ej)=
0[3(0 + b+ c) + d]

(0 + b+ c)[2(0 + b+ c) + d]
=0.

(9)

Thus, the minimum similarity value that JCJNM

can produce is 0.

Lastly, if there exist some common and absent

features in feature vectors of Ei and Ej , i.e., if a = x

and b = c = d = y, where x, y > 0, then Eq. (7)

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1091

Table 24 Iteration 3: updated similarity matrix of

Table 23 using the CL method

Entity (E1E2) (E3E4) (E5E6) E7 E8

(E1E2)

(E3E4) 0

(E5E6) 0 0.511

E7 0.526 0 0.31

E8 0.526 0 0.31 0.573

Table 25 Iteration 4: updated similarity matrix of

Table 24 using the CL method

Entity (E1E2) (E3E4) (E5E6) (E7E8)

(E1E2)

(E3E4) 0

(E5E6) 0 0.511

(E7E8) 0.526 0 0.31

Table 26 Iteration 5: updated similarity matrix of

Table 25 using the CL method

Entity ((E1E2)(E7E8)) (E3E4) (E5E6)

((E1E2)(E7E8))

(E3E4) 0

(E5E6) 0 0.511

Table 27 Iteration 6: updated similarity matrix of

Table 26 using the CL method

Entity ((E1E2)(E7E8)) ((E3E4)(E5E6))

((E1E2)(E7E8))

((E3E4)(E5E6)) 0

Table 28 Iteration 7: updated similarity matrix of

Table 27 using the CL method

Entity (((E1E2)(E7E8))((E3E4)(E5E6)))

(((E1E2)(E7E8))((E3E4)(E5E6)))

reduces to

JCJNM(Ei, Ej) =
x[3(x+ y + y) + y]

(x + y + y)[2(x+ y + y) + y]
.

(10)

The above equation simplifies to

JCJNM(Ei, Ej) =
3x2 + 7xy

2x2 + 9xy + 10y2
. (11)

Eq. (11) results in a value between 0 and 1.5, if

x, y > 0, ∀Ei, Ej ∈ F .

Proposition 2 JCJNM satisfies Definition 1 given

in Section 2.2, which states that the domain of a

binary similarity measure is {0,1}P and the range is

R
+.

Proof JCJNM is the combined function of four

quantities a, b, c, and d, and all these quantities can

be calculated using only binary values in a feature

vector of entities as defined in Section 2.2. Hence,

the domain of the JCJNM measure is {0,1}P . Mean-

while, JCJNM results in a real value, that is, z ∈ R
+,

as proved in Proposition 1.

Proposition 3 JCJNM fulfills the properties of

positivity and symmetry.

Proof First, let us show the positivity. It has been

shown in the proof of Proposition 1 that JCJNM

creates a similarity value equal to or greater than 0;

that is, JCJNM(Ei, Ej) → R
+, ∀Ei, Ej ∈ F .

Next, let us show the symmetry. JCJNM is

the combined function of four quantities a, b, c, and

d, and all these quantities are symmetric. So, it is

obvious that

JCJNM(Ei, Ej) = JCJNM(Ej , Ei). (12)

Proposition 4 JCJNM fulfills the maximality

property of a similarity measure.

Proof Suppose b+ c = x and x is a positive num-

ber. Then Eq. (7) becomes

JCJNM(Ei, Ej) =
a[3(a+ x) + d]

(a+ x)[2(a+ x) + d]
. (13)

The above equation simplifies to

JCJNM(Ei, Ej) =
a(3a+ d+ 3x)

(a+ x)(2a+ d+ 2x)
. (14)

To calculate the similarity of an entity with it-

self, i.e., JCJNM(Ei, Ei), it is sure that x = 0 and

a, d ≥ 0. Using these quantities, Eq. (14) reduces to

JCJNM(Ei, Ei) =
a(3a+ d)

a(2a+ d)
. (15)

Therefore, using Eqs. (14) and (15), ∀Ei, Ej ∈

F , the following association will always be true for

a+ d ≥ 1 and x, where a+ d+ x = P :

a(3a+ d)

a(2a+ d)

⎧⎪⎪⎨
⎪⎪⎩

>
a(3a+ d+ 3x)

(a+ x)(2a+ d+ 2x)
, x > 0,

≥
a(3a+ d+ 3x)

(a+ x)(2a+ d+ 2x)
, x ≥ 0.

Note that we have two associations, equality and

maximality. Equality: for instance, let x = 0, then

Eq. (14) becomes equal to Eq. (15). Maximality: let

a = d = x = 1. So, a + d + x = P = 3. Then the

association between Eqs. (14) and (15) becomes

3 + 1

2 + 1
>

3 + 1 + 3

(1 + 1)(2 + 1 + 2)
.

1092 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

3.2.3 Addition of the JC and RR measures: ‘JCRR’

similarity measure

The second new similarity measure that we de-

rive is ‘JCRR’. This measure adds the RR similarity

measure to the JC similarity measure. The deriva-

tion of JCRR is given as

JCRR = JC + RR =
a

s
+

a

s+ d
=

a(2s+ d)

s(s+ d)
. (16)

For proofs of the correctness of the JCRR binary

similarity measure, please refer to Appendix A.

3.2.4 Combination of the JNM and RR measures:

‘JNMRR’ similarity measure

The third combination of the existing similarity

measures is JNM and RR. We add these two simi-

larity measures and the derived similarity measure is

called ‘JNMRR’, defined as follows:

JNMRR = JNM + RR

=
a

2s+ d
+

a

s+ d
=

a(3s+ 2d)

(2s+ d)(s+ d)
.

(17)

For proofs of the correctness of the JNMRR bi-

nary similarity measure, please refer to Appendix B.

3.2.5 Addition of the JC, JNM, and RR measures:

‘JCJNMRR’ similarity measure

Finally, we add all the three existing measures

and come up with a new measure ‘JCJNMRR’. This

measure combines JC with JNM and RR:

JCJNMRR = JC + JNM + RR

=
a

s
+

a

2s+ d
+

a

s+ d

=
a(5s2 + 5sd+ d2)

s(2s2 + 3sd+ d2)
. (18)

For proofs of the correctness of the JCJN-

MRR binary similarity measure, please refer to Ap-

pendix C.

4 Experimental setup

AHC produces different results due to the bi-

ases of the different linkage methods and similarity

measures (Cui and Chae, 2011). We have performed

a number of experiments by employing well-known

basic linkage methods using existing and our new

similarity measures. In this section, we discuss the

test systems used for experimental purposes and the

clustering process setup including the selection of as-

sessment criteria.

4.1 Test systems

We have used eight test systems that are devel-

oped using C, C++, and Java languages to conduct

the experiments. The test systems have been used in

previous research (Muhammad et al., 2012; Siddique

and Maqbool, 2012; Naseem et al., 2013). All of

these test systems vary in their source code sizes and

application domains. Table 29 presents the details

of the test software systems.

Table 29 Details of the test software systems

ID Test system Number of classes Lines of code Entity

1 DDA 90 82 877 Class

2 FES 47 10 402 Class

3 Mozilla 1202 files 400 000 File

4 PEDS 41 16 360 Class

5 PLC 69 51 768 Class

6 PLP 72 50 661 Class

7 SAVT 97 27 311 Class

8 Weka 331 100 000 Class

We used two open source and six proprietary

test software systems. The open source test software

systems are: (1) Mozilla, an open source web

browser, which was developed in C and C++

programming languages. For experiments, we used

Mozilla (ftp://ftp.mozilla.org/pub/mozilla.org/

mozilla/releases/mozilla1.3/src/) version 1.3 re-

leased in March 2003. This test system is taken

from Siddique and Maqbool (2012). (2) Weka,

another open source software system developed

in Java programming language, which is a well-

known data mining software system used for data

pre-processing, clustering, regression, classification,

association rules, and visualization. We used Weka

(http://perun.pmf.uns.ac.rs/radovanovic/dmsem/

cd/install/Weka/doc/html/Weka%203.4.5.htm)

version 3.4, taken from Siddique and Maqbool

(2012), for experimental purposes.

The proprietary test software systems used for

experiments were developed in Visual C++ pro-

gramming language. They are: (1) DDA, soft-

ware to design the document composition and lay-

out; (2) FES, a fact extractor software system to

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1093

extract the facts of software systems; (3) PEDS, a

power dispatch problem solver using conventional

and evolutionary computing techniques; (4) PLC,

a printer language converter software system used

to convert the intermediate data structure to a well-

known printer language; (5) PLP, a parser software

system, which is used to parse a well-known printer

language; (6) SAVT, a statistical and analysis visu-

alization tool. These software systems are propri-

etary and are currently operational. We obtained

the extracted feature matrix from Muhammad et al.

