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Abstract: Using lattice basis delegation in a fixed dimension, we propose an efficient lattice-based hierarchical
identity based encryption (HIBE) scheme in the standard model whose public key size is only (dm2 +mn) log q bits
and whose message-ciphertext expansion factor is only log q, where d is the maximum hierarchical depth and (n,m, q)

are public parameters. In our construction, a novel public key assignment rule is used to averagely assign one random
and public matrix to two identity bits, which implies that d random public matrices are enough to build the proposed
HIBE scheme in the standard model, compared with the case in which 2d such public matrices are needed in the
scheme proposed at Crypto 2010 whose public key size is (2dm2 +mn+m) log q. To reduce the message-ciphertext
expansion factor of the proposed scheme to log q, the encryption algorithm of this scheme is built based on Gentry’s
encryption scheme, by which m2 bits of plaintext are encrypted into m2 log q bits of ciphertext by a one time
encryption operation. Hence, the presented scheme has some advantages with respect to not only the public key size
but also the message-ciphertext expansion factor. Based on the hardness of the learning with errors problem, we
demonstrate that the scheme is secure under selective identity and chosen plaintext attacks.

Key words: Hierarchical identity based encryption scheme, Lattice-based cryptography, Standard model, Learning
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1 Introduction

Hierarchical identity based encryption (HIBE)
is an important cryptographic notation, in which ev-
ery entity is arranged by a directed tree (Gentry and
Silverberg, 2002; Horwitz and Lynn, 2002). In such
a tree, the secret key of each child entity is provided
by its parent entities. This process is called a dele-
gation process. Note that the delegation process is
one-way, which means that a child node cannot use
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its secret key to recover the secret key of its parent.
As a result, the child entity can decrypt every mes-
sage intended for it, or for its children, but it cannot
decrypt messages intended for any other node in the
tree, inside its parents.

The best known HIBE constructions, both with
and without random oracles, are based on bilinear
maps (Boneh et al., 2005; Boyen and Waters, 2006;
Gentry and Halevi, 2009; Waters, 2009). More recent
HIBE schemes are built over lattices (Agrawal et al.,
2010a; 2010b; Cash et al., 2010).

Lattice-based cryptography is the typical post-
quantum cryptography, which remains secure even
under a quantum attack (Micciancio and Regev,
2004; Cash et al., 2010; Gentry et al., 2010; Wang
et al., 2013; 2016). The core technologies of the
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known lattice-based HIBE constructions are called
the lattice basis delegation technologies and are used
to delegate the secret keys to the child entities. For-
mally, let the parent entity’s secret key be a ‘short’
basis T of a certain integer lattice Λ. To delegate the
secret key to a child entity, by the lattice basis dele-
gation algorithm, the parent generates a new lattice
Λ′ derived from Λ and uses T to create a random
short basis for Λ′ as the secret key to a child entity.
Two lattice delegation algorithms with dimension
extension were proposed by Agrawal et al. (2010a)
and Cash et al. (2010), respectively. In these algo-
rithms, the dimension of Λ′ is larger than that of Λ,
which implies that the private keys and ciphertexts
become longer and longer as one descends into the
hierarchy. Agrawal et al. (2010b) proposed a lattice
delegation algorithm in a fixed dimension, which op-
erates ‘in place’, i.e., without increasing the dimen-
sion of the lattices involved. Consequently, private
keys and ciphertexts have the same length for each
node in the hierarchy. With the help of the lattice
delegation algorithm in a fixed dimension, an effi-
cient HIBE scheme with random oracle and a HIBE
without random oracle were proposed by Agrawal
et al. (2010b). If we focus on the lattice-based HIBE
scheme in the standard model proposed by Agrawal
et al. (2010b), it is considerably less efficient than
the underlying random-oracle system introduced by
Agrawal et al. (2010b) because of its large public key
size and message-ciphertext expansion factor. The
reason for this may consist of two aspects:

1. These constructions view an identity as a bit
sequence and then assign a matrix to every bit. Then
the public keys of these HIBE schemes would consist
of 2d random public matrices Ri (d is the maximum
hierarchical depth). Hence, the public key size in
these schemes are as large as (2dm2 +mn+ n) log q

bits, where m and n are the column and row num-
bers of the lattice matrix respectively, and q is the
modular number.

2. There is a large expansion from plaintext to
ciphertext in these schemes. In fact, the message-
ciphertext expansion factor of the scheme in Agrawal
et al. (2010b) would be as large as m log q + 1.

Singh et al. (2012; 2014) proposed adaptively
secure HIBE schemes with small public parameters.
In these schemes, the l-bit identity strings are de-
noted according to their levels l′. With the help
of this idea, l′′ = l/l′ public matrices are required

to construct HIBE schemes. Both schemes in Singh
et al. (2012; 2014) have a large expansion from plain-
text to ciphertext. Moreover, the identity bits are
assigned to public matrices by means of the above
assignment rule.

