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Abstract: We tackle the problem of a biped running over varied and unknown terrain. Running is a necessary
skill for a biped moving fast, but it increases the challenge of dynamic balance, especially when a biped is running
on varied terrain without terrain information (due to the difficulty and cost of obtaining the terrain information
in a timely manner). To address this issue, a new dynamic indicator called the sustainable running criterion is
developed. The main idea is to sustain a running motion without falling by maintaining the system states within a
running-feasible set, instead of running on a periodic limit cycle gait in the traditional way. To meet the precondition
of the criterion, the angular moment about the center of gravity (COG) is restrained close to zero at the end of the
stance phase. Then to ensure a small state jump at touchdown on the unknown terrain, the velocity of the swing
foot is restrained within a specific range at the end of the flight phase. Finally, the position and velocity of the COG
are driven into the running-feasible set. A five-link biped with underactuated point foot is considered in simulations.
It is able to run over upward and downward terrain with a height difference of 0.15 m, which shows the effectiveness
of our control scheme.

Key words: Underactuated running biped, Dynamic balance, Varied and unknown terrain
doi:10.1631/FITEE.1400284 Document code: A CLC number: TP242

1 Introduction

Human beings perform different types of mo-
tions such as walking, running, high jumping, hur-
dling, and the most complicated movements like
those of an acrobat. For bipedal robots, their human-
like shape with two legs is suitable for performing
various tasks and moving across various environ-
ments. Reportedly, however, as of now only a few
of them can walk around human-centered settings
which include varied terrain (Hirukawa et al., 2007;
Shimizu et al., 2007; Li and Chen, 2009). The most
impressive biped, Asimo, is capable of walking on a
terrain constructed by multiple cells, each with side
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length 0.025 m (Chestnutt et al., 2005). The im-
proved HRP-2 can cope with an uneven surface with
a height difference of less than 0.04 m and an incline
of 2.86◦ (Kaneko et al., 2004; Morisawa et al., 2011).
For now the steepest slope a biped can climb is 8.5◦

in simulations (Seven et al., 2011). Compared with
human beings these values are still very small. A
biped robot adapting to complex environments has
not yet been fully explored.

Possible solutions to the problem of adapting
to complex environments are classified into the fol-
lowing three categories: (1) Avoid obstacles or un-
even parts of the ground through some successful
navigation algorithms (Nishiwaki et al., 2012). This
class of strategies requires the ground to have certain
conditions, and relies on accurate real-time informa-
tion on the environment. Due to noisy measurement
and slow responses of actuators, it is still challenging



284 Yi et al. / Front Inform Technol Electron Eng 2015 16(4):283-292

for a biped robot to measure ground conditions in
real time and respond rapidly. (2) Explore the
mechanical structure of the feet of a biped to ab-
sorb the disturbances from the physical environment
(Hashimoto et al., 2006; 2007; Sano et al., 2008; Ya-
mada et al., 2010). As new structures always bring
complexity to the biped dynamics, it is difficult to
use them appropriately and analyze the stability of
the whole biped system. (3) Regenerate new motion
trajectories according to the changing ground infor-
mation based on the zero moment point (ZMP) sta-
bility requirement (Hirukawa et al., 2007; Nishiwaki
and Kagami, 2007; Huang et al., 2008). However, the
ZMP stability indicator is a static criterion, which is
not suitable either in fast locomotion or for large
changes in the ground (Vukobratović and Borovac,
2004).

In the paper we tackle the problem of a point-
foot biped running over varied and unknown ter-
rain. Dynamic balance is difficult for a point-foot
running biped without actuators on its ankles, while
the challenge is greater when the biped is subject
to varied terrain without terrain information. Thus,
we take the sustainable running criterion proposed
in our previous work (Yi et al., 2015) as a dynamic
indicator. It defines a running-feasible set by the cen-
ter of gravity (COG) state, in which a biped is able
to sustain running without falling. A non-period
running gait can be realized for a biped robot un-
der disturbances, as long as the COG state is within
a running-feasible set. In our previous work, the
issue of dynamic balance from a running biped sub-
jected to a sudden push was investigated. In the
current work, we focus on the problem of maintain-
ing running gaits (possibly varied) in response to un-
predictable and large disturbances from varied ter-
rain. The solution to the problem consists of three
components: First, the angular moment about the
COG (centroid angular moment) is restrained close
to zero at the end of the stance phase. It is taken as
the precondition of the sustainable running criterion.
Second, the velocity of the swing foot is restrained
within a certain range when the biped is touching
down on the ground from the flight phase. Thus, the
unpredictable disturbances are bounded as well at
touchdowns, causing small state jumps. Finally, the
position and velocity of the COG are controlled to be
within a running-feasible set, so that the sustainable
running motion is realized. In simulations, the biped

runs up and down the terrain with a height difference
of about 0.15 m. To our knowledge, this is the first
result on underactuated biped running that shows
great adaptability to varied and unknown terrain.