(2012).

4.2 Entities and features

Mozilla’s dataset is taken from Siddique and

Maqbool (2012), who considered files as entities be-

cause a .c or .cpp file contains both functions with or

without classes. Hence, in this study, files are con-

sidered entities for Mozilla, and file calling is used as

a feature. The total number of file calling features

is 258. For the Weka test system, which is purely

developed in Java, we consider classes to be enti-

ties (Siddique and Maqbool, 2012). Since classes are

considered to be the basic building blocks of object

oriented languages, Siddique and Maqbool (2012)

selected functions invoked, user-defined types, and

global variables as features for classes.

For the proprietary software systems, Muham-

mad et al. (2012) considered classes to be entities.

We select nine indirect features for these entities

(Table 30), since indirect features give better results

as compared to direct features (Muhammad et al.,

2012). We consider various types of test software

systems that are developed in different programming

languages, with different types of entities and fea-

tures, because we want to see whether our newly

proposed similarity measures are applicable to these

different artifacts to make good clusters for software

modularization.

4.3 Clustering strategies

In this study, we consider existing similarity

measures and linkage methods that have produced

better results for software modularization (Davey

and Burd, 2000; Muhammad et al., 2012). To con-

duct the experiments, we categorize clustering ac-

tors into different clustering stratagems as shown in

Table 31. These stratagems are composed of three

Table 30 Indirect features of the classes in proprietary

test systems used for experiments

Feature type
Number of features

DDA FES PEDS PLC PLP SAVT

Same inheritance 98 166 70 26 64 986

hierarchy

Same class 58 56 12 58 144 1032

containment

Same class in 476 384 76 162 672 1900

methods

Same generic 59 91 6 465 98 49

class

Same generic 0 4 0 0 0 0

parameter

Same file 136 42 36 1812 826 264

Same folder 2456 0 0 0 0 0

Same macro 0 0 12 0 2 0

access

Same global 918 0 0 0 268 0

access

Total 4201 743 212 2523 2074 4231

existing similarity measures and four new similar-

ity measures, using three well-known basic linkage

methods. The details of these stratagems are given

in Table 31.

4.4 Assessment criteria

To assess the output of the stratagems given in

Section 4.3, we consider external as well as internal

Table 31 Clustering stratagems

Serial
SM Abbr. Linkage method Abbr.

number

1 JCJNM JCJNM Complete CL

2 JCRR JCRR Complete CL

3 JNMRR JNMRR Complete CL

4 JCJNMRR JCJNMRR Complete CL

5 JCJNM JCJNM Single SL

6 JCRR JCRR Single SL

7 JNMRR JNMRR Single SL

8 JCJNMRR JCJNMRR Single SL

9 JCJNM JCJNM Weighted average WL

10 JCRR JCRR Weighted average WL

11 JNMRR JNMRR Weighted average WL

12 JCJNMRR JCJNMRR Weighted average WL

13 Jaccard JC Complete CL

14 JaccardNM JNM Complete CL

15 Russell&Rao RR Complete CL

16 Jaccard JC Single SL

17 JaccardNM JNM Single SL

18 Russell&Rao RR Single SL

19 Jaccard JC Weighted average WL

20 JaccardNM JNM Weighted average WL

21 Russell&Rao RR Weighted average WL

1094 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

assessment. External assessment is the approach in

which expert decomposition is required to evaluate

the automated results, also known as authoritative-

ness. As AHC produces results at each iteration,

the following question arises: which iteration’s re-

sult should be evaluated? To answer the question,

researchers used an external criterion to evaluate the

results of each iteration, and then presented the max-

imum or average value of the criterion (Wen and

Tzerpos, 2004; Maqbool and Babri, 2007; Muham-

mad et al., 2012). We report the results by selecting

the maximum MoJoFM value out of all values ob-

tained from each iteration. To show the strengths

and weaknesses of the proposed and existing mea-

sures, we also evaluate the experimental results us-

ing internal assessment criteria, that is, the number

of arbitrary decisions (Naseem et al., 2013) and the

number of clusters produced during clustering (Maq-

bool and Babri, 2007).

4.5 Expert decomposition

Since we evaluate our results externally (using

MoJoFM), it is important to have reliable expert de-

compositions, with which to compare our clustering

results. For the proprietary software systems, expert

decompositions are developed by personnel having

design and development experience in the software

industry. They have six to seven years of experience

in developing software systems using C++. Some

of the experts are the original developers of the soft-

ware systems. We provided the source code and class

listing to all the experts and asked them to develop

a decomposition of the given system. The experts

were not provided with any details about clustering

algorithms, and what relationships between entities

were used during clustering. A summary of relevant

statistics of the experts is presented in Table 32.

Table 32 Personnel statistics

Personnel System Experience in years

Actual designer DDA 7

Experienced in C++ FES 6

Actual designer PEDS 7

Maintainer PLC 7

Actual designer PLP 6

Experienced in C++ SAVT 7

The process of preparing expert decomposition

has been described in detail in Muhammad et al.

(2012) and Naseem et al. (2013). These expert de-

compositions have been previously used in differ-

ent studies (Muhammad et al., 2012; Naseem et al.,

2013).

For Mozilla, we used the expert decomposi-

tion used in Siddique and Maqbool (2012). They

have taken this decomposition from Xia and Tzerpos

(2005). For Weka, we used the expert decomposition

given in Patel et al. (2009). This expert decompo-

sition was provided by the original designers of the

Weka software system. The expert decompositions

for these systems have been used for modularization

experiments earlier (Andreopoulos et al., 2005; Patel

et al., 2009; Siddique and Maqbool, 2012; Hussain

et al., 2015).

5 Assessment of new similarity mea-
sures

In this section, we present the experimental re-

sults using the number of arbitrary decisions, the

number of clusters, and authoritativeness using the

MoJoFM measure.

5.1 Number of arbitrary decisions

The overall results for all similarity measures

are reported in Table 33. This table lists the aver-

age number of arbitrary decisions that are made by

the AHC using different similarity measures in each

iteration.

It can be seen from Table 33 that our proposed

similarity measures have reduced the number of ar-

bitrary decisions for each method. It is interesting

that the JCJNM, JCRR, and JCJNMRR measures

in most cases produce the same number of arbitrary

decisions and also smaller ones than the existing JC

and RR measures. JNMRR and JNM measures pro-

duce the same results except for in two cases, where

the difference is minor. The same results may be

due to the fact that both similarity measures (JNM

and RR) have the ability to count all features, that

is, a, b, c, and d. Therefore, adding RR may have no

additional effect on the similarity values of JNM to

reduce the number of arbitrary decisions.

Though our proposed measures produce a small

number of arbitrary decisions, the existing JNM

measure and our new JNMRR measure have the

lowest number of arbitrary decisions. It is interest-

ing to note that for the SL method, the JNMRR

and JNM measures produce a smaller number of

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1095

Table 33 Experimental results using arbitrary decisions for all similarity measures

Method Measure DDA FES Mozilla PEDS PLC PLP SAVT Weka Average∗ Average∗∗

JCJNM 2.06 10.28 253.19 9.80 37.59 9.24 20.47 695.42 129.76

129.69
JCRR 2.06 10.28 253.20 9.80 37.59 9.24 20.47 695.42 129.76

JNMRR 1.89 10.26 253.17 9.80 37.63 9.25 18.89 695.13 129.50

CL JCJNMRR 2.07 10.28 253.19 9.80 37.59 9.24 20.47 695.42 129.76

JC 4.34 10.43 245.27 10.95 72.10 10.72 30.19 700.39 135.55

JNM 1.89 10.26 253.17 9.80 37.63 9.25 18.89 695.13 129.50 139.86

RR 33.79 11.93 296.01 14.78 50.79 27.39 31.52 769.93 154.52

JCJNM 1.55 3.00 4.07 1.13 35.90 1.85 10.91 374.69 54.14

54.03
JCRR 1.55 3.00 4.08 1.13 35.90 1.85 10.91 374.69 54.14

JNMRR 1.22 2.98 3.03 1.13 35.90 1.85 10.91 372.77 53.72

SL JCJNMRR 1.55 3.00 4.05 1.13 35.90 1.86 10.91 374.69 54.14

JC 3.93 3.20 8.68 2.25 70.47 3.30 20.98 384.05 62.11

JNM 1.22 2.98 3.03 1.13 35.90 1.85 10.91 372.77 53.72 60.90

RR 8.38 4.70 17.49 8.20 53.16 20.59 22.32 400.20 66.88

JCJNM 1.15 2.98 2.36 0.98 (35.81) 1.80 (10.68) 371.36 53.39

(53.37)
JCRR 1.15 2.98 2.37 0.98 (35.81) 1.80 (10.68) 371.36 53.39

JNMRR (0.97) (2.91) (2.23) (0.90) 35.85 (1.79) (10.68) (371.21) (53.32)

WL JCJNMRR 1.15 2.98 2.36 0.98 (35.81) (1.79) (10.68) 371.36 53.39

JC 3.06 3.07 4.43 1.93 70.28 3.20 20.30 374.15 60.05

JNM 0.99 (2.91) (2.23) (0.90) 35.85 (1.79) 10.69 (371.21) (53.32) 58.55

RR 4.97 3.72 7.42 3.73 48.71 19.61 16.48 393.58 62.28
∗ represents the average value for each similarity measure; ∗∗ represents the average value for a new or an existing measure.