In this study, we first present a public key assign-
ment rule, by which averagely two identity bits are
assigned to one public matrix. Then we combine the
presented public key assignment rule with the lattice
basis delegation in a fixed dimension (Agrawal et al.,
2010b) to design an efficient delegation algorithm for
the lattice-based HIBE scheme, in which only d ran-
dom matrices Ri are needed (compared with the case
in which 2d matrices with the same size are needed
in Agrawal et al. (2010b) and Cash et al. (2010)).
Then an efficient HIBE scheme in the standard model
is naturally proposed. Its encryption algorithm is
inspired by the public key encryption scheme from
Gentry et al. (2010). In our construction, the pub-
lic key size is efficiently reduced to (dm2 +mn) log q

bits and the message-ciphertext expansion factor is
only log q, which implies that an m2-bit message can
be encrypted into an m2 log q-bit ciphertext. There-
fore, compared with the scheme proposed by Agrawal
et al. (2010b), the proposed scheme would be more
efficient with respect to both the public key size and
the message-ciphertext expansion factor.

Based on the hardness of the decision variant
learning with errors problem, we prove that the
scheme is secure against the selective identities and
the chosen message attacks in the standard model.

2 Preliminaries

2.1 Notations

Bold lower-case and bold upper-case letters are
used to denote vectors and matrices, respectively.
When a function is written as ω(f(n)), it means
that the function ω(f(n)) grows faster than cf(n)

for every constant c > 0. We use poly(n) to de-
note an unspecified function f(n) = O(nc) for some
constant c. When we consider the length of a vec-
tor, we always consider its Euclidean norm, which
is written as || · ||. By convention, the norm of a
matrix is defined as the norm of its longest column.
For any matrix T , T̃ denotes the Gram-Schmidt or-
thogonalized matrix. Denote DΛ,σ,c as the Gaus-
sian distribution with center c and parameter σ over
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lattice Λ. Denote Unif(Zn×m
q × Z

m×m
q ) as the uni-

form distribution over Zn×m
q × Z

m×m
q .

2.2 Lattice

Given a set of n linearly independent vectors
B = {b1, b2, . . . , bn}, a lattice Λ generated by B

is defined as Λ = {Bc|Bc = c1b1 + c2b2 + . . . +

cnbn, ci ∈ Z, i = 1, 2, . . . , n}. We call B a basis of
Λ. The basis of a lattice is called the trapdoor basis,
if all vectors from such a basis have small norms.
We will restrict our attention to a special class of
q-ary lattices, which is more easily described by a
matrix. More precisely, given integers (q,m, n) and
a matrix A ∈ Z

n×m
q , the m-dimensional q-ary lattice

is defined as

Λ⊥
q (A) = {e ∈ Z

m
q ,Ae = 0 (mod q)}.

2.3 Gaussian distribution

The discrete Gaussian distribution over a lattice
has been widely used in lattice-based cryptography.
Given a parameter σ > 0 and center c, the discrete
Gaussian function on R

m is defined as

ρσ,c(x) = exp

(
−π||x− c||2

σ2

)
.

Given a random matrix A ∈ Z
n×m
q , the discrete

Gaussian distribution on lattice Λ⊥
q (A) is defined as

DΛ⊥
q (A),σ,c(x) =

ρσ,c(x)

ρσ,c(Λ⊥
q (A))

.

In fact, DΛ⊥
q (A),σ,c(x) is a ‘conditional’ distri-

bution, which is defined by sampling x ∈ R
n from a

Gaussian distribution with parameter σ, then under
the condition of the event x ∈ Λ⊥

q (A). If c = 0, ρσ,0
and DΛ⊥

q (A),σ,0 are abbreviated as ρσ and DΛ⊥
q (A),σ,

respectively.
The core advantage of the discrete Gaussian dis-

tribution on the lattice for cryptographic applica-
tions is that a Gaussian distributed vector almost
perfectly conceals the information about the trap-
door basis of the lattice. Then the trapdoor basis
can be used as a trapdoor of the lattice-based crypto-
system. We next introduce the following impor-
tant notion about the Gaussian distribution on the
lattice:

Given an n-dimensional lattice Λ and ε > 0, an
important notion called the smoothing parameter,

ηε(Λ), is defined to be the smallest positive σ satis-
fying ρ1/σ(Λ

∗\{0}) ≤ ε, where ‘∗’ means dual lattice
(Micciancio and Regev, 2004). For almost all ma-
trices A ∈ Z

n×m
q , there is a negligible ε satisfying

ηε(Λ
⊥
q (A)) ≤ ω(

√
logm).

