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1 Introduction

Sliding mode control (SMC) is an important
control method because of its robustness, invariance
to uncertainties, and resistance to external distur-
bance (Utkin, 1977; Sira-Ramirez, 1989; Edwards
and Spurgeon, 1998). Over the past several decades,
SMC has attracted major research interest and has
been widely applied to many industrial processes,
such as flying craft control, motor drive, and chem-
ical engineering. In recent years, many researchers
have begun to investigate the application of SMC
into adaptive control and intelligent control meth-
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ods, such as the combination of SMC with neural
networks (Morioka et al., 1995) or with fuzzy logic
systems (Zhang and Panda, 1999). Particularly, in
the field of fuzzy logic control, its combination with
SMC can be used to overcome an obvious shortcom-
ing, namely, the chattering phenomenon that im-
pedes the application of SMC.

Fuzzy logic control (FLC) has been specifically
widely applied to the practical control systems, in
which the precise mathematic model cannot be ac-
quired easily. Fuzzy logic systems (FLSs) are applied
to sliding mode control systems in order to improve
the performance of SMC, and to approximate un-
known dynamic functions or eliminate chattering in
particular. Since FLS has a great approximation
ability, it has wide potential applications in many
control design fields with fast development. Numer-
ous studies have been done related to online or offline
identification for nonlinear dynamics (Wang, 1995;
Lee and Vukovich, 1997; Wang and Yu, 2000). To
improve the performance of SMC, FLS is applied
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into SMC design. Such a combination approach is
also known as fuzzy sliding mode control (FSMC).

FSMC has very wide applications. For example,
the chaos SMC of a class of fractional-order chaotic
systems was propounded (Chen et al., 2012a). Then
a new FSMC method was proposed for different ini-
tial conditions and different dimensions (Chen et al.,
2012b). Hwang et al. (2009) applied the FSMC to an
electric bicycle system. They employed two scaling
factors to normalize the sliding surface and its deriva-
tive, and adopted an appropriate ‘if-then’ rule for the
FLS. Such a method can help deal with huge uncer-
tainties of the bicycle system. In the situation of
unavailable state information, Wang and Liu (2010)
proposed an FSMC design based on a sliding mode
estimator. Zhu and Li (2010) proposed a decentral-
ized FSMC for manipulators. Many other FSMC
related applications were proposed, such as the de-
velopment of hydraulic pressure coupling drive sys-
tems (Ho and Ahn, 2012), uncertain micro-electro-
mechanical systems (Yau et al., 2011), and nonlin-
ear chemical processes (Shahraz and Boozarjomehry,
2009).

On the other hand, the use of the SMC prin-
ciple to construct fuzzy ‘if-then’ rules might lead to
sliding mode fuzzy logic control (SMFC). For exam-
ple, for the control of a digital signal processor based
(DSP-based) boost converter, Guo et al. (2011) pro-
posed an SMFC design which encompasses the desir-
able characteristics of both fuzzy and sliding mode
controllers. Experimental results were assessed com-
pared to the cases when a linear PID or PI con-
troller was used. Poursamad and Davaie-Markazi
(2009) proposed a robust adaptive fuzzy control al-
gorithm, which consists of an FLS and a robust con-
troller, and applied it to unknown chaotic systems.
Particularly, the fuzzy logic system was designed
based on the sliding mode control with all param-
eters adaptively tuned. Hsu et al. (2009) proposed a
self-regulating fuzzy control (SRFC) design method
using a gradient rule modification method to reg-
ulate the fuzzy rules. Also, a self-regulating fuzzy
sliding mode control (SRFSMC) design method was
developed (Hsu et al., 2009) that could be used to
control a forward DC-DC converter. Zhang (2009)
proposed an extending sliding mode-like fuzzy logic
control (SMLFC) method for nonlinear systems. Al-
laoua and Laoufi (2013) proposed a new FLC based
on sliding mode by taking the advantage of support

vector machines (SVMs), and applied it to an elec-
tric vehicle propulsion system. Farhoud and Erfa-
nian (2014) proposed an FLC method based on a
higher-order sliding mode, which demonstrated ex-
cellent transient and steady-state responses.

These FSMC or SMFC designs are clearly suc-
cessful in practical use. The advantages of the
SMC and the FLC controllers could be integrated,
and their disadvantages could be reduced or even
removed. However, most of the above-mentioned
studies just considered continuous systems, whereas
FSMC or SMFC designs for discrete nonlinear sys-
tems were sporadically reported. In practice, the
control scheme is always implemented by a computer
or a DSP apparatus. Therefore, the discrete sliding
mode control (DSMC) has high potential in engi-
neering, and it could be conveniently applied for the
realization of digital devices, so that a sampled data
system could be established. Numerous studies have
been carried out in the field of DSMC over a long
period (Sarpturk et al., 1987; Furuta, 1990; Monsees
and Scherpen, 2002; Reddy et al., 2009; Corradini
et al., 2012; Khandekar et al., 2013; Pande et al.,
2013; Lian et al., 2014; Pai, 2014; Zhang and Guo,
2014).