Bold case values represent the better values for a certain system/method, and the bold ones enclosed in parentheses indicate

the best values

arbitrary decisions for all the test systems as com-

pared to other methods.

It can be easily observed from the second last

column of Table 33 that, as expected, our proposed

similarity measures produced a smaller number of ar-

bitrary decisions on average, as compared to existing

similarity measures (see the last column of Table 33).

To ease the analysis, we select the average val-

ues from the second last column of Table 33, and

summarize them in Table 34. Table 34 shows the

average values of each similarity measure for link-

age methods. It can be seen from the second last

column of Table 34 that for all methods on average,

JNMRR and JNM produced smaller numbers of ar-

bitrary decisions. Meanwhile, the last column shows

the average values for all methods of our new and

existing similarity measures separately. As can be

seen, our new similarity measures on average pro-

duced 79.03 arbitrary decisions during the clustering

process, which is fewer than that produced by the

existing similarity measures (86.44).

For further analysis, box-plots are used in Fig. 3

to illustrate the number of arbitrary decisions made

during the clustering process by AHC using different

similarity measures. A box-plot shows the variation

Table 34 Average numbers of arbitrary decisions for

all similarity measures

Measure
Number of arbitrary decisions

CL SL WL Average∗ Average∗∗

JCJNM 129.76 54.14 53.39 79.09

79.03
JCRR 129.76 54.14 53.39 79.09

JNMRR 129.50 53.72 53.32 78.85

JCJNMRR 129.76 54.14 53.39 79.09

JC 135.55 62.11 60.05 85.90

JNM 129.50 53.72 53.32 78.85 86.44

RR 154.52 66.88 62.28 94.56

∗ represents the average value for each similarity measure;
∗∗ represents the average value for a new or an existing measure.

Bold numbers represent the best values in the column

in the number of arbitrary decisions by indicating

the quartiles and also highlights the outliers for each

measure. For clarity, points are presented alongside

a box-plot, representing the number of iterations in

which many arbitrary decisions are made (i.e., the

number of times that number of arbitrary decisions

arises during clustering). Thus, the density of the

points shows which arbitrary decision value is mostly

observed during the clustering process. Due to lim-

ited space, only the results of CL and SL methods

employed on DDA, FES, Mozilla, PEDS, and PLC

test software systems are presented.

1096 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

CL SL

DDA

FES

Mozilla

PEDS

PLC

N
u

m
b

e
r

o
f
a

rb
it
ra

ry
 d

e
c
is

io
n

s
N

u
m

b
e

r
o

f
a

rb
it
ra

ry
 d

e
c
is

io
n

s
N

u
m

b
e

r
o

f
a

rb
it
ra

ry
 d

e
c
is

io
n

s
N

u
m

b
e

r
o

f
a

rb
it
ra

ry
 d

e
c
is

io
n

s
N

u
m

b
e

r
o

f
a

rb
it
ra

ry
 d

e
c
is

io
n

s

JCJNM JCRR JNMRR JCJNMRR JC JNM RR JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

180

160

140

120

100

80

60

40

20

0

180

160

140

120

100

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

140

120

100

80

60

40

20

0

140

120

100

80

60

40

20

0

80

70

60

50

40

30

20

10

0

80

70

60

50

40

30

20

10

0

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0

Fig. 3 The number of arbitrary decisions made during the clustering process by all binary similarity measures

using the CL and SL methods for different test software systems

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1097

As shown in Fig. 3, JC and RR produce a

larger number of arbitrary decisions as compared to

JCJNM, JCRR, JNMRR, JCJNMRR, and JNM in

general. This is apparent from the height of the box.

Although in some cases the height of the box is lower

for JC and RR (e.g., for FES using SL), there is a

higher average in Table 33 for these measures. This

indicates that arbitrary decisions are being made in

a large number of iterations.

We also list some important statistics for our

new and existing measures. Table 35 presents, for the

arbitrary decisions, the minimum value (min), max-

imum value (max), mean, standard deviation (std),

mode, and percentage of the count of occurrences

of mode values. The min value for new measures is

78.85, which is equal to the min value for existing

measures. However, the max value for new measures

(79.09) is smaller than that for the existing measures.

It indicates that new measures create the maximum

value, which is very near to the minimum value cre-

ated by both the existing and new measures. It can

be seen that the std for our new similarity measures

is 0.11, which is much smaller than that for existing

similarity measures. This clearly indicates that our

new similarity measures produce very compact re-

sults as compared to existing similarity measures. It

can also be observed that 75% of the results produced

by our proposed measures are the same, while the

existing measures created varied results and hence

found no mode.

Table 35 Statistics of arbitrary decisions

Measure type Min Max Mean Std Mode Percentage

New 78.85 79.09 79.03 0.11 79.09 75%

Existing 78.85 94.56 86.44 6.42 N/A 0%

5.2 Number of clusters

The number of clusters during the clustering

process shows how compact the produced clusters

are. A high number of clusters created during the

clustering process indicates that the created clus-

ters are highly compact, while a low number of

clusters indicates that the created clusters are non-

cohesive (Maqbool and Babri, 2007; Wang et al.,

2010). Hence, a high number of clusters indicates

the usefulness of the AHC approach.

Table 36 shows the maximum number of non-

singleton clusters created by AHC during all itera-

tions. It can be seen from Table 36 that the number

of clusters created by AHC using our new similar-

ity measures is higher than that created by exist-

ing similarity measures. It can be seen that for all

test software systems, JCJNM, JCRR, and JC mea-

sures created a large number of clusters using the

CL, SL, and WL methods except for six cases, that

is, CL applied on PLC, SL applied on DDA, Mozilla,

and SAVT, and WL applied on Mozilla and Weka.

For the SL method, JCJNM, JCRR, and JCJNMRR

measures produced a large number of clusters for all

test systems except one (SAVT). Again, note that

JNMRR and JNM measures resulted in the same

number of clusters for all test software systems and

linkage methods. It can also be seen that for Mozilla

and Weka software systems, our new measures sub-

stantially increased the number of clusters similar to

the JC measure. Note that the new measures inte-

grating the JC similarity measure have achieved an

equally large number of clusters as the JC measure.

This is because our new measures (JCJNM, JCRR,

and JCJNMRR) integrate the JC measure, which re-

sults in a large number of clusters. JNMRR does not

integrate the JC measure; therefore, results are the

same as those of the JNM measure.

As can be seen from the second last column

of Table 36, on average, for the CL method, the

JCJNM, JCRR, JCJNMRR, and JC measures pro-

duced better results; that is, they created larger

numbers of clusters. The JCJNM and JCRR mea-

sures with the SL method and the JCJNMRR mea-

sure with the WL method resulted in a large number

of clusters. It can be seen from the last column of

Table 36 that, for each linkage method our new sim-

ilarity measures outperformed the existing ones.

To summarize the results, we listed the values

given in the second last column of Table 36 in Ta-

ble 37. Table 37 presents the numbers of clusters

of similarity measures for linkage methods. This ta-

ble clearly indicates how well a measure performs

as compared to other contesting measures. This ta-

ble also shows the average of each type, which indi-

cates the average of all new measures and all exist-

ing measures separately. It can be seen that the new

measures outperform the existing ones by creating a

larger number of clusters.