2.4 Gaussian sampling and lattice basis
delegation

There is a useful design tool for (H)IBE over
lattice called the preimage sampling function (PSF),
which is defined by Gaussian sampling (Gentry et al.,
2008; Hu et al., 2014). The PSF is a discrete Gaus-
sian sampling algorithm, essentially, by which a short
basis of a lattice suffices to act as a trapdoor of a
one-way function defined over this lattice. Lemma 1
shows how to generate a random lattice and its
trapdoor basis (Alwen and Peikert, 2009). Then
Lemma 2 defines a PSF which uses a trapdoor basis
of the lattice as a trapdoor.
Lemma 1 (Trapdoor sampling algorithm (Alwen
and Peikert, 2009)) Inputting 1n and parameters
q = poly(n) and m > 5n log q, there is a probabilistic
polynomial-time (PPT) algorithm which outputs a
matrix A ∈ Z

n×m
q whose distribution is statistically

close to the uniform distribution, and a full-rank set
S ⊂ Λ⊥

q (A) which satisfies ‖S‖ ≤ O(n log q). More-
over, S can be efficiently converted to a trapdoor
basis T of the lattice Λ⊥

q (A).
Lemma 2 (Preimage sampling function (Gentry
et al., 2008)) Given a trapdoor basis T of an
n-dimensional lattice Λ⊥

q (A), a Gaussian parameter
σ > ||B̃|| · ω(√logn), and a center c ∈ R

n, there is
a PPT algorithm, PreSample(A,T , σ, c), outputting
vector e from a distribution that is statistically close
to the Gaussian distribution DΛ,σ,c.

Three lattice basis delegation algorithms have
been proposed to design HIBE schemes (Agrawal
et al., 2010a; 2010b; Cash et al., 2010). As we have
analyzed in Section 1, the public key size and the
ciphertext length in these schemes (Agrawal et al.,
2010a; 2010b; Cash et al., 2010) are still large. In
this study, we use the lattice basis delegation algo-
rithm in a fixed dimension to design a more efficient
selective secure HIBE scheme in the standard model.

Before introducing the basis delegation in a fixed
dimension, we should first introduce the distribution
on matrices whose columns are low norm vectors
(Agrawal et al., 2010b).
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If R (mod q) ∈ Z
m×m
q is invertible, then R is de-

fined to be Zq-invertible in Z
m×m. If σ is a Gaussian

parameter of Dm
Zm,σ, we say that a matrix is dis-

tributed according to Dm×m when it is Zq-invertible
and also distributed according to Dm

Zm,σ. Thus, the
matrix that is distributed according to Dm×m would
be a low norm matrix with an overwhelming proba-
bility for having a suitable parameter.
Lemma 3 Let m > 2n log q and q > 2 be pa-
rameters. For all n-dimensional matrix A ∈ Z

n×m
q

except a fraction of at most q−n, there is a PPT al-
gorithm that outputs matrix R ∈ Z

m×m whose dis-
tribution is statistically close to Dm×m. Moreover,
given a trapdoor basis T of Λ⊥

q (A) and a matrix
R, there is a PPT algorithm, BasisDel(A,R,T , σ),
that outputs a trapdoor basis TB of Λ⊥

q (AR−1)

such that ||T̃B|| ≤ σ/ω(log q) with an overwhelming
probability.
Proof The proof of Lemma 3 was shown in Agrawal
et al. (2010b). Here, we give a simple proof. We first
give the PPT algorithm (Algorithm 1) to sample a
matrix with a low norm.

Let T be the canonical basis of the lattice Λ⊥
q (A)

and σR be a Gaussian parameter.

Algorithm 1 Small matrix generation
Input: Λ⊥

q (A), T , σR

Output: R(r1, r2, . . . , rm) ∈ Z
m×m

1: for i = 1 to m do
2: ri ← PreSample(Z,T , σR, 0)

3: end for
4: if R is invertible in Z

m×m then
5: return R

6: else
7: Repeat lines 1–3
8: end if

Next, we show that the trapdoor basis of
Λ⊥
q (AR−1) can be computed efficiently by a trap-

door basis T of Λ⊥
q (A) and matrix R (Algorithm 2).

Algorithm 2 Trapdoor basis generation
Input: A,T ,R, σ

Output: TB // a basis of lattice Λ⊥
q (AR−1)

1: T ′
B = RT

2: Convert T ′
B to be a basis T ′′

B of Λ⊥
q (AR−1) by

Lemma 1
3: Produce a random basis TB from T ′′

B by the algo-
rithm in Cash et al. (2010)

Therefore, Lemma 3 has been proved.

Lemma 3 is used to design the Extract and De-
rive algorithms in the HIBE scheme (Agrawal et al.,
2010b).