SMC has one obvious drawback, i.e., the chat-
tering phenomenon, which would significantly im-
pede its practical application. In particular, the
chattering becomes more serious for discrete sys-
tems due to the processes of sampling, digitization
of analog signals, and complicated discrete modeling
(Castillo-Toledo et al., 2008). Monsees and Scherpen
(2002) put forward a method of online tuning the
switching gain by an adaptive law, so that the chat-
tering for the concerned discrete systems could be
reduced. Another problem in engineering practice is
the unknown precise model dynamics. Fortunately,
FLS has a great approximation ability and it has a
filtering function to deal with such problems. There-
fore, the combination of SMC and FLS is a proper
approach to dealing with discrete nonlinear systems,
especially for those systems with unknown dynam-
ics. As for online control applications, however, a
key point is to seek a proper adaptive law.

In this study, we consider a class of non-affine
discrete nonlinear systems with an adaptive FSMC
design specifically presented. For a discrete nonlin-
ear system with unknown nonlinear dynamic func-
tions, a dynamic fuzzy logic system (DFLS), for



Zhang / Front Inform Technol Electron Eng 2016 17(12):1331-1343 1333

which the parameters are self-tuned by the adap-
tive laws, is first constructed to approximate the un-
known dynamics. The SMC controller is designed
based on the DFLS. The stability of the tracking er-
ror and the reaching condition of the sliding mode are
then validated using the Lyapunov stability theory.

This paper is an extension of Zhang et al. (2015).
The contributions of the current work are listed as
follows:

1. The analysis and discussion of the disturbance
are elaborated to further clarify the significance of
the discrete model considered in this paper. The as-
sumption of the disturbance is revised, which further
relaxes the model condition and makes the method
adapt to more general applications.

2. The adaptive DFLS design is extended in de-
tail and the parameters of the forward and backward
parts are clearly designed.

3. The main results achieve more strict and rig-
orous improvements. First, in the DFLS design for
approximation, relations of the estimated function,
its optimal approximation, and the absolute error
are clearly clarified. The point is very important
for the rigorous controller design (Theorem 1). Sec-
ond, the parameter design of the controller and the
adaptive law are improved. Under the same tun-
ing condition (αi > 0, 0 < βi < 1), the controller
parameters (ki,1, ki,2) have been simplified. Again,
the chattering problem is considered with analysis
and discussion. Chattering depends on the absolute
approximation error. Fortunately, this value is very
small due to the strong approximation ability of the
DFLS. Therefore, the proposed design method has
nearly no chattering.

4. An application to a robotic arm with two
degrees of freedom is added via simulation.

2 Problem formulation

Consider a class of discrete nonlinear systems:

y
(r)
k = f(xk,uk) + d(xk), (1)

where yk = [y1,k, y2,k, . . . , ym,k]
T denotes the

output vector, r = [r1, r2, . . . , rm]
T with each

element ri denoting a subsystem’s relative de-
gree (the total relative degree n =

∑m
i=1 ri),

and uk = [u1,k, u2,k, . . . , um,k]
T denotes the

control input vector. The system state vec-
tor is xk = [yT

1,k,y
T
2,k, . . . ,y

T
m,k]

T with yi,k =

[yi,k, yi,k+1, . . . , yi,k+ri−1]
T for i = 1, 2, . . . ,m. Con-

sequently, y(r)
k = [y

(r1)
1,k , y

(r2)
2,k , . . . , y

(rm)
m,k ]T denotes its

forward difference vector with y
(ri)
i,k = yi,k+ri (i =

1, 2, . . . ,m). Additionally,

f(xk,uk) =[f1(xk, u1,k), f2(xk, u2,k),

. . . , fm(xk, um,k)]
T

is defined as the nonlinear dynamic vector, whose
components fi(xk, ui,k) ∈ L2(R) (i = 1, 2, . . . ,m)

are unknown. Moreover,

d(xk) = [d1(xk), d2(xk), . . . , dm(xk)]
T

represents the unknown disturbance or unmodeled
dynamics.

The disturbance d(xk) in the controlled sys-
tem (1), which has relation with only the system
state xk, is certainly unknown and is not required
to be bounded. It is only a type of interference to
the state equation, related with the state xk itself
and affecting the movement of the system state xk.
Therefore, if the adaptive mechanism has the abil-
ity of tracking it, this kind of effect can be treated.
In this study, the disturbance d(xk) is considered
as part of the unknown dynamics, which can be ap-
proximated by the DFLS online. Then the SMC
controller is not required to consider that the distur-
bance is matched or unmatched, or compensated by
the switching signal (the nonlinear part of the SMC).

The subscript i represents every branch of the
subsystem and the subscript k denotes the discrete
time instant. If ȳk = [ȳ1,k, ȳ2,k, . . . , ȳm,k]

T repre-
sents the trajectory to be tracked and comprises the
following vectors:

ȳi,k = [ȳi,k, ȳi,k+1, . . . , ȳi,k+ri−1]
T
, i = 1, 2, . . . ,m,

the tracked mathematic model is described by

ȳ
(ri)
i,k = −

ri−1∑

j=0

aj ȳi,k+j + ri(k), (2)

where ȳ
(ri)
i,k = ȳi,k+ri

(i = 1, 2, . . . ,m) with aj (j =

0, 1, . . . , ri − 1) being Hurwitz coefficients and ri(k)

the reference signal. The control problem is to design
a controller for system (1) such that the tracking
error is

ek = [eT
1,k, e

T
2,k, . . . , e

T
m,k]

T
, (3)

where each element

ei,k = yi,k − ȳi,k = [ei,k, ei,k+1, . . . , ei,k+ri−1]
T (4)
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with ei,k = yi,k − ȳi,k (i = 1, 2, . . . ,m) converges to
the origin asymptotically.