For further analysis, a violin plot is shown in

Fig. 4, which shows the numbers of clusters created

during the clustering process by different similarity

1098 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

Table 36 Experimental results using the number of clusters produced during clustering for all similarity

measures

Method Measure DDA FES Mozilla PEDS PLC PLP SAVT Weka Average∗ Average∗∗

JCJNM (23) (10) (75) 12 10 (12) (18) (55) (26.88)

(25.75)
JCRR (23) (10) (75) 12 10 (12) (18) (55) (26.88)

JNMRR 21 9 64 12 (11) 11 16 35 22.38

CL JCJNMRR (23) (10) (75) 12 10 (12) (18) (55) (26.88)

JC (23) (10) (75) 12 10 (12) (18) (55) (26.88)

JNM 21 9 64 12 (11) 11 16 35 22.38 22.29

RR 17 8 49 10 10 9 14 24 17.63

JCJNM 17 8 49 8 6 8 12 31 17.38

14.72
JCRR 17 8 49 8 6 8 12 31 17.38

JNMRR 7 4 11 5 5 4 7 12 6.88

SL JCJNMRR 17 8 48 8 6 8 12 31 17.25

JC 16 8 48 8 6 8 13 31 17.25

JNM 7 4 11 5 5 4 7 12 6.88 10.08

RR 7 4 8 5 4 4 5 12 6.13

JCJNM 20 9 68 12 9 11 17 47 24.13
22.22

JCRR 20 9 68 12 9 11 17 47 24.13

JNMRR 15 7 45 8 7 10 13 26 16.38

WL JCJNMRR 20 9 69 12 9 11 17 47 24.25

JC 20 9 69 12 9 11 17 46 24.13

JNM 15 7 45 8 7 10 13 26 16.38 18.54

RR 15 7 41 8 8 9 11 22 15.13

∗ represents the average value for each similarity measure; ∗∗ represents the average value for a new or an existing measure. Bold

case values represent the better values for a certain system/method, and the bold ones enclosed in parentheses indicate the best

values

measures using CL and SL on various test software

systems. The clustering process started by forming

very small-sized clusters (size two). The increase in

the height of the violin graph means that a large

number of clusters are created during the clustering

process. The width of the violin shows the value dis-

tribution over the observed number of clusters. It

can be easily observed that our new similarity mea-

sures and JC (in most of the cases) resulted in a

larger number of clusters. It can also be seen that

JNM, RR, and JNMRR measures produced a rela-

tively small number of clusters during the clustering

process. This is especially true for the SL measure,

where the number of clusters during clustering is

much lower for these measures.

To support the claim that our proposed mea-

sures perform better, Table 38 shows the statistics of

Table 37. All the statistical data (min, max, mean,

std, mode, and percentage) are derived from the sec-

ond last column of Table 37. The min value of new

measures is 15.21, which is greater than the min value

of existing measures (12.96). The max value of the

new measures is slightly greater than that of the ex-

isting measures. It can be seen that the std value

Table 37 Average numbers of clusters produced dur-

ing clustering for all similarity measures

Measure
Number of clusters

Average∗ Average∗∗

CL SL WL

JCJNM 26.88 17.38 24.13 22.79

20.90
JCRR 26.88 17.38 24.13 22.79

JNMRR 22.38 6.88 16.38 15.21

JCJNMRR 26.88 17.25 24.25 22.79

JC 26.88 17.25 24.13 22.75

JCNM 22.38 6.88 16.38 15.21 16.97

RR 17.63 6.13 15.13 12.96
∗ represents the average value for each similarity measure;
∗∗ represents the average value for a new or an existing measure.

Bold numbers represent the best values in the column

Table 38 Statistics of the number of clusters based

on Table 37

Measure type Min Max Mean Std Mode Percentage

New 15.21 22.79 20.90 3.28 22.79 75%

Existing 12.96 22.75 16.97 4.19 N/A 0%

of our proposed measures (3.28) is smaller than that

of the existing measures, which indicates that the

results of our new measures are closer to the mean

value and also closer to each other. This table also

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1099

CL SL

DDA

FES

Mozilla

PEDS

PLC

N
u

m
b

e
r

o
f
c
lu

s
te

rs
N

u
m

b
e

r
o

f
c
lu

s
te

rs
N

u
m

b
e

r
o

f
c
lu

s
te

rs
N

u
m

b
e

r
o

f
c
lu

s
te

rs
N

u
m

b
e

r
o

f
c
lu

s
te

rs

20

15

10

5

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

15

10

5

0

JCJNM JCRR JNMRR JCJNMRR JC JNM

8

6

4

2

0

RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

50

40

30

20

10

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

8

6

4

2

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

7

6

5

4

3

2

1

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

12

10

8

6

4

2

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

12

10

8

6

4

2

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

60

40

20

0

10

8

6

4

2

0

JCJNM JCRR JNMRR JCJNMRR JC JNM RR

Fig. 4 The number of clusters created by all binary similarity measures during the clustering process using

the CL and SL methods for different test software systems

1100 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

shows the mode and percentage of the occurrence of

the mode value. The mode of new measures is 22.79,

which occurs three times in the second last column

of Table 37. The percentage value 75% means that

75% values are the same for the JCJNM, JCRR, and

JCJNMRR similarity measures.

5.3 Authoritativeness

The automated result is required to approxi-

mate the decomposition prepared by a human expert

(an authority). For this purpose we use MoJoFM to

compare the automated results with expert decom-

positions. The MoJoFM values for the series of ex-

periments are given in Table 39. This table shows

the maximum MoJoFM values selected during the

iterations of the clustering process for all similarity

measures and test software systems. The average

values for each similarity measure are shown in the

second last column of Table 39, while the last column

presents the average for new measures and existing

measures, based on the average values given in the

second last column.

It can be seen from Table 39 that in most cases

our new measures outperform the existing ones. As

shown in Sections 5.1 and 5.2, our new similarity

measures result in a smaller number of arbitrary de-

cisions and a larger number of clusters. Thus, reduc-

ing the number of arbitrary decisions and increasing

the number of clusters improve the authoritativeness

of the automated results (Maqbool and Babri, 2007;

Naseem et al., 2013).

It can be easily analyzed that our new measures

produce better results than the existing measures ex-

cept for one test software system, that is, the PLC

software system where the result of the JNM measure

using the CL method is better. As can be seen from

Table 39, for the DDA software system the JNMRR

measure using the CL method results in the high-

est MoJoFM value. For the FES software system,

the JCJNM, JCRR, and JCJNMRR measures using

the CL method produce better results as compared

to all other stratagems. For the Mozilla test system,

the JNMRR similarity measure using the CL method

gives the highest MoJoFM value. For the PEDS soft-

ware system, our new and existing measures perform

equally well. PLC is the only test system for which

the existing JNM measure using the CL method re-

sults in the highest MoJoFM value. For the PLP

software system, all the existing measures using the

CL method give the lowest value, while for the SAVT

test software system, the JNMRR measure using the

Table 39 MoJoFM results for all similarity measures

Method Measure DDA FES Mozilla PEDS PLC PLP SAVT Weka Average∗ Average∗∗

JCJNM 56.25 45.00 63.89 57.14 61.54 (65.67) 65.93 30.45 55.73

(55.94)
JCRR 56.25 45.00 63.89 57.14 61.54 65.67 65.93 30.45 55.73

JNMRR (60.00) 45.00 64.68 57.14 61.54 65.67 (67.03) 30.13 (56.40)

CL JCJNMRR 57.50 45.00 63.89 57.14 61.54 65.67 65.93 30.45 55.89

JC 56.25 43.00 63.00 57.14 61.00 51.00 54.00 30.45 51.98

JNM 56.25 43.00 64.00 57.14 (65.00) 60.00 54.00 30.13 53.69 52.45

RR 53.75 38.00 62.00 57.14 64.00 55.00 58.00 25.64 51.69

JCJNM 53.75 (47.50) 46.03 57.14 63.08 59.70 58.24 22.12 50.95

47.97
JCRR 53.75 (47.50) 46.03 57.14 63.08 59.70 58.24 22.12 50.95

JNMRR 25.00 32.50 35.71 54.29 60.00 38.81 47.25 17.31 38.86

SL JCJNMRR 53.75 (47.50) 46.03 57.14 64.62 59.70 58.24 22.12 51.14

JC 53.75 35.00 46.00 54.29 55.00 28.00 32.00 23.08 40.89

JNM 25.00 43.00 36.00 54.29 42.00 28.00 32.00 17.31 34.70 36.16

RR 23.75 33.00 36.00 51.43 42.00 28.00 32.00 16.99 32.90

JCJNM 56.25 42.50 61.11 57.14 63.08 59.70 (67.03) (32.05) 54.86

53.95
JCRR 56.25 42.50 61.11 57.14 63.08 59.70 (67.03) (32.05) 54.86

JNMRR 50.00 40.00 56.35 54.29 63.08 58.21 63.74 24.68 51.29

WL JCJNMRR 56.25 42.50 62.30 57.14 63.08 59.70 (67.03) 30.45 54.81

JC 56.25 38.00 61.00 57.14 56.00 46.00 48.00 31.09 49.19

JNM 50.00 35.00 61.00 54.29 55.00 55.00 53.00 24.68 48.50 49.40

RR 52.50 45.00 62.00 54.29 61.00 55.00 51.00 23.40 50.52

∗: the average value for each similarity measure; ∗∗: the average value for a new or an existing measure. Bold case values represent

the better values for a certain system/method, and the bold ones enclosed in parentheses indicate the best values

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1101

CL method, and JCJNM, JCRR, and JCJNMRR

measures using the WL method, result in the high-

est MoJoFM values (67.03%). Lastly, for the Weka

software system, the JCJNM and JCRR measures

using the WL method produce the highest MoJoFM

values as compared to other measures using the CL

and SL methods.