2.5 Learning with errors (LWE) problem and
LWE-based encryption

We introduce a lattice problem called the ‘learn-
ing with errors’ (LWE) problem.
Definition 1 For parameters (n,m, q), s ∈ Z

n
q , and

an error distribution χ over Z
m
q , As,χ is a distribu-

tion obtained by computing {A, (ATs+x) (mod q)},
where A ∈ Z

n×m
q is chosen uniformly and randomly

and error vector x is distributed according to the
error distribution χ. The LWE problem can be de-
fined as ‘computing s with a noticeable probability
by giving a sample from As,χ’. The decision variant
LWE problem is to distinguish As,χ from the uniform
distribution.

Regev (2005) showed that for noise distribu-
tion Φ̄m

α , the hardness of the LWE problem is based
on the hardness of the shortest independent vectors
problem (SIVP) in the worst case under a quan-
tum reduction. The standard error distribution
Φ̄m

α is a Gaussian distribution over Z
m
q with devi-

ation qα >
√
n. An error vector can be sampled

according to the distribution Φ̄m
α as follows: sam-

ple m numbers η1, η2, . . . , ηm according to a Gaus-
sian distribution Dα over R, and then compute
ei = �qηi� (mod q) (�x� denotes the integer clos-
est to x). Let e = (e1, e2, . . . , em) be an error vector
in an LWE problem.

Note that a trapdoor basis of the integer lattice
Λ⊥
q (A) can be used to solve an LWE instance y =

(ATs+ e) (mod q) as follows (details are referred to
Gentry et al. (2010)):

1. Compute Ty = Te (mod q). Due to
the fact that both T and e are with short norm,
Te (mod q) = Te holds with an overwhelming
probability.

2. Compute e = T−1Te (mod q).
3. Find vector s from A, e, and y.
Gentry et al. (2010) used an LWE-based trap-

door one-way function to design a chosen plaintext
attack (CPA) secure public key encryption algo-
rithm. We introduce it as follows:

1. KeyGen
Generate a random matrix A ∈ Z

n×m
q and a

trapdoor basis T of lattice Λ⊥
q (A) by the trapdoor

sampling algorithm in Lemma 1. Matrix A is the
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public key and T the secret key.
2. Encryption
Given a message M ∈ Z

m×m
2 , the encrypter

randomly and uniformly chooses S ∈ Z
n×m
q and

an ‘error matrix’ X ∈ Z
m×m
q according to the

distribution Φ̄m×m
α . Then the ciphertext is C =

(ATS + 2X +M) (mod q).
3. Decryption
Compute E = TTC (mod q) and then output

M = T−TE (mod 2).
The message-ciphertext factor of the above

scheme is as small as log q. We use this scheme to
design our novel HIBE scheme.

2.6 Hierarchical identity based encryption

A HIBE scheme consists of five algorithms:
Setup, Extract, Derive, Encrypt, and Decrypt
(Fig. 1).

Child identity (ID) Message

Ciphertext

Child private key

Encryption

DecryptionParent 
user:

extract

Fig. 1 Hierarchical identity based encryption

1. Setup(λ)
Let λ be a security parameter. Then using λ as

the input, the Setup(λ) algorithm outputs the master
public key MPK and a master secret key MSK.

2. Extract(MSK; id|1)
The private key generator (PKG) uses the Ex-

tract(MSK; id|1) algorithm to generate a private
key SKid|1 for identity vector ID|1, in which both
the master secret key and an identity vector are the
inputs of the Extract(MSK; id|1) algorithm.

3. Derive(MPK;SKid|l ; id)
Given MPK, SKid|l for id|l, and an identity

vector id, the Derive(MPK;SKid|l ; id) algorithm
creates a secret key for the (l+1)-depth identity vec-
tor id|l+1, where id|l+1 is formed by concatenating
id to the end of id|l.

4. Encrypt(MPK;M ; id|l)
Inputting MPK, id|l, and a message M , the

Encrypt(MPK;M ; id|l) algorithm outputs a ci-
phertext C.

5. Decrypt(MPK;C;SKid|l)

Inputting MPK, C, and SKid|l , the
Decrypt(MPK;C;SKid|l) algorithm would output
the message M , if C is an encryption to id|l and
SKid|l is for the same id|l.

2.7 Security definition

The security definition of the HIBE scheme is
described by a security game between the challenger
and the adversary. The adversary can adaptively
choose the identity vector to attack in the standard
IBE security model (Boneh and Franklin, 2001). A
weaker notion of (H)IBE is called the selective secu-
rity model (Canetti et al., 2003), in which the adver-
sary is forced to announce the target identity that
it wishes to attack before the master public key is
generated.

For parameter λ, message space Mλ, ciphertext
spaceCλ, and the maximum depth d of the hierarchy,
the selective security game proceeds as follows:

1. Setup
The adversary first receives a hierarchical depth

d and then it is asked to announce a target identity
I∗ = (id∗

1, id
∗
2, . . . , id

∗
k) where k < d. The challenger

generates MPK by running the Setup(λ) algorithm.
2. Phase 1
The adversary adaptively chooses some identity

vectors to query their secret keys, under the condi-
tion that no queries are prefixes of I∗. For a queried
identity, the challenger obtains a secret key by run-
ning the Derive(MPK;SKid|l ; id) algorithm, and
then sends the secret key to the adversary as the
answer.