By the above definitions, we obtain ei,k+ri from
Eqs. (1)–(4) as

ei,k+ri =fi(xk, ui,k) + di(xk) +

ri−1∑

j=0

aj ȳi,k+j − ri(k).

(5)

The sliding manifolds are defined as follows:

Sk = [S1,k, S2,k, . . . , Sm,k]
T
, (6)

where
Si,k = Ciei,k, i = 1, 2, . . . ,m, (7)

with Ci = [ci,1, ci,2, . . . , ci,ri ]
T satisfying the discrete

Hurwitz polynomial:

hi(·) = ci,riei,k+ri−1+ci,ri−1ei,k+ri−2+ . . .+ci,1ei,k.

We aim to look for a design of the fuzzy adaptive
sliding mode controller:

ui,k = ueq,i + uv,i, i = 1, 2, . . . ,m, (8)

where ueq,i is the equivalent control and uv,i the
hitting control such that the manifold Si,k can be
reached. Because function fi(xk, ui,k) is unknown,
the control input ui,k cannot be designed directly.
In the following section, a DFLS will be adopted to
realize an SMC controller.

The following assumptions are necessary to un-
derlie the remainder of this study:
Assumption 1 The function fi(xk, ui,k) ∈ L2(R)

and

fi,ui

def
=

∂fi(xk, ui,k)

∂ ui,k
�= 0, ∀ xk ∈ Ωxk

,

where Ωxk
is the compact set of state xk.

For all xk ∈ Ωxk
, the smooth function satisfies

fi,ui > 0 or fi,ui < 0. Without loss of generality, it
is assumed fi,ui > 0.
Assumption 2 There exists a positive up-
per bound function b̄i(xk) such that ∀xk ∈ Ωxk

,
0 < fi,ui ≤ b̄i(xk).
Assumption 3 The unknown disturbance or un-
modeled dynamic di(xk) ∈ L2(R), i = 1, 2, . . . ,m.

The constraint condition for di(xk) is released
compared with that mentioned in Zhang et al.
(2015). In general, di(xk) is required to be bounded,

and we should confirm that the function to be esti-
mated is bounded. Only in this way, can Lemma 1
(given later) be used. Hence, there is Assumption 3
in Zhang et al. (2015). However, in this study the
function to be estimated is gi,k(x) ∈ L2(R), if we
suppose di(xk) ∈ L2(R) (Eq. (11)). So, the func-
tion gi,k(x) can be approximated optimally by the
DFLS. Therefore, the constraint condition becomes
Assumption 3 in the current paper, which releases
the condition for the unknown disturbance or un-
modeled dynamics.

3 Dynamic fuzzy logic system design

Using the singleton fuzzifier, product inference
rule, and average defuzzifier method, a dynamic
fuzzy logic system (DFLS) can be described as fol-
lows (Lee and Vukovich, 1997). However, since sys-
tem (1) is discrete, we adopt a discrete DFLS as
follows:

ĝ(x, τ + 1) = −ξ[ĝ(x, τ)−ΘT (τ)p(x)], (9)

where ĝ(x) is the approximation of g(x) (a nonlin-
ear scalar function to be approximated), τ is the
sampling time interval of the DFLS which is dif-
ferent from the sampling time interval k of sys-
tem (1), Θ (τ) = [θ1 (τ) , θ2 (τ) , . . . , θM (τ)]

T is the
support point vector of the fuzzy rule base, being an
adjustable parameter of the fuzzifier of the DFLS,
ξ > 0 is a real scalar parameter to be designed, and
p(x) = [p1(x), p2(x), . . . , pM (x)]T is the fuzzy ba-
sis function vector. The element of the fuzzy basis
function is determined by

pl(x) =

N∏

j=1

μl
j

M∑

l=1

N∏

j=1

μl
j

, (10)

where M is the number of fuzzy rules and N the
number of input variables of the DFLS. The input
variables of the DFLS are selected as state variables
of the system with xk = [x1,k, x2,k, . . . , xn,k]

T. Ob-
viously, in this case N = n.

The membership functions of input variables
are all triangular (Fig. 1). In the figure, ϕj (j =

1, 2, . . . , n), which are set up by the designer, are
the fuzzy partition parameters of the input vari-
ables. The universe field partitions and the trian-
gular membership function of the output variables
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ĝ(x) are shown in Fig. 2. We adopt the product
inferring method, resulting in the following fuzzy in-
ference rules:

If x1,k is a11, x2,k is a12, . . ., and xn,k is a1N , then
ĝ(x) is θ1;

If x1,k is a21, x2,k is a22, . . ., and xn,k is a2N , then
ĝ(x) is θ2;

. . .