As can be seen from the second last column in

Table 39, on average our new measures outperform

the existing measures. The last column of Table 39

shows the average values of the new and existing sim-

ilarity measures. As can be seen, our new measures

outperform all existing measures using all linkage

methods on all test software systems. Meanwhile,

the CL method results in the highest MoJoFM value.

Hence, we can infer that the CL method produces a

better result as compared to the SL method, while

the WL method falls in between these two.

To show the results more precisely, Table 40

lists the average values from the second last column

of Table 39 for each similarity measure. As shown in

Table 40, for the CL method, the JNMRR measure

results in a better MoJoFM value as compared to

other similarity measures. For the SL method, the

JCJNMRR measure yields a better result, while for

the WL method, JCJNM and JCRR produce better

results. As can be seen from the second last column

of Table 40, on average, JCJNMRR gives a better

result as compared to all other similarity measures.

Table 40 also provides good evidence to say that our

new measures produce better results as compared to

existing measures for all linkage methods.

Table 41 lists different statistics based on values

in the second last column of Table 40. It can be seen

that min, max, and mean values for the proposed new

Table 40 Average MoJoFM results for all similarity

measures

Measure
MoJoFM

Average∗ Average∗∗

CL SL WL

JCJNM 55.73 50.95 54.86 53.85

52.62
JCRR 55.73 50.95 54.86 53.85

JNMRR 56.40 38.86 51.29 48.85

JCJNMRR 55.89 51.14 54.81 53.94

JC 51.98 40.89 49.19 47.35

JNM 53.69 34.70 48.50 45.63 46.01

RR 51.69 32.90 50.52 45.04

∗ represents the average value for each similarity measure;
∗∗ represents the average value for a new or an existing measure.

Bold numbers represent the best values in the column

Table 41 Statistics for new and existing measures

based on Table 40

Measure type Min Max Mean Std Mode Percentage

New 48.85 53.94 52.62 2.18 53.85 50%

Existing 45.04 47.35 46.01 0.98 N/A 0%

measures are higher than their counterparts of the

existing measures. This indicates that in all cases,

our new measures produce better results. These val-

ues indicate the superiority of our new measures over

existing measures. Standard deviation (std) values

for both types of measures indicate that each type

has one value that is out of the range. Meanwhile,

JCJNM and JCRR measures result in exactly the

same values, which can be seen in Tables 40 and 41

(column mode). The percentage value 50% means

that 50% values are the same for JCJNM and JCRR

similarity measures.

5.3.1 Significance of authoritativeness

To show the significance of authoritativeness re-

sults, T -test has been conducted to show if there is

a significant difference between the MoJoFM values

of new measures and the existing measures. In this

case, null hypothesis Ho is as follows: There is no

difference between the MoJoFM values of new mea-

sures and the existing measures.

T -test (with df=7) has been conducted between

the new and existing measures using the CL and SL

methods. The T -test results are given in Table 42.

This table clearly indicates that if t > 2.365, new

measures have significantly performed better at the

Table 42 T -test values between the MoJoFM results

of the new and existing measures using the CL and

SL methods

New measure Existing measure
T -test value

CL SL

JCJNM

JC 1.90 2.41

JNM 1.30 4.10

RR 2.79 5.10

JCRR

JC 1.90 2.41

JNM 1.30 4.10

RR 2.79 5.10

JNMRR

JC 2.24 −0.45

JNM 1.64 1.31

RR 3.19 2.39

JCJNMRR

JC 2.01 2.46

JNM 1.42 4.11

RR 2.93 5.12

1102 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

95% confidence level; at this level of confidence, all

new measures are significantly better than RR using

the CL method, and JCJNM, JCRR, and JCJN-

MRR are better than all existing measures using

SL. Moreover, JNMRR is significantly better than

RR using the SL method. At the 90% confidence

level (t > 1.895), all new measures are significantly

better than JC using the CL method. At the 80%

confidence level (t > 1.415), JNMRR and JCJN-

MRR are significantly better than JNM using the

CL method. Finally, JCJNM and JCRR are signifi-

cantly better than JNM using the CL method at the

70% confidence level (t > 1.12). Thus, the new mea-

sures have produced significantly better results at

different confidence levels; hence, the null

hypothesis Ho is rejected.

5.4 Summary of results

Considering the overall performance of the

similarity measures, our new similarity measures

(JCJNM, JCRR, JNMRR, and JCJNMRR) outper-

form the existing similarity measures (JC, JNM, and

RR) using the CL, SL, and WL methods with respect

to authoritativeness, the number of clusters, and the

number of arbitrary decisions. It can be noticed

that for most of the cases the JCJNM, JCRR, and

JCJNMRR measures yield better results. However,

on average JNMRR using the CL method results

in the highest authoritativeness value (Table 39).

The JCJNM and JCRR measures used with the WL

method achieve the second position, and the JCJN-

MRR measure using the SL method is on the third

position. On average, the JCJNMRR measure gives

better authoritativeness for all methods as compared

to all other measures, which can be seen in Table 40.

Experimental results in terms of the number of

clusters reveal that for all test software systems, the

JCJNM, JCRR, JCJNMRR, and JC measures using

the CL method yield better results, as can be seen

in Table 36. However, for all methods, the JCJNM

measure performs better as shown in Table 37.

As can be seen from Table 33, the JNMRR mea-

sure using the WL method creates the lowest arbi-

trary decisions for all test software systems, as com-

pared to other stratagems. For all methods, the JN-

MRR and JNM measures produce a smaller number

of arbitrary decisions, as shown in Table 34.

As compared to the SL and WL methods, the

CL method yields better results for authoritative-

ness for all the test software systems, as shown in

Table 39. The WL method results in a smaller num-

ber of arbitrary decisions, as presented in Table 33.

The CL method creates a larger number of clusters

during clustering as compared to the WL and SL

methods, which can be seen in Table 36.

5.5 Threats to validity

The selection of test systems may pose a threat

to a study, since the test system characteristics may

influence the results. To reduce this threat, we se-

lected open or closed source software systems of dif-

ferent sizes (numbers of source lines) having different

application domains. We used eight test systems de-

veloped in well-known programming languages, that

is, C, C++, and Java. However, more experiments

may be conducted on large-size software systems de-

veloped in other programming languages.

To evaluate the results, we used MoJoFM as

the external assessment criterion, and used the num-

ber of clusters and the number of arbitrary decisions

as the internal assessment criteria. As MoJoFM re-

quires an expert decomposition prepared by a hu-

man, a threat may exist during the preparation of

expert decomposition due to human biases. How-

ever, we have tried to reduce this threat by selecting

experienced software personnel as experts, who were

also involved in the development of the proprietary

software systems. For Mozilla, expert decomposi-

tion was prepared by Godfrey and Lee (2000) and

then updated for Mozilla 1.3 by Xia and Tzerpos

(2005); for Weka, we used the decomposition pre-

pared by the actual designers of the systems (Patel

et al., 2009). Moreover, we selected software systems

that have been used in previous studies, with their

expert decompositions (Andreopoulos et al., 2005;

Patel et al., 2009; Muhammad et al., 2012; Siddique

and Maqbool, 2012; Hussain et al., 2015). Since our

main goal was to integrate the strengths of existing

measures, our choices of internal assessment criteria

are based on that goal. We are aware that there

exist a number of other internal assessment criteria

that can also be used to investigate the results, for

example, coupling and cohesion.

6 Conclusions

We have presented the improved binary similar-

ity measures, namely, JCJNM, JCRR, JNMRR, and

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1103

JCJNMRR, for clustering software systems for mod-

ularization. These measures integrate the strengths

of the following existing binary similarity measures:

Jaccard (JC), JaccardNM (JNM), and Russell&Rao

(RR). An example of the existing and new similarity

measures has been presented to show how our new

measures integrate strengths of the existing similar-

ity measures. We have presented empirical results

to compare the results of the existing and new simi-

larity measures and showed the strengths of our new

measures. Experimental results have been obtained

using eight real-world, different test software systems

which are developed in different programming lan-

guages and belong to different domain applications.