3. Challenge
When the adversary decides to finish Phase 1,

it is asked to output a challenged plaintext M ∈
Mλ. The challenger randomly chooses b ∈ {0, 1}
and a ciphertext C ∈ Cλ. If b = 0, the challenger
sets Cb = Encrypt(MPK; I∗;M). If b = 1, the
challenger sets Cb = C. The challenger sends the
challenge Cb to the adversary.

4. Phase 2
The adversary makes additional adaptive secret

key queries the same as in Phase 1 and the challenger
responds as before.

5. Guess
Finally, the adversary makes a guess b′ ∈ {0, 1}

and wins if b = b′. The advantage of the adversary
in attacking the HIBE scheme is defined as Adv =
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p(b = b′)− 1/2.
A HIBE scheme is selectively secure if the ad-

vantage is negligible for any PPT adversary to win
the above game.

3 Lattice-based hierarchical identity
based encryption scheme

3.1 Public key assignment rule

Since known HIBE schemes in the standard
model assign every identity bit to a random matrix,
the public keys of the HIBE scheme in the standard
model would consist of at least 2d random matrices.
To reduce the public key size of the lattice-based
HIBE scheme, we propose a novel public key assign-
ment rule which assigns on average two identity bits
to only one random matrix.

Let R1,R2, . . . ,Rd be d matrices which are dis-
tributed according to Dm×m and identity id|d =

(id1, id2, . . . , idd), then the novel public key assign-
ment algorithm works as simply as Algorithm 3
shows.

Algorithm 3 Assignment rule
Input: R1,R2, . . . ,Rd; id|d = (id1, id2, . . . , idd)

Output: {Ri1 ,Ri2 , . . . ,Rid∗ }
// return Rij for idij = 1

1: for i = 1 to d do
2: if idi=1 then
3: return Ri

4: else
5: Output nothing
6: end if
7: end for

Since the chosen matrices {Ri1 ,Ri2 , . . . ,Rid∗ }
for idi1 = idi2 = . . . = idid∗ = 1 are considered
as their positions when they are used in the basis
delegation algorithm, the following lemma holds:
Lemma 4 The proposed public key assignment rule
is a one-to-one map between the identity bits and the
orderly subset of the public matrix set {Ri|1 ≤ i ≤
d}.
Proof The proof of the above conclusion would be
clear if we could prove that two different orderly sub-
sets of {Ri|1 ≤ i ≤ d} correspond to two different
identities. Suppose there are two different subsets
of {Ri|1 ≤ i ≤ d} which correspond to two iden-
tities with the same length. Then there must be a

matrix Rj which belongs to one subset but does not
belong to the other subset. Then there is only one
identity that satisfies idj = 1. Therefore, the two
corresponding identities are not equal.

Suppose identity id|d is an output of a secure
hash function. Then the 0-1 distribution of id|d is
close to being balanced. Therefore, our assignment
rule maps about two identity bits to a matrix. As a
result, we need only d random matrices to construct
a lattice-based HIBE in the standard model used in
this study.

Fig. 2 shows how the proposed assignment rule
is used in the Extract algorithm of the lattice-based
HIBE scheme.

Child identity (ID)

Public matrices
Assignment rule

Lattice delegation (fixed)Parent public/private key

Public and private keys of ID

Fig. 2 The Extract algorithm of the lattice-based
HIBE scheme

3.2 Our scheme

Let n, m, q = poly(n) be parameters. Given
a maximum hierarchical depth d, denote σ =

(σ1, σ2, . . . , σd) and α = (α1, α2, . . . , αd) as the vec-
tor forms of the Gaussian parameter and noise pa-
rameter, respectively.

Given an identity id|l = (id1, id2, . . . , idl) for
l < d, which is an output of a secure hash function,
the scheme operates as follows:

1. Setup(λ)
PKG generates the master public key and the

master secret key as follows:
(1) Generate A ∈ Z

n×m
q and the trapdoor basis

T ∈ Z
m×m
q by running the algorithm in Lemma 1.

(2) Sample d matrices R1,R2, . . . ,Rd from dis-
tribution Dm×m by the first algorithm in Lemma 3.

Then the master public key, MPK, and master
secret key, MSK, are defined as follows:

MPK = (A,R1,R2, . . . ,Rd), MSK = T .