If x1,k is aM1 , x2,k is aM2 , . . ., and xn,k is aMN ,
then ĝ(x) is θM .

A weighted averaging defuzzifier is adopted.
Therefore, the fuzzy rule base (10) is obtained,
where pl is the lth rule membership value of the
output variable ĝ(x). Here, l = 1, 2, . . . , 3n is
the number of rules, i.e., M = 3n. Accord-
ing to the fuzzy rules and the output variable
partitions (Fig. 2), the support point vector ele-
ment of the fuzzy rule base is obtained as ∀i =

1, 2, . . . ,M, θi = φq for q = 1, 2, . . . , 5. There-
fore, the support point vector of the fuzzy rule base,
Θ (τ) = [θ1 (τ) , θ2 (τ) , . . . , θM (τ)]T, is essentially
the partition parameter of the defuzzifier, which
will be self-tuned online by the adaptive law for
approximation.

The following Lemma is introduced for its ap-
plication in this study (Wang, 1995):
Lemma 1 For smooth nonlinear vector field g(x) :

j

N Z P

       j          j      j,x

N Z P

μj

−φj φj xj,k

Fig. 1 Fuzzy sets of the input variables in the dynamic
fuzzy logic system (N: negative; Z: zero; P: positive)

NB NL ZR PL PB

     1    2    3   4   5   ˆ ( )g x  

NB NS ZR PS PB

μ

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 g(x)
̭

Fig. 2 Fuzzy sets of the output variables in the dy-
namic fuzzy logic system (NB: negative big; NS: neg-
ative small; ZR: zero; PS: positive small; PB: positive
big)

R
n → R, there is a parameter

Θ∗ = arg min
θ∈Ωθ

[

sup
x∈Rn

‖g(x)− g∗(x)‖
]

to guarantee ∀ε ∈ R, ε > 0, ‖g(x)− g∗(x)‖ <

ε, where g∗(x) is the approximation output of
DFLS (9), namely g∗(x) = (Θ∗)Tp.

In the SMC controller design, the DFLS de-
scribed by Eq. (9) and the above rules of the fuzzy
logic system are adopted for the approximation of
unknown dynamics.

4 Main results

We use the DFLS described by Eq. (9) to ap-
proximate the unknown dynamics, so that the equiv-
alent control can be obtained. Then the approxima-
tion error can be compensated by the hitting control
design.

4.1 Adaptive sliding mode control law design

The objective is to design a sliding mode con-
troller ui,k (Eq. (8)) such that Si,k = 0. The SMC
controller requires a method to approximate those
unknown dynamics. Here, the approach of function
approximation described in Section 3 which is based
on the DFLS will be adopted to approximate the un-
known dynamics. In the following analysis, only one
branch Si,k of the sliding mode Sk and one control in-
put branch ui,k will be processed for convenience. To
carry out the subsequent control law design, the fol-
lowing Lemma is introduced (Zhang and Su, 2004):
Lemma 2 For Hurwitz polynomial parameters
ci,j > 0 (j = 1, 2, . . . , ri − 1) and ci,ri > 0, there are
always parameters λi,j > 0 (j = 0, 1, . . . , ri) which
guarantee

Di =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λi,0 0 · · · 0 ci,1
0 λi,1 · · · 0 ci,2
...

...
...

...
0 0 · · · λi,ri−1 ci,ri
ci,1 ci,2 · · · ci,ri λi,ri

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0

and Di = DT
i .

For the convenience of the design, we define

Si,a (k) =
1

2

ri−1∑

j=0

λi,j

(
e2i,k+j − e2i,k+j−1

)

− λi,ri

2
e2i,k+ri−1 − Si,k−1ei,k+ri−1,
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and define a nonlinear dynamic function

gi,k(x) =
(
Si,k b̄i (xk)

)−1 (
Si,a (k) + 0.5λi,rie

2
i,k+ri

)

+
(
b̄i(xk)

)−1
(fi(xk, ui,k) + di(xk))− ui,k,

(11)

which will be approximated as ĝi,k(x) by the DFLS.
According to Lemma 1, there is a parameter Θ∗

i

such that

∀ε ∈ R, ε > 0,
∥
∥gi,k(x)− ĝ∗i,k(x)

∥
∥ < ε, (12)

where ĝ∗i,k(x) is the approximation output of the
fuzzy logic system, namely,

ĝ∗i,k(x) = (Θ∗)Tp. (13)

Therefore, we have the following relationship:

gi,k(x) = ĝ∗i,k(x)± ε, (14)

where ε is the absolute value of the minimum ap-
proximation error.

Consequently, an SMC controller is designed as

ui,k=−
(
b̄i(xk)

)−1
ri−1∑

j=0

aj ȳi,k+j+
(
b̄i(xk)

)−1
ri(k)

−ĝi,k(x)−
{
εi,h+

[
ki,1+ki,2b̄i(xk)

] |Si,k|
}

sgn(Si,k),

(15)

where sgn(·) is the sign function with parameters

εi,h > |ε| , ki,1 > 0, ki,2 >
αi

2βi
+

βi

2
‖Gi‖−1

.