The empirical results indicate that our new bi-

nary similarity measures can produce better author-

itative results than the existing similarity measures.

Our new measures can reduce the number of arbi-

trary decisions and increase the number of clusters

during the clustering process. The proposed similar-

ity measures can be applied to test software systems

developed in any programming language, since they

depend only on the binary feature vector representa-

tion of data.

It is possible to extend our integration approach

to form new similarity and distance measures using

existing similarity and distance measures for other

clustering application domains.

References
Andreopoulos, B., An, A.J., Tzerpos, V., et al., 2005. Mul-

tiple layer clustering of large software systems. Proc.

12th Working Conf. on Reverse Engineering, p.79-88.

https://doi.org/10.1109/wcre.2005.24
Andritsos, P., Tzerpos, V., 2005. Information-theoretic soft-

ware clustering. IEEE Trans. Softw. Eng., 31(2):

150-165. https://doi.org/10.1109/tse.2005.25
Anquetil, N., Lethbridge, T.C., 1999. Experiments with

clustering as a software remodularization method. Proc.

6th Working Conf. on Reverse Engineering, p.235-255.

https://doi.org/10.1109/wcre.1999.806964
Bauer, M., Trifu, M., 2004. Architecture-aware adaptive

clustering of OO systems. Proc. 8th European Conf.

on Software Maintenance and Reengineering, p.3-14.

https://doi.org/10.1109/csmr.2004.1281401
Bittencourt, R.A., Guerrero, D.D.S., 2009. Comparison

of graph clustering algorithms for recovering software

architecture module views. Proc. 13th European Conf.

on Software Maintenance and Reengineering, p.251-254.

https://doi.org/10.1109/csmr.2009.28
Cheetham, A.H., Hazel, J.E., 1969. Binary (presence-

absence) similarity coefficents. J. Paleontol., 43(5):

1130-1136.
Chong, C.Y., Lee, S.P., Ling, T.C., 2013. Efficient software

clustering technique using an adaptive and preventive

dendrogram cutting approach. Inform. Softw. Tech-

nol., 55(11):1994-2012.

https://doi.org/10.1016/j.infsof.2013.07.002

Cui, J.F., Chae, H.S., 2011. Applying agglomerative hierar-

chical clustering algorithms to component identification

for legacy systems. Inform. Softw. Technol., 53(6):

601-614. https://doi.org/10.1016/j.infsof.2011.01.006

Davey, J., Burd, E., 2000. Evaluating the suitability of data

clustering for software remodularisation. Proc. 7th

Working Conf. on Reverse Engineering, p.268-276.

https://doi.org/10.1109/wcre.2000.891478

Dugerdil, P., Jossi, S., 2008. Reverse-architecting legacy soft-

ware based on roles: an industrial experiment. Com-

mun. Comput. Inform. Sci., 22:114-127.

https://doi.org/10.1007/978-3-540-88655-6_9

Glorie, M., Zaidman, A., van Deursen, A., et al., 2009.

Splitting a large software repository for easing future

software evolution—an industrial experience report. J.

Softw. Mainten. Evol. Res. Pract., 21(2):113-141.

https://doi.org/10.1002/smr.401

Godfrey, M.W., Lee, E.H., 2000. Secrets from the monster:

extracting Mozilla’s software architecture. Proc. Int.

Symp. on Constructing Software Engineering Tools,

p.1-10.

Hall, M., Walkinshaw, N., McMinn, P., 2012. Supervised

software modularisation. Proc. 28th IEEE Int. Conf.

on Software Maintenance, p.472-481.

https://doi.org/10.1109/icsm.2012.6405309

Hussain, I., Khanum, A., Abbasi, A.Q., et al., 2015. A

novel approach for software architecture recovery using

particle swarm optimization. Int. Arab. J. Inform.

Technol., 12(1):1-10.

Jackson, D.A., Somers, K.M., Harvey, H.H., 1989. Similar-

ity coefficients: measures of co-occurrence and associ-

ation or simply measures of occurrence. Am. Nat.,

133(3):436-453. https://doi.org/10.1086/284927

Jahnke, J.H., 2004. Reverse engineering software architecture

using rough clusters. Proc. IEEE Annual Meeting of

the Fuzzy Information, p.4-9.

https://doi.org/10.1109/nafips.2004.1336239

Kanellopoulos, Y., Antonellis, P., Tjortjis, C., et al., 2007.

K-attractors: a clustering algorithm for software mea-

surement data analysis. Proc. 19th IEEE Int. Conf.

on Tools with Artificial Intelligence, p.358-365.

https://doi.org/10.1109/ictai.2007.31

Lakhotia, A., 1997. A unified framework for expressing

software subsystem classification techniques. J. Syst.

Softw., 36(3):211-231.

https://doi.org/10.1016/0164-1212(95)00098-4

Lesot, M.J., Rifqi, M., Benhadda, H., 2009. Similarity

measures for binary and numerical data: a survey. Int.

J. Knowl. Eng. Soft Data Parad., 1(1):63.

https://doi.org/10.1504/ijkesdp.2009.021985

Lung, C.H., Zaman, M., Nandi, A., 2004. Applications of

clustering techniques to software partitioning, recovery

and restructuring. J. Syst. Softw., 73(2):227-244.

https://doi.org/10.1016/s0164-1212(03)00234-6

Lutellier, T., Chollak, D., Garcia, J., et al., 2015. Comparing

software architecture recovery techniques using accurate

dependencies. Proc. 37th IEEE Int. Conf. on Software

Engineering, p.69-78.

https://doi.org/10.1109/icse.2015.136

1104 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

Maqbool, O., Babri, H., 2004. The weighted combined

algorithm: a linkage algorithm for software clustering.

Proc. 8th European Conf. on Software Maintenance

and Reengineering, p.15-24.

https://doi.org/10.1109/csmr.2004.1281402

Maqbool, O., Babri, H., 2007. Hierarchical clustering for

software architecture recovery. IEEE Trans. Softw.

Eng., 33(11):759-780.

https://doi.org/10.1109/tse.2007.70732

Mitchell, B.S., 2006. Clustering Software Systems to Identify

Subsystem Structures. Technical Report, Department

of Mathematics and Computer Science, Drexel Univer-

sity, USA.

Mitchell, B.S., Mancoridis, S., 2006. On the automatic

modularization of software systems using the Bunch

tool. IEEE Trans. Softw. Eng., 32(3):193-208.

https://doi.org/10.1109/tse.2006.31

Muhammad, S., Maqbool, O., Abbasi, A.Q., 2012. Evaluat-

ing relationship categories for clustering object-oriented

software systems. IET Softw., 6(3):260-274.

https://doi.org/10.1049/iet-sen.2011.0061

Naseem, R., Maqbool, O., Muhammad, S., 2010. An im-

proved similarity measure for binary features in software

clustering. Proc. 2nd Int. Conf. on Computational

Intelligence, Modelling and Simulation, p.111-116.

https://doi.org/10.1109/cimsim.2010.34

Naseem, R., Maqbool, O., Muhammad, S., 2011. Improved

similarity measures for software clustering. Proc. 15th

European Conf. on Software Maintenance and Reengi-

neering, p.45-54.

https://doi.org/10.1109/csmr.2011.9

Naseem, R., Maqbool, O., Muhammad, S., 2013. Cooper-

ative clustering for software modularization. J. Syst.

Softw., 86(8):2045-2062.

https://doi.org/10.1016/j.jss.2013.03.080

Patel, C., Hamou-Lhadj, A., Rilling, J., 2009. Software clus-

tering using dynamic analysis and static dependencies.

Proc. 13th European Conf. on Software Maintenance

and Reengineering, p.27-36.

https://doi.org/10.1109/csmr.2009.62

Praditwong, K., 2011. Solving software module clustering

problem by evolutionary algorithms. Proc. 8th Int.

Joint Conf. on Computer Science and Software Engi-

neering, p.154-159.

https://doi.org/10.1109/jcsse.2011.5930112

Praditwong, K., Harman, M., Yao, X., 2011. Software

module clustering as a multi-objective search problem.

IEEE Trans. Softw. Eng., 37(2):264-282.

https://doi.org/10.1109/tse.2010.26

Saeed, M., Maqbool, O., Babri, H., et al., 2003. Soft-

ware clustering techniques and the use of combined

algorithm. Proc. 7th European Conf. on Software

Maintenance and Reengineering, p.301-306.

https://doi.org/10.1109/csmr.2003.1192438

Sartipi, K., Kontogiannis, K., 2003. On modeling software

architecture recovery as graph matching. Proc. Int.