2. Derive(MPK;SKid|l ; id)
Given MPK, a ‘parent’ identity id|l =

(id1, id2, . . . , idl) with its secret key SKid|l , and
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a ‘child’ identity id|k = (id1, id2, . . . , idl, . . . , idk)

for k − l ≤ d, run the Derive(MPK;SKid|l ; id)
algorithm:

(1) Run the public key assignment rule in Sec-
tion 3.1 to choose Ri . More precisely, for l ≤ i ≤ k,
if idi = 1, matrix Ri−l is chosen. Otherwise, if
idi = 0, no matrix is chosen. Suppose idji = 1, where
i = 1, 2, . . . , l∗, ji > l. If the public key of the ‘par-
ent’ identity is Fid|l , then the public key of the ‘child’
identity is Fid|k : Fid|k = Fid|lR

−1
j1−lR

−1
j2−l . . .R

−1
jl∗−l.

(2) Evaluate SKid|k ← BasisDel(Fid|l ,

Rj1−lRj2−l . . .Rjl∗−l,SKid|l , σl) to create a short
random basis for lattice Λ⊥

q (Fid|k) (Lemma 3).
(3) Output the delegated private key SKid|k and

public key Fid|k .
3. Extract
For the 1-level identity id|1, the Ex-

tract algorithm works in the same way as
the Derive(MPK;SKid|l ; id) algorithm in which
Fid|0 = A and SKid|0 = MSK.

4. Encrypt(MPK; id|l;M)

Inputting MPK, id|l = (id1, id2, . . . , idl) ∈
{0, 1}l with depth l, and a message matrix M ∈
Z
m×m
2 , Encrypt(MPK; id|l;M) operates as follows:

(1) Choose the public matrices Ri according to
the public key assignment rule. Let idj1 = idj2 =

. . . = idj∗l = 1, where l∗ is the hamming weight of
id|l.

(2) Compute Fid|l = AR−1
j1

R−1
j2

. . . ,R−1
j∗l
∈

Z
n×m
q .

(3) Choose S ← Z
n×m
q and a noise matrix X ←

Φm×m
αl

.
(4) Output the ciphertext C:

C = (FT
id|lS + 2X +M) (mod q).

5. Decrypt(SKid|l ;C;MPK)

Compute E = SKT
id|lC (mod q) and M =

SK−T
id|lE (mod 2).

3.3 Example

An example with small parameters is given in
this subsection to show the operation of the proposed
scheme and to show how the decryption algorithm
works. For simplicity, we consider a two-dimensional
lattice, in which n = 1, m = 2, and q = 3139.

We use only Algorithm 1 when we call the algo-
rithm in Lemma 3, also for simplicity. Clearly, it will

not influence the correction of the given example if
we omit Algorithm 2 in this example.

1. Setup
Let A =

(−731 43
)

denote a two-dimensional
lattice whose trapdoor basis is

T =

(
13 −3
75 22

)
.

Then we choose two small matrices R1 and R2 as
follows:

R1 =

(−6 2

8 −1
)
,R2 =

(
11 −1
−13 3

)
.

It can be checked that both R1 and R2

are Zq-invertible. Moreover, we can compute
R−1

1 (mod 3139) and R−1
2 (mod 3139) as follows:

R−1
1 (mod 3139) =

(
314 628

−627 −1255
)
,

R−1
2 (mod 3139) =

(
471 157

−1098 −1412
)
.

2. Derive
Given identity id = (0, 1), generate the private

key

Tid = R2T (mod 3139)

=

(
11 −1
−13 3

)(
13 −3
75 22

)
(mod 3139)

=

(
68 −55
56 105

)
.

3. Encrypt

Given the message matrix M =

(
1 0

0 1

)
, do the

following:
(1) Compute the encryption matrix of id =

(0, 1),

Fid = AR−1
2 (mod 3139) = (860, 301).

(2) Choosing S = (137, 312) and X =(
2 −2
4 6

)
, output the ciphertext C:

C =
(
FT

idS + 2X +M
)
(mod 3139)

=

(
1680 1503

434 −251
)
.

4. Decrypt
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(1) Compute

E = TT
idC (mod 3139)

=

(
68 56

−55 105

)(
1680 1503

434 −251
)

(mod 3139)

=

(
428 256

255 845

)
.

Remark 1 We can check E = TT
id(2X +M) over

an integer, i.e.,

TT
id(2X+M) =

(
428 256

255 845

)
(over an integer).

(2) Compute

T−1
id =

⎛
⎜⎝

21

1022

11

1022
−14

5× 511

17

5× 511

⎞
⎟⎠ (over R).

(3) Compute

T−T
id E (mod 2)

=

⎛
⎜⎝

21

1022

−14
5× 511

11

1022

17

5× 511

⎞
⎟⎠

(
428 256

255 845

)
(mod 2)

=

(
3 −2
4 7

)
(mod 2)

=

(
1 0

0 1

)
= M .

Hence, the ciphertext is decrypted correctly.