(16)

Here, Gi ∈ R
M×M is an optional parameter matrix

satisfying Gi = GT
i and Gi > 0 , and αi > 0, 0 <

βi < 1 are optional scalar parameters.
To approximate the unknown nonlinear dy-

namic function gi,k(x) online, the adaptive laws of
the adopted DFLS are designed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ΔΘi (k) = βiG
−T
i pSi,k b̄i(xk),

Δĝi,k(x) = − (1− βi) [ĝi,k(x)− (Θi(k))
T
p]

+
(
αi + βip

TG−T
i p

)
Si,k b̄i(xk).

(17)
Following the above definitions and Eq. (11), we

can obtain the following equation:

Si,k b̄i(xk)gi,k(x) = Si,a (k) + 0.5λi,rie
2
i,k+ri

+ Si,k [fi(xk, ui,k) + di(xk)]− Si,k b̄i(xk)ui,k.

Substituting the designed controller (15) into the
above and using Eq. (5), we have

Si,k b̄i(xk) (gi,k(x)− ĝi,k(x)) = Si,a (k)

+ 0.5λi,rie
2
i,k+ri + Si,kei,k+ri + εi,h |Si,k| b̄i(xk)

+
[
ki,1b̄i(xk) + ki,2

(
b̄i(xk)

)2
]
|Si,k|2 . (18)

It will be used for stability analysis in the following
subsection.

According to Lemma 1, the approximation error
will be arbitrarily small. Then εi,h can be selected
as any real size according to the situation of system
uncertainties and disturbance. In Eq. (17), the first
formula describes the adaptive mechanism, and the
second one describes the DFLS. From these two for-
mulas, it can be seen that both the operation of the
DFLS and the adaptive mechanism need the sliding
mode value Si,k. When the system state reaches the
sliding mode, i.e., Si,k = 0, the adaptive mechanism
is in a steady state. The SMC controllers (11)–(16)
constitute a complex dynamic subsystem. In the
following, the analysis of the closed-loop system sta-
bility is carried out.

4.2 Stability analysis

The main result of system stability is summa-
rized in the following theorem:
Theorem 1 Given nonlinear system (1) and refer-
ence trajectory (2), the sliding modes (6) and (7)
are reachable and the system tracking errors (3)
and (4) are globally asymptotically stable under the
FSMC controllers (11)–(16), which are based on
the DFLS (Eqs. (9), (10), and (17)), if the coeffi-
cients of sliding modes (6) and (7), ci,j > 0 (i =

1, 2, . . . ,m, j = 1, 2, . . . , ri), are Hurwitz.
Proof Choose the Lyapunov function of the track-
ing error as

Vi,k =
αiβi

2
ẽT
i,kDiẽi,k +

1

2

[
ĝi,k(x)− (Θi(k))

Tp
]2

+
αi

2
Θ̃T

i GiΘ̃i, (19)

where

ẽi,k = [ei,k−1, ei,k, . . . , ei,k+ri−1]
T

and Θ̃i = Θ∗
i −Θi(k) is the error between Θi(k) and

the optimum parameter Θ∗
i . According to Lemma 2,

we have Di = DT
i , Di > 0, and Vi,k > 0. Further-

more, when ‖ẽi,k‖ → ∞, |Vi,k| → ∞.
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Seeking the time difference of the Lyapunov
function (19), we have

ΔVi,k = αiβi

[

Si,a (k) + Si,kei,k+ri +
λi,ri

2
e2i,k+ri

]

+
αi

2
[Θ∗

i −Θi (k + 1)]
T
Gi [Θ

∗
i −Θi (k + 1)]

− αi

2
[Θ∗

i −Θi (k)]
T
Gi [Θ

∗
i −Θi (k)]

+
1

2

[
ĝi,k+1(x)− (Θi(k + 1))

T
p
]2

− 1

2

[
ĝi,k(x)− (Θi(k))

T p
]2
.

Then substituting the adaptive law (17) into the
above equation, we have

ΔVi,k = αiβi

[

Si,a (k) + Si,kei,k+ri +
λi,ri

2
e2i,k+ri

]

+
αi

2

[
Θ∗

i −Θi (k)− βiG
−T
i pSi,kb̄i(xk)

]T
Gi

· [Θ∗
i −Θi (k)− βiG

−T
i pSi,k b̄i(xk)

]

− αi

2
[Θ∗

i −Θi (k)]
T
Gi [Θ

∗
i −Θi (k)]

+
1

2

{
ĝi,k(x)− (1− βi) [ĝi,k(x)− (Θi(k))

T
p]

+αiSi,k b̄i(xk)− (Θi(k))
T
p
}2

− 1

2

[
ĝi,k(x)− (Θi(k))

T
p
]2
.