Conf. on Software Maintenance, p.224-234.

https://doi.org/10.1109/icsm.2003.1235425

Seung-Seok, C., Cha, S.H., Tappert, C.C., 2010. A survey

of binary similarity and distance measures. J. Syst.

Cybern. Inform., 8(1):43-48.

Shah, Z., Naseem, R., Orgun, M., et al., 2013. Software clus-

tering using automated feature subset selection. Proc.

Int. Conf. on Advanced Data Mining and Applications,

p.47-58.

https://doi.org/10.1007/978-3-642-53917-6_5

Shtern, M., Tzerpos, V., 2010. On the comparability of

software clustering algorithms. Proc. IEEE 18th Int.

Conf. on Program Comprehension, p.64-67.

https://doi.org/10.1109/icpc.2010.25

Shtern, M., Tzerpos, V., 2012. Clustering methodologies

for software engineering. Adv. Softw. Eng., 2012:

792024.1-792024.18.

https://doi.org/10.1155/2012/792024

Shtern, M., Tzerpos, V., 2014. Methods for selecting and

improving software clustering algorithms. Softw. Pract.

Exp., 44(1):33-46.

https://doi.org/10.1002/spe.2147

Siddique, F., Maqbool, O., 2012. Enhancing comprehensibil-

ity of software clustering results. IET Softw., 6(4):283.

https://doi.org/10.1049/iet-sen.2012.0027

Synytskyy, N., Holt, R.C., Davis, I., 2005. Browsing software

architectures with LSEdit. Proc. 13th Int. Workshop

on Program Comprehension, p.176-178.

https://doi.org/10.1109/wpc.2005.11

Tonella, P., 2001. Concept analysis for module restructuring.

IEEE Trans. Softw. Eng., 27(4):351-363.

https://doi.org/10.1109/32.917524

Tzerpos, V., Holt, R.C., 1999. MoJo: a distance metric

for software clusterings. Proc. 6th Working Conf. on

Reverse Engineering, p.187-193.

https://doi.org/10.1109/wcre.1999.806959

Tzerpos, V., Holt, R.C., 2000. On the stability of software

clustering algorithms. Proc. 8th Int. Workshop on

Program Comprehension, p.211-218.

https://doi.org/10.1109/wpc.2000.852495

Vasconcelos, A., Werner, C., 2007. Architecture recovery

and evaluation aiming at program understanding and

reuse. Proc. Int. Conf. on the Quality of Software

Architectures, p.72-89.

https://doi.org/10.1007/978-3-540-77619-2_5

Veal, B.W.G., 2011. Binary Similarity Measures and Their

Applications in Machine Learning. PhD Thesis, London

School of Economics, London, UK.

Wang, Y., Liu, P., Guo, H., et al., 2010. Improved hier-

archical clustering algorithm for software architecture

recovery. Proc. Int. Conf. on Intelligent Computing

and Cognitive Informatics, p.247-250.

https://doi.org/10.1109/icicci.2010.45

Wen, Z., Tzerpos, V., 2003. An optimal algorithm for MoJo

distance. Proc. 11th IEEE Int. Workshop on Program

Comprehension, p.227-235.

https://doi.org/10.1109/wpc.2003.1199206

Wen, Z., Tzerpos, V., 2004. An effectiveness measure for

software clustering algorithms. Proc. 12th IEEE Int.

Workshop on Program Comprehension, p.194-203.

https://doi.org/10.1109/wpc.2004.1311061

Wiggerts, T.A., 1997. Using clustering algorithms in legacy

systems remodularization. Proc. 4th Working Conf.

on Reverse Engineering, p.33-43.

https://doi.org/10.1109/wcre.1997.624574

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1105

Wu, J., Hassan, A.E., Holt, R.C., 2005. Comparison of clus-

tering algorithms in the context of software evolution.

Proc. 21st IEEE Int. Conf. on Software Maintenance,

p.525-535. https://doi.org/10.1109/icsm.2005.31

Xanthos, S., Goodwin, N., 2006. Clustering object-oriented

software systems using spectral graph partitioning. Ur-

bana, 51(1):1-5.

Xia, C., Tzerpos, V., 2005. Software clustering based on

dynamic dependencies. Proc. 9th European Conf. on

Software Maintenance and Reengineering, p.124-133.

https://doi.org/10.1109/csmr.2005.49

Appendix A: Propositions for JCRR

Proposition A1 Let the range of JCRR be z.

Then we have

JCRR(Ei, Ej) =

⎧⎪⎪⎨
⎪⎪⎩
z = 2, a = P,

z ∈ (0, 2), 0 < a < P,

z = 0, a = 0.

(A1)

Proof As JCRR is the combined function of four

quantities a, b, c, and d, as shown in Eq. (16), substi-

tuting s = a+ b+ c into Eq. (16), we have

JCRR(Ei, Ej) =
a[2(a+ b+ c) + d]

(a+ b+ c)[(a+ b+ c) + d]
.

(A2)

If all features are present in feature vectors of

Ei and Ej , i.e., b = c = d = 0 and a = P , then the

above equation reduces to

JCRR(Ei, Ej) =
a · (2a)

a · a
= 2. (A3)

Therefore, the maximum similarity value that

JCRR can create is 2.

Now, if no common feature is present in feature

vectors of Ei and Ej , i.e., a = 0 and b+ c+ d ≥ 0,

then Eq. (A2) reduces to

JCRR(Ei, Ej) =
0 · [2(0 + b+ c) + d]

(0 + b+ c)[(0 + b+ c) + d]
= 0.

(A4)

Thus, the minimum similarity value that JCRR can

create is 0.

Lastly, if there exist some common and absent

features in feature vectors of Ei and Ej , i.e., if a = x

and b = c = d = y, where x, y > 0, then Eq. (A2)

reduces to

JCRR(Ei, Ej) =
x[2(x+ y + y) + y]

(x+ y + y)[(x+ y + y) + y]
.

(A5)

The above equation simplifies to

JCRR(Ei, Ej) =
2x2 + 5xy

x2 + 5xy + 6y2
. (A6)

Eq. (A6) results in a value between 0 and 2, if

x, y > 0, ∀Ei, Ej ∈ F .

Proposition A2 JCRR satisfies Definition 1 given

in Section 2.2, which states that the domain of a

binary similarity measure is {0,1}P and the range is

R
+.

Proof JCRR is the combined function of four

quantities a, b, c, and d, and all these quantities can

be calculated using only binary values in a feature

vector of entities as defined in Section 2.2. Hence,

the domain of JCRR measure is {0,1}P . Meanwhile,

JCRR results in a real value, that is, z ∈ R
+, as

proved in Proposition A1:

JCRR(Ei, Ej) =

{
z > 0, a ≥ 1,

z = 0, otherwise.
(A7)

Proposition A3 JCRR fulfills the properties

of positivity and symmetry of a similarity measure.

Proof First, let us show the positivity. It has been

shown in the proof of Proposition A1 that JCRR

creates a similarity value equal to or greater than 0;

that is, JCRR(Ei, Ej) → R
+, ∀Ei, Ej ∈ F .

Next, let us show the symmetry. It is obvious

that

JCRR(Ei, Ej) = JCRR(Ej , Ei). (A8)

Proposition A4 JCRR fulfills the maximality

property of a similarity measure.

Proof Suppose b+ c = x and x is a positive num-

ber. Then Eq. (A2) becomes

JCRR(Ei, Ej) =
a[2(a+ x) + d]

(a+ x)[(a+ x) + d]
. (A9)

The above equation simplifies to

JCRR(Ei, Ej) =
a(2a+ 2x+ d)

a(a+ d+ 2x) + dx+ x2
. (A10)

To calculate the similarity of an entity with it-

self, i.e., JCRR(Ei, Ei), it is sure that x = 0 and

a, d ≥ 0. Using these quantities, Eq. (A10) reduces

to

JCRR(Ei, Ei) =
a(2a+ d)

a(a+ d)
. (A11)

Therefore, using Eqs. (A10) and (A11),

∀Ei, Ej ∈ F , the following association will always be

1106 Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107

true for any value of a, d, or x, where a+ d+ x =P :

a(2a+ d)

a(a+ d)
≥

a(2a+ 2x+ d)

a(a+ d+ 2x) + dx+ x2
. (A12)

Appendix B: Propositions for JNMRR

Proposition B1 Let the range of JNMRR be z.