4 Analysis of the proposed HIBE
scheme

4.1 Setting parameters and correctness

With a secure parameter n, in order for the pro-
posed scheme to work correctly, the following things
are required:

1. The trapdoor sample algorithm operates to
ensure that the Setup algorithm is correct, which
needs m > 6n log q and q = poly(n) (Alwen and
Peikert, 2009),

2. The lattice basis delegation algorithm in a
fixed dimension used in the Derive algorithm of the
proposed scheme can operate, which needs (Agrawal
et al., 2010b)

σl > ||S̃Kid|l−1
||σl−1

√
mω

(
(log m)3/2

)
.

So,
σl ≥ σl−1m

3/2ω(logn3/2).

3. The LWE-based trapdoor one-way function
operates to ensure that the decryption algorithm at l-
level operates correctly, which requires that the error
term in the decryption algorithm should be less than
q/2 with high probability αl < 1/(σl−1mω(logm))

and q ≥ σlm
3/2ω(logm) (Gentry et al., 2010).

Let d be the maximum depth of the hierarchy.
To satisfy the above requirements, we set (m, q, σ, α)

as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m = dn logn,

q = m3/(2d)+2ω
(
(log n)2d+1

)
,

σl = m3/(2l)ω
(
(logn)2l

)
,

αl <
1

σl−1mω(logm)
.

Given the above parameters, PKG can extract
the private key for a 1-level user, and an l-level user
can also derive the private key for a k-level user
(l ≤ k ≤ d). The decryption algorithm also oper-
ates correctly.

The correctness of the proposed scheme is
proved.

4.2 Security

Theorem 1 If the decision variant LWE problem
with the error distribution Φ̄m

α is hard, the proposed
HIBE scheme is secure under the selective identities
and CPAs.
Proof Suppose there is an adversary A against
the selective identity CPA security with advantage ε.
Then we first construct a distinguisher D with the
advantage of at least ε/2 between two distributions:

{
(A,ATS +X) : A ∈ Z

n×m
q ,S ∈ Z

n×m
q ,

X ← Φm×m
α , α <

1

σdmω(logm)

}

and
{Unif(Zn×m

q × Z
m×m
q )}.

A selective identity adversary A outputs the
challenge identity id∗ = (id∗

1, id
∗
2, . . . , id

∗
k). Suppose

the hamming weight of the challenge identity is k∗,
and id∗j1 = id∗j2 = . . . = id∗jk∗ = 1.

1. Simulation of the attack environment
D receives a challenging instance (A0,B) from

one of two challenge distributions. Then D prepares
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the simulated attack environment for the adversary
A:

(1) Randomly sample k∗ matrices Rj1 ,Rj2 ,

. . . ,Rjk∗ from the distribution Dm×m. Set

A = A0Rjk∗Rjk∗−1
. . .Rj1 .

For every i = jl ∈ {j1, j2, . . . , jk∗}, set Ri = Rjl .
(2) For i /∈ {j1, j2, . . . , jk∗} and i ≤ d, gen-

erate Ai ∈ Z
n×m
q and Ti ∈ Z

m×m
q by running

the trapdoor sample algorithm in Lemma 1. Then
AiTi = 0 (mod q) and ‖Ti‖ ≤ O(n log q).

(3) Generate a short invertible matrix denoted
by R′

i by running the PSF algorithm in Lemma 2 at
most m2 times (Cash et al., 2010):

R′
i ← PreSample(Ai,Ti, σd,A0Rjk∗Rjk∗−1

. . .Rji∗ ),

where ji∗ ∈ {j1, j2, . . . , jk∗} is the first num-
ber which is larger than i. Therefore, AiR

′
i =

(A0Rjk∗Rjk∗−1
. . .Rji∗ ) (mod q) and ‖R′

i‖ ≤
σd
√
m.
Then set Ri = R′

i for i /∈ {j1, j2, . . . , jk∗} and
i ≤ d.

(4) Send the public key {A,R1,R2, . . . ,Rd} to
the adversary A (other parameters are as shown as
in our scheme).

2. Secret key queries
Amakes key-extraction queries on identities id|l

that are not prefixes of id∗.
Let |id| = l ≤ d, where | · | represents the corre-

sponding length. To simplify the description assume
l = d (the case l < d is just as easy). Since id|l
are random and not prefixes of id∗, there must be
the first position i0 that satisfies idi0 = 1, id∗i0 = 0.
Note that the distinguisher D holds the trapdoor
basis Ti of lattice Λ⊥

q (A0Rjk∗Rjk∗−1
. . .Rj∗i R

−1
i0

).
ThenD does as follows to answer the secret key query
for identity id|l:

(1) Choose the matrices Rij where idij = 1 and
ij > i0, as shown in the encryption algorithm. Sup-
pose the number of these matrices Rij is j′. Hence,
the public key matrix of id|l is

Fid|l = A0Rjk∗Rjk∗−1
. . .Rji∗R

−1
i0

R−1
i1

. . .R−1
ij′

.