Continuing simplifying the above, we have

ΔVi,k = αiβi

[

Si,a (k) + Si,kei,k+ri +
λi,ri

2
e2i,k+ri

]

− αiβi

[
G−T

i pSi,k b̄i(xk)
]T

Gi [Θ
∗
i −Θi (k)]

+
αiβ

2
i

2

[
G−T

i pSi,k b̄i(xk)
]T

Gi

[
G−T

i pSi,k b̄i(xk)
]

+
1

2

[
βi

(
ĝi,k(x)− (Θi(k))

T
p
)
+ αiSi,k b̄i(xk)

]2

− 1

2

[
ĝi,k(x)− (Θi(k))

T
p
]2

= αiβi

[

Si,a (k) + Si,kei,k+ri +
λi,ri

2
e2i,k+ri

]

− αiβiSi,k b̄i(xk)
[
ĝ∗i,k(x)− (Θi(k))

T
p
]

+
αiβ

2
i

2
pTG−T

i pS2
i,k

(
b̄i(xk)

)2
+

1

2

(
β2
i − 1

)

·
(
ĝi,k(x)− (Θi(k))

T
p
)2

+
1

2
α2
iS

2
i,k

(
b̄i(xk)

)2

+ αiβiSi,k b̄i(xk)
[
ĝi,k(x)− (Θi(k))

T
p
]
.

Subsequently, by using Eq. (14) and substitut-

ing Eq. (18) into the above, we have

ΔVi,k = εαiβiSi,k b̄i(xk)− εi,hαiβi |Si,k| b̄i(xk)

− αiβi

[
ki,1b̄i(xk) + ki,2

(
b̄i(xk)

)2
]
|Si,k|2

+
αiβ

2
i

2
pTG−1

i pS2
i,k

(
b̄i(xk)

)2
+

1

2
α2
iS

2
i,k

(
b̄i(xk)

)2

+
1

2

(
β2
i − 1

) [
ĝi,k(x)− (Θi(k))

T
p
]2
.

Because 0 < βi < 1 and εi,h > |ε| (inequal-
ity (16)), the above equation satisfies

ΔVi,k ≤− αiβi

[
ki,1b̄i(xk) + ki,2

(
b̄i(xk)

)2
]
|Si,k|2

+
αi

2

[
β2
i p

TG−1
i p+ αi

]
S2
i,k

(
b̄i(xk)

)2
.

(20)

It is known that p is the fuzzy basis of DFLS
satisfying pTp ≤ 1. Then pTG−1

i p ≤ ‖Gi‖−1. Ac-
cording to the parameter design conditions (16), in-
equality (20) is equivalent to

ΔVi,k ≤ −αiβiki,1b̄i(xk)|Si,k|2,
which means that ΔVi,k is negative semi-definite.
ΔVi,k ≡ 0 holds if and only if |Si,k| ≡ 0. ∀ẽi,k ∈
R

ri+1, ‖S (k) ‖ �= 0, then ΔVi,k < 0.
According to the Lyapunov stability theory, the

system error asymptotically converges to

Ωe
def
=

{
ẽi,k| |Si,k| = 0

}
.

Namely, the sliding mode can be reached.
After the state reaches the sliding mode, i.e.,

Si,k = 0, the system error equation becomes

ci,riei,k+ri−1 =− ci,1ei,k − ci,2ei,k+1

− . . .− ci,ri−1ei,k+ri−2.

If ci,j > 0 (j = 1, 2, . . . , ri) is Hurwitz, then the
above (ri − 1)th-order system is asymptotically sta-
ble. The same situation holds on every branch of
the sliding surface Si,k for i = 1, 2, . . . ,m. As a re-
sult, the overall closed-loop system is asymptotically
stable and the theorem is proved.

4.3 Chattering

Chattering reduction or elimination is depen-
dent on the adaptive mechanism. The chattering
signal of controller (15) in this study is produced by
the nonlinear part

− {
εi,h +

[
ki,1 + ki,2b̄i(xk)

] |Si,k|
}

sgn(Si,k).
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Fortunately, the part [ki,1 + ki,2b̄i(xk)] |Si,k| exists
only in the transient process. When Si,k = 0, the
chattering of controller (15) depends only on εi,h.
Therefore, the chattering amplitude is determined
only by εi,h.

Consequently, εi,h is the switching signal to
compensate the absolute error of the minimum ap-
proximation error between gi,k(x) and ĝ∗i,k(x) (de-
fined by Eqs. (11) and (13)). Therefore, the chat-
tering intensity is determined by the approximation
ability of the DFLS. Because of the great approxima-
tion ability of the DFLS (the absolute approximation
error can be arbitrarily small), parameter εi,h can
be designed to be very minor so that chattering is
greatly reduced.

As we know, many efforts have been made to
eliminate or weaken the chattering. For example,
a famous chattering-weakening method can also be
used, namely the saturation function:

sat(Si,k) =

⎧
⎨

⎩

1, Si,k > φ,

Si,k/φ, |Si,k| ≤ φ,

−1, Si,k < −φ,

where φ is called the boundary layer.

5 Simulation examples

5.1 A numerical example

A discrete mathematical model example is de-
scribed as follows:
⎧
⎪⎪⎨

⎪⎪⎩

y1,k+2 = y21,k+1 + (1.1 + 0.3 cos(2y2,k))u1,k,

y2,k+2 = y2,k +
√y1,k+1 + y32,k+1 + 1.3u2,k

+0.3 cos(4πy1,k).