Then we have

JNMRR(Ei, Ej) =

⎧⎪⎪⎨
⎪⎪⎩
z = 1.5, a = P,

z ∈ (0, 1.5), 0 < a < P,

z = 0, a = 0.

(B1)

Proof As JNMRR is the combined function of

four quantities a, b, c, and d, as shown in Eq. (17),

substituting s = a+ b+ c into Eq. (17), we have

JNMRR(Ei, Ej)=
a[3(a+b+c) + 2d]

[2(a+b+c)+d][(a+b+c)+d]
.

(B2)

If all features are present in feature vectors of

Ei and Ej , that is, b = c = d = 0, and a = P , then

the above equation reduces to

JNMRR(Ei, Ej) =
a · (3a)

2a · a
= 1.5. (B3)

Therefore, the maximum similarity value that

JNMRR can create is 1.5.

Now, if no common feature is present in feature

vectors ofEi andEj , that is, a = 0 and b+ c+ d ≥ 0,

then Eq. (B2) reduces to

JNMRR(Ei, Ej)=
0[3(0+b+c)+2d]

[2(0+b+c)+d][(0+b+c)+d]

=0. (B4)

Thus, the minimum similarity value that JNMRR

can create is 0.

Lastly, if there exist some common and absent

features in feature vectors of Ei and Ej , i.e., if a = x

and b = c = d = y, where x, y > 0, then Eq. (B2)

reduces to

JNMRR(Ei, Ej)=
x[3(x+y+y)+2y]

[2(x+y+y)+y][(x+y+y)+y]
.

(B5)

The above equation simplifies to

JNMRR(Ei, Ej) =
3x2 + 8xy

2x2 + 11xy + 15y2
. (B6)

Eq. (B6) results in a value between 0 and 1.5, if

x, y > 0, ∀Ei, Ej ∈ F .

Proposition B2 JNMRR satisfies Definition 1

given in Section 2.2, which states that the domain of

a binary similarity measure is {0,1}P and the range

is R+.

Proof JNMRR is the combined function of four

quantities a, b, c, and d, and all these quantities can

be calculated using only binary values in a feature

vector of entities as defined in Section 2.2. Hence, the

domain of JNMRR measure is {0,1}P . Meanwhile,

JNMRR results in a real value, that is, z ∈ R
+, as

proved in Proposition B1:

JNMRR(Ei, Ej) =

{
z > 0, a ≥ 1,

z = 0, otherwise.
(B7)

Proposition B3 JNMRR fulfills the properties of

positivity and symmetry of a similarity measure.

Proof First, let us show the positivity. It has been

shown in the proof of Proposition B1 that JNMRR

creates a similarity value equal to or greater than 0;

that is, JNMRR(Ei, Ej) → R
+, ∀Ei, Ej ∈ F .

Next, let us show the symmetry. It is obvious

that

JNMRR(Ei, Ej) = JNMRR(Ej , Ei). (B8)

Proposition B4 JNMRR fulfills the maximality

property of a similarity measure.

Proof Suppose b+ c = x and x is a positive num-

ber. Then Eq. (B2) becomes

JNMRR(Ei, Ej) =
a[3(a+ x) + 2d]

[2(a+ x) + d][(a+ x) + d]
.

(B9)

The above equation simplifies to

JNMRR(Ei, Ej)=
a(3a+3x+2d)

a(2a+3d+4x)+d2+3dx+2x2
.

(B10)

To calculate the similarity of an entity with it-

self, i.e., JNMRR(Ei, Ei), it is sure that x = 0 and

a, d ≥ 0. Using these quantities, Eq. (B10) reduces

to

JNMRR(Ei, Ei) =
a(3a+ 2d)

a(2a+ 3d) + d2
. (B11)

Therefore, using Eqs. (B10) and (B11),

∀Ei, Ej ∈ F , the following association will always be

true for any value of a, d, or x, where a+ d+ x =P :

a(3a+2d)

a(2a+3d)+d2
≥

a(3a+3x+2d)

a(2a+3d+4x)+d2+3dx+2x2
.

(B12)

Naseem et al. / Front Inform Technol Electron Eng 2017 18(8):1082-1107 1107

Appendix C: Propositions for JCJN-
MRR

Proposition C1 Let the range of JCJNMRR be
z. Then we have

JCJNMRR(Ei, Ej)=

⎧⎪⎪⎨
⎪⎪⎩
z=2.5, a=P,

z∈(0, 2.5), 0<a<P,

z=0, a=0.

(C1)

Proof As JCJNMRR is the combined function of
four quantities a, b, c, and d, as shown in Eq. (18),
substituting s = a+ b+ c into Eq. (18), we have

JCJNMRR(Ei, Ej)

=
a[5(a + b+ c)2 + 5(a+ b+ c)d+ d2]

(a+ b+ c)[2(a+ b+ c)2 + 3(a+ b+ c)d+ d2]
. (C2)

If all features are present in feature vectors of
Ei and Ej , i.e., b = c = d = 0 and a = P , then the
above equation reduces to

JCJNMRR(Ei, Ej) =
a · (5a2)

a · (2a2)
= 2.5. (C3)

Therefore, the maximum similarity value that

JCJNMRR can create is 2.5.
Now, if no common feature is present in feature

vectors of Ei and Ej , i.e., a = 0 and b+ c+ d ≥ 0,
then Eq. (C3) reduces to

JCJNMRR(Ei, Ej)

=
0[5(0 + b+ c)2 + 5(0 + b+ c)d+ d2]

(0 + b+ c)[2(0 + b+ c)2 + 3(0 + b+ c)d+ d2]

=0. (C4)

Thus, the minimum similarity value that JCJN-

MRR can create is 0.
Lastly, if there exist some common and absent

features in feature vectors of Ei and Ej , i.e., if a = x

and b = c = d = y, where x, y > 0, then Eq. (C2)
reduces to

JCJNMRR(Ei, Ej)

=
x[5(x+ y + y)2 + 5(x+ y + y)y + y2]

(x+ y + y)[2(x+ y + y)2 + 3(x+ y + y)y + y2]
.

(C5)

The above equation simplifies to

JCJNMRR(Ei, Ej)=
5x3+25x2y+31xy2

2x3+15x2y+37xy2+30y3
. (C6)

Eq. (C6) results in a value between 0 and 2.5, if

x, y > 0, ∀Ei, Ej ∈ F .

Proposition C2 JCJNMRR satisfies Definition 1

given in Section 2.2, which states that the domain of

a binary similarity measure is {0,1}P and the range

is R+.
Proof JCJNMRR is the combined function of four
quantities a, b, c, and d, and all these quantities can
be calculated using only binary values in a feature
vector of entities as defined in Section 2.2. Hence,
the domain of the JCJNMRR measure is {0,1}P .
Meanwhile, JCJNMRR results in a real value, that
is, z ∈ R

+, as proved in Proposition C1:

JCJNMRR(Ei, Ej) =

{
z > 0, a ≥ 1,

z = 0, otherwise.
(C7)

Proposition C3 JCJNMRR fulfills the properties

of positivity and symmetry of a similarity measure.

Proof First, let us show the positivity. It has

been shown in the proof of Proposition C1 that

JCJNMRR creates a similarity value equal to or

greater than 0; that is, JCJNMRR(Ei, Ej) → R
+,

∀Ei, Ej ∈ F .
Next, let us show the symmetry. It is obvious

that

JCJNMRR(Ei, Ej) = JCJNMRR(Ej , Ei). (C8)

Proposition C4 JCJNMRR fulfills the maximal-

ity property of a similarity measure.
Proof Suppose b+ c = x and x is a positive num-
ber. Then Eq. (C2) becomes

JCJNMRR(Ei, Ej)

=
a[5(a+ x)2 + 5(a+ x)d+ d2]

(a+ x)[2(a+ x)2 + 3(a+ x)d+ d2]
. (C9)

To calculate the similarity of an entity with it-
self, i.e., JCJNMRR(Ei, Ei), it is sure that x = 0 and
a, d ≥ 0. Using these quantities, Eq. (C9) reduces to

JCJNMRR(Ei, Ei) =
a(5a2 + 5ad+ d2)

a(2a2 + 3ad+ d2)
. (C10)

The above equation simplifies to

JCJNMRR(Ei, Ei) =
5a2 + 5ad+ d2

2a2 + 3ad+ d2
. (C11)

Therefore, using Eqs. (C9) and (C11), ∀Ei, Ej ∈

F , the following association will always be true for

any value of a, d, or x, where a+ d+ x =P :

5a2+5ad+d2

2a2+3ad+d2
≥

a[5(a+x)2+5(a+x)d+d2]

(a+x)[2(a+x)2+3(a+x)d+d2]
.

(C12)