2 Running dynamic model

2.1 A five-link planar biped

The running model considered in this study is a
planar point-foot biped (Fig. 1). It has five links and
four actuators acting on hips and knees, but without
actuators on its ankle joints. The parameters of the
biped are summarized in Table 1.

x

z q3

q2

q5 q1

rc

rf

q4

ro

Fig. 1 A five-link planar biped

Table 1 Symbol definition

Symbol Description Value

lb Length of the body 0.625 m
lt Length of the thigh 0.400 m
ls Length of the shank 0.400 m
mb Mass of the hip 17.0 kg
mt Mass of the thigh 6.8 kg
ms Mass of the shank 3.2 kg
Ib Rotational inertia of the hip 1.33 kg·m2

It Rotational inertia of the thigh 0.47 kg·m2

Is Rotational inertia of the shank 0.20 kg·m2

Let qb = [q1, q2, q3, q4, q5]
T be the joint an-

gles and Γ = [τ1, τ2, τ3, τ4]
T the input torques.

The absolute position of the COG is specified by the
coordinates rc = [xc, zc]

T. In addition, we denote
the position of the foot that is on the ground by
ro = [xo, zo]

T and the position of the other foot by
rf = [xf , zf ]

T. They are expressed as

rc = ro + η1(qb), rf = rc + η2(qb), (1)

where η1 and η2 are the functions of the joint angles
describing the shape of the biped.

When the biped stands on the ground, it exerts a
downward gross applied force (GAF) to the ground
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through the contact point. Then an equal upward
ground reaction force (GRF) exists on the supporting
foot. Denote the GAF by Fa = [Fax, Faz]

T, and the
GRF by F = [Fx, Fz ]

T. Thus,

F =

{
−Fa, if zo = 0 and Faz < 0,

0, if zo > 0 or Faz ≥ 0.
(2)

As the GAF is a composite force from the actuators,
the GRF can be controlled and expressed by a func-
tion of the joint states and torque inputs. Due to the
physical constraints on the joint angles, velocities,
and the actuators, the GRF has an upper bound de-
noted by Fmax. At the same time, it has a unilateral
constraint for directing upright and a friction con-
straint for remaining in the Coulomb cone. Define
p = [qb, Γ , F ]T and a constraint set C as

C := {p|qi ∈ [qmin
i , qmax

i ], τj ∈ [τmin
j , τmax

j ],

‖F ‖ ≤ Fmax, |Fx| ≤ μFz},
(i = 1, 2, · · · , 5, j = 1, 2, 3, 4)

where qmin
i and qmax

i represent the minimum and
maximum values of qi respectively, τmin

j and τmax
j

represent the minimum and maximum torque val-
ues of the torque input τj respectively, and μ is the
friction coefficient.

2.2 Dynamic model

The running motion consists of stance and flight
phases with instantaneous takeoff and touchdown
transitions. Let Ss and Sf be the sets of valid states
and control inputs in the stance phase and flight
phase respectively, and let Ss→f and Sf→s be the sets
of valid states at takeoff and touchdown respectively.
A visualization of a running step is given in Fig. 2b.

2.2.1 Stance phase

A running biped is in the stance phase when it
moves forward with one foot contacting the ground
to support the weight of the body. The leg that con-
tacts the ground is called the supporting leg and the
other the swing leg (the two legs are distinguished
and named in the stance phase, and the names are
effective in the whole running step). Let the posi-
tion of the supporting leg end in stance be the local
coordinate origin. As the biped stands still on the
ground, there is

ro = [0, 0]T, ṙo = [0, 0]T. (3)

(a)

Ss

(b)

Sf

Ss→f

Sf→s

Fig. 2 State sets of a biped running (a) and a visual-
ization of a running step (b)

During biped running the swinging foot should be
above the ground and the horizontal velocity should
be positive for moving forward. That is, zf > 0 and
ẋc > 0. Also, the existence of GRF gives ‖F ‖ > 0.
So, the state set in stance Ss is defined as

Ss :={p ∈ C|ẋc > 0, zf > 0, ‖F ‖ > 0,

ro = [0, 0]T, ṙo = [0, 0]T}.
Denote the vector of the generalized coordinates by
qs = qb. The coordinates of the COG are calculated
by substituting Eq. (3) into Eq. (1):{

rc = η1(qs), ṙc = ∇η1(qs)q̇s,
r̈c = ∇2η1(qs)q̇

2
s +∇η1(qs)q̈s.

(4)

Then the GRF is

F =M r̈c −G, (5)

where M is the total mass of the biped and G =

M [0, −g]T. In addition, the centroid angular mo-
ment, which is denoted by Hcs (Hcf in flight), and
its derivative, are calculated as⎧⎪⎨

⎪⎩
Hcs =

5∑
i=1

mi(ri − rc)× (ṙi − ṙc),

Ḣcs = (ro − rc)× F = −rc × F .
(6)

Here ri represents the position of the center of mass
of the ith link. The Lagrange dynamics is given in the
joint space for better understanding the dynamical
features. The equation of motion in stance is

Ds(qs)q̈s +Cs(qs, q̇s)q̇s +Gs(qs) = BsΓs, (7)
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where Ds is the inertia matrix, Cs is the centrifu-
gal matrix, Gs is the gravity term, Bs is the effect
matrix of the torques, and Γs is the input torque
in stance. As Γs is a four-dimensional vector, the
biped has one degree of underactuation in stance.
Let xs = [qs, q̇s]

T be the system state vector. Then
the dynamic equations are written in the standard
form as

ẋs := fs(xs) + gs(xs)Γs, (8)

where

fs =

[
q̇s

D−1
s (−Csq̇s −Gs)

]
, gs =

[
03×1

D−1
s Bs

]
.