(21)

The state of the system is xk = [y1,k,
y1,k+1, y2,k, y2,k+1]

T and the output is yk =

[y1,k, y2,k]
T.

From the mathematical model (21), we can find
the coupling between the two subsystems. Also, the
nonlinear dynamics are unknown. The control de-
sign in this study will conquer them by the designed
DFLS.

By using the proposed method, the estima-
tions of the upper bounds of functions f1,u1 and
f2,u2 are b̄1 (xk) = 1.4 and b̄2 (xk) = 1.6, ac-
cording to Assumption 1 and Eq. (21). The dis-
turbance or unmodeled dynamic is considered as
d(xk) = [0, 0.3 cos(4πy1,k)]

T.

A reference model is given as follows:
{

y1,k+2 = −0.3y1,k+1 − 0.02y1,k + r1(k),

y2,k+2 = −0.3y2,k+1 − 0.02y2,k + r2(k).

The reference signals are r1(k) = r2(k) = 0. The
sliding manifolds are

{
S1,k = x2(k) + 0.1x1(k),

S2,k = x4(k) + 0.05x3(k).

The FSMC controller is designed as Eqs. (11),
(15), (16) and the parameters of its adaptive law (17)
are selected as α1 = 0.3, β1 = 0.1, α2 = 0.58, β2 =

0.3, and G1 = G2 = I (an identity matrix). The
parameters of controller (15) are designed as ε1,h =

ε2,h = 0.01, k1,1 = 0.8, k1,2 = 1.6, k2,1 = 1.12, and
k2,2 = 0.6 by inequality (16). The Gaussian function
is selected as the membership function for the DFLS.

Based on all the above-mentioned DFLS and
control design, a relevant simulation is executed.

Figs. 3 and 4 show the curves of the output sig-
nals when the initial state is x0 = [0.2, 0, 0.5, 0]T.
The two output signals are all asymptotically sta-
ble. Figs. 5 and 6 show the curves of the two sliding
manifolds, which are also stable.

We set the sampling time of the designed DFLS,
τ , to be 0.01 s. This is because the approximation
can be guaranteed only if the DFLS output approx-
imates to the nonlinear function within every sam-
pling time interval of the system. Figs. 7 and 8 show
the control input signals of the two subsystems. Pa-
rameters εi,h, ki,1, and ki,2 have imposed an impor-
tant impact on the dynamic and stable performance.
Parameter εi,h processes mainly the approximation
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Fig. 3 Simulated output signal curve of y1,k (sampling
time 0.1 s)
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error of the DFLS. Furthermore, it determines the
swing of the controller from Eq. (15). Parameters ki,1
and ki,2 mainly make the reaching of the sliding mode
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Fig. 4 Simulated output signal curve of y2,k (sampling
time 0.1 s)
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Fig. 5 Simulated sliding mode curve of S1,k (sampling
time 0.1 s)
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Fig. 6 Simulated sliding mode curve of S2,k (sampling
time 0.1 s)

faster. Appropriate values of them are necessary and
they can be obtained by an experimental approach.

From Figs. 3–8, it can be seen that there is no
chattering either in state variables or in control sig-
nals. This is due to the filtering function of FLS for
higher frequency signals.

5.2 An application to a robotic arm with two
degrees of freedom

A robotic arm, which is widely applied to an in-
dustrial process, is the nonlinear and coupled nature
of the dynamics (Lewis et al., 2006). A robotic arm
with two degrees of freedom (Fig. 9) is considered to
visualize the contributions of this study. Its kinetic
equation can be written as follows:

M(q)q̈ +C(q, q̇) +G(q) = T , (22)

where q = [θ1, θ2]
T is the angular vector with θ1 and

θ2 being the angular positions of the links, M(q) is
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Fig. 7 Simulated control input signal curve of u1,k

(DFLS sampling time 0.01 s)
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Fig. 8 Simulated control input signal curve of u2,k

(DFLS sampling time 0.01 s)
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y

xO

τ1 l1
τ2

l2

θ1

θ2

Fig. 9 Diagram of a robotic arm (with two degrees of
freedom) with two drivings

the inertia matrix, C(q, q̇) represents the centrifugal
and Coriolis torques, G(q) is the vector of gravi-
tational torques, and T = [τ1, τ2]

T is the vector of
torques acting at the joints.

We assume that the gravitation of the two links
is light enough to be neglected, i.e., G(q) = 0, and
the matrices

M(q) =

[
p1 + 2p3 cos θ2 p2 + p3 cos θ2
p2 + p3 cos θ2 p2

]

,

C(q, q̇) =

[ −2p3θ̇1θ̇2 sin θ2 − p3θ̇
2
2 sin θ2

p3θ̇
2
1 sin θ2

]

,

where p1 = m1r
2
1 + m2(r

2
2 + l21), p2 = m2r

2
2, and

p3 = m2l1r2 with m1 and m2 being the masses of
links 1 and 2 respectively, r1 and r2 the distances
from the joint to the centers of masses of links 1
and 2 respectively, l1 and l2 the lengths of links 1
and 2 respectively. For a robotic arm model with
two degrees of freedom, one may refer to Corradini
et al. (2012). In this study, the parameters are set to
p1 = 2.91, p2 = 0.12, and p3 = 0.18.