(2) Generate a trapdoor basis Tid|l of lattice
Λ⊥
q (Fid|l) by using the lattice basis delegation al-

gorithm in a fixed dimension (Lemma 3). Letting
A′ = Fid|lRij′Rij′−1

. . .Ri1 , there is

Tid|l ← BasisDel(A′,Rij′Rij′−1
. . .Ri1 ,Ti0 , σl).

3. Challenge
A outputs a challenge message M0 ∈ Z

m×m
2 .

Then for a random bit b ∈ {0, 1}, D returns (M0 +

2B) (mod q) as the challenge ciphertext.
4. Phase 2
A can make more secret key queries which are

answered by D in the same manner as before.
5. Guess
Finally, A outputs a guess bit. D outputs 1 if A

guesses the right b, and 0 otherwise.
Then we can analyze the advantage of the dis-

tinguisher D as follows. If B is a uniformly random
matrix, (M0 + 2B) (mod q) is also a uniformly ran-
dom matrix. So, D would output 1 with probabil-
ity 1/2 in this case. If B = (AT

0 S + X) (mod q),
the distribution of the challenge ciphertext (AT

0 S
′ +

2X +M) (mod q) is identical to that of the output
of the Encrypt(MPK; id∗;M) algorithm in which
S′ = 2S is uniformly distributed. Hence, D outputs
1 with probability (1 + ε)/2. Then the advantage of
distinguisher D is ε/2.

It is clear that D can be used to solve the LWE
problem with error distribution Φ̄m

α .

4.3 Efficiency

The main advantage of this scheme, compared
with the scheme in Agrawal et al. (2010b), is that the
public key size is efficiently reduced. More precisely,
the proposed scheme consists of only d random pub-
lic matrices, which means that the public key length
of this scheme is (dm2 +mn) log q, while the scheme
in Agrawal et al. (2010b) consists of 2d equal-size
matrices, which means that the public key length
is (2dm2 + mn + n) log q. On the other hand, the
message-ciphertext expansion factor of this scheme
is also controlled to be log q, which implies that an
m2-bit message can be encrypted in an m2 log q-bit
ciphertext by one time encryption operation. Com-
parison of the proposed scheme with the schemes in
Singh et al. (2012; 2014) shows that the proposed
scheme shares some advantages about the space size,
especially about the message-ciphertext expansion
factor.

Let d be the maximum hierarchical depth, and
l′′ the length of identity at the ith level for 1 ≤ i ≤ d.
If we suppose that the secure parameter n is the same
in Agrawal et al. (2010b), Singh et al. (2012; 2014),
and this study, then Table 1 gives the details of space
efficiency comparison among the four schemes.
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In fact, it is possible to combine the proposed
assignment rule with the main ideas of Singh et al.
(2012; 2014) to design a more efficient HIBE scheme
with much smaller public parameters. The main
idea is that, if we denote an identity string as
(id1, id2, . . . , idl) where idi = (idi1 , idi2 , . . . , idil′′ ),
then we need only l′′ matrices R1,R2, . . . ,Rl′′ to
design our HIBE scheme. One aspect that needs
improvement in the proposed scheme is that it can
achieve only the selective security. More work should
be done to find out how to achieve the full security.

Since the main computation operations of the
lattice-based HIBE scheme are Gaussian sampling
and modular multiplication, we can compare the
computation efficiency by the number of these main
computation operations, for messages with the same
length. The proposed scheme can encrypt m2 bits
by one encryption operation, while the schemes in
Agrawal et al. (2010b) and Singh et al. (2012; 2014)
can encrypt only 1 bit by one encryption opera-
tion. We should consider the computation cost for a
1-bit message when we compare the computation effi-
ciency. Table 2 shows the details of the computation
cost when encrypting a 1-bit message.

5 Conclusions

We have proposed an efficient lattice-based
HIBE scheme. The scheme has been proved secure
under the selective identities and chosen plaintext at-

Table 1 Comparison of space efficiency

Scheme
Public key length Message-ciphertext

(bit) expansion factor

Agrawal et al. (2dm2+mn+n) log q m log q+1

(2010b)
Singh et al. (dl′′+2)mn log q [(l+1)m+1] log q

(2012)
Singh et al. (l′′+2)mn log q [(l+1)m+1] log q

(2014)
Our scheme (dm2+mn) log q log q

tacks in the standard model. Furthermore, compared
with a known efficient lattice-based HIBE scheme
without random oracles, the proposed scheme has
some advantages with respect to the public key size,
the message-ciphertext expansion factor, and the
computation cost. There are still many open prob-
lems that need to be studied, for example, how to
design an efficient lattice-based function encryption
scheme (Agrawal et al., 2012) and attribute-based
encryption (Cheng et al., 2013).
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