By the general discretization technique, the dis-
cretization of Eq. (22) with a sampling time Ts can
be given as follows:

qk+2 = qk+1 + Ts(M(qk))
−1 [T −C(qk, qk+1)] ,

(23)

where qk = [θ1,k, θ2,k]
T and

C(qk, qk+1)=
p3 sin θ2,k

T 2
s

[
−2Δθ1,kΔθ2,k−Δθ22,k

Δθ21,k

]

with Δθ1,k = θ1,k+1−θ1,k and Δθ2,k = θ2,k+1−θ2,k.
Obviously, model (23) is a typical example of Eq. (1),
in which qk is the output vector.

In this study, the sampling time of the robotic
arm is 0.01 s. According to the controller design

method we proposed, the sliding manifolds are de-
signed as follows:

{
S1,k = θ1,k+1 + 0.2θ1,k,

S2,k = θ2,k+1 + 0.1θ2,k.

The FSMC controller is designed as Eqs. (11), (15),
and (16), and the parameters of its adaptive law (17)
are selected as α1 = 2, β1 = 0.1, α2 = 0.1, β2 = 0.2,
G1 = I, and G2 = 2I. The parameters of con-
troller (15) are designed as ε1,h = ε2,h = 0.01,
k1,1 = 4, k1,2 = 3, k2,1 = 1, and k2,2 = 0.8 by
inequality (16). The Gaussian function is selected as
the membership function for the DFLS. The estima-
tions of the upper bounds for the control gains are
b̄1 (qk) = 0.4 and b̄2 (qk) = 1. The reference model
to be tracked is given as follows:

{
θd1,k+2 = 0.3θd1,k+1 + 0.1θd1,k + r1(k),

θd2,k+2 = 0.3θd2,k+1 + 0.1θd2,k + r2(k),

where θd1,k and θd2,k are the angular positions to be
tracked.

First, the reference trajectories are step signals,
i.e., r1(k) = r2(k) = 1. The simulation results
are obtained under the initial positions θ1(0) = 0,
θ2(0) = 0. Figs. 10 and 11 show the angular positions
of the robotic arm. Figs. 12 and 13 show the slid-
ing manifolds and the control torques, respectively.
From Figs. 10–13, it can be seen that the robotic
arm has fast response and the control torques have
no chattering. These simulation results validate the
effectiveness of the method.

Furthermore, the reference trajectories are re-
placed by r1(k) = 0.5 sin t and r2(k) = 0.4 cos t.
To increase the convergence speed of the sliding
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Fig. 10 Angular position curve θ1,k (sampling time
0.01 s)
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manifolds, the estimations of the upper bounds for
the control gains are set to b̄1 (qk) = b̄2 (qk) = 5,
and the parameters of controller (15) are changed
to k1,1 = 10, k1,2 = 2, k2,1 = 5, and k2,2 = 1.
The tracking performance under the initial positions
θ1(0) = 0.5, θ2(0) = 0 are shown in Figs. 14–18.
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Fig. 11 Angular position curve θ2,k (sampling time
0.01 s)
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Fig. 12 Sliding mode curves: S1,k and S2,k (sampling
time 0.01 s)
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Fig. 13 Control torque curves: τ1,k and τ2,k (DFLS
sampling time 0.001 s)

The sampling time of the designed DFLS, τ ,
is 0.001 s. In Fig. 18, the control torque signals
of the two links are continuous, which validates
the chattering-free performance. The tracking er-
rors in Fig. 16 converge very quickly. As men-
tioned before, parameters ki,1 and ki,2 have imposed
an important impact on the dynamic and stable

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time t

A
ng
ul
ar
po
si
tio
n
(r
ad
)

θ1,k
θd1,k

Fig. 14 Tracking curves of link 1: θ1,k and θd1,k

(DFLS sampling time 0.001 s)
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Fig. 15 Tracking curves of link 2: θ2,k and θd2,k

(DFLS sampling time 0.001 s)

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time t

A
ng
ul
ar
po
si
tio
n
(r
ad
)

e1,k
e2,k

Fig. 16 Tracking error curves: e1,k and e2,k (DFLS
sampling time 0.001 s)
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Fig. 17 Sliding mode curves of links 1 and 2: S1,k

and S2,k (sampling time 0.01 s)
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Fig. 18 Control torque curves of links 1 and 2: τ1,k

and τ2,k (DFLS sampling time 0.001 s)

performance. Hence, their values are selected a little
larger in this application. These simulation results
certificate the good performance of the proposed
method.

6 Conclusions

An adaptive FSMC design method for a class of
non-affine discrete nonlinear systems has been pro-
posed in this paper. The sliding mode control was de-
signed based on the DFLS, which has strongly arbi-
trary approximation properties of the unmodeled dy-
namics. The appropriate adaptive mechanism guar-
antees the stability of the closed-loop system. Due
to the use of the DFLS, the chattering of the SMC
has been greatly weakened, whereas the robustness
has been retained. Finally, the presented simulation
results have validated the good performance of the
proposed method.
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