2.2.2 Flight phase

In flight all parts of the biped are in the air. The
set Sf is defined as

Sf := {p ∈ C | zf > 0, zo > 0, ‖F ‖ = 0}.
As all parts of the biped move with respect to the
world frame, the position of the biped COG is in-
troduced in the vector of generalized coordinates in
flight, qf = [qb, rc]

T. The equation of motion is then
given as

Df

[
q̈b

r̈c

]
+Cf

[
q̇b

ṙc

]
+

[
05×1

G

]
= Bf

[
Γf

02×1

]
,

(9)
where

Df =

[
Ds 05×2

02×5 MI2×2

]
, Cf =

[
C′

f

02×7

]
, Bf =

[
Bs

02×4

]

are the inertia matrix, centrifugal matrix, and ef-
fect matrix of the torques in flight, respectively. The
dynamic equation shows that the biped has three de-
grees of underactuation in flight. Since the biped is
only subject to the unchangeable gravity in flight,
the variables of the COG are not controllable. Thus,
the horizontal velocity of the biped remains constant,
and the vertical velocity of the biped decreases with
the gravitational acceleration. As no moment with
respect to the COG exists, the centroid angular mo-
ment becomes zero. Therefore, we have

ẍc = 0, z̈c = −g, Ḣcf = 0. (10)

From Eq. (1), the coordinates of the swing foot in
flight are calculated as{

rf = rc + η2(qb), ṙf = ṙc +∇η2(qb)q̇b,
r̈f = r̈c +∇2η2(qb)q̇

2
b +∇η2(qb)q̈b.

(11)

Finally, let xf = [qf , q̇f ]
T be the system state vector

in flight and the dynamic equations are written in
the standard form as

ẋf := ff(xf) + gf(xf)Γf , (12)

where

ff=

[
q̇f

D−1
f (−Cf q̇f −Gf)

]
, gf=

[
04×1

D−1
f Bf

]
.

2.2.3 Takeoff

The transition from the stance phase to the
flight phase is defined by an instantaneous takeoff.
It occurs when the biped moves upwards and has
its supporting foot about to leave the ground. The
transition set Ss→f is defined as

Ss→f :={p ∈ C | żc > 0, żo > 0, zo = 0,

zf > 0, ‖F ‖ = 0}.
Denote the state vectors just before and after a take-
off by [q−s , q̇

−
s ] and [q+f , q̇

+
f ], respectively. The

generalized coordinates and their velocities do not
change at the takeoff transition. Thus, the instanta-
neous map is written as

[
q+f
q̇+f

]
=Δf

s :=

⎡
⎢⎢⎣

q−s
η1(q

−
s )

q̇−s
∇η1(q−s )q̇−s

⎤
⎥⎥⎦ . (13)

2.2.4 Touchdown

The transition from the flight phase to the
stance phase is defined by an instantaneous touch-
down. It occurs when the swing foot contacts the
ground with a downward speed, since the leg be-
comes the supporting leg and exerts a GAF down-
wards for the next running step. The set of the
touchdown Sf→s is defined as

Sf→s := {p ∈ C | żf < 0, zf = 0, zo > 0, ‖F ‖ = 0}.
The generalized coordinates change continuously but
the joint velocities jump at touchdown. Denote the
state vectors just before and after the touchdown by
[q−f , q̇

−
f ] and [q+s , q̇

+
s ], respectively, and we have

q+s =Nq−b , N =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (14)
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where q−b is the sub-vector of q−f corresponding to
the joint angles. To derive the velocity map, we
introduce

q+w =

[
q+b
r+c

]
, J =

∂rf
∂qf

,

where J is the Jacobian matrix which gives

Jq̇−f = ṙ−f . (15)

Denote FI as the impulsive GRF at touchdown.
The touchdown model (Fujimoto, 2004) is given as{

Df(q
+
w − q−f ) = JTFI,

ṙ+f = Jq̇+w = 02×1.
(16)

Combining Eq. (15), the equations are solved as{
FI = −(JD−1

f JT)−1ṙ−f ,

q̇+w − q̇−f = −D−1
f JT(JD−1

f JT)−1ṙ−f ,
(17)

which gives
q̇+s =Nq̇+b , (18)

where q̇+b is a sub-vector of q̇+w . Then the instanta-
neous map Δs

f at touchdown can be calculated from
Eqs. (14) and (18). We have[

q+s
q̇+s

]
=Δs

f . (19)

Remark 1 Eq. (17) reveals that if ṙ−f is small
enough, the amount of velocity change q̇+w − q̇−f is
also small, so is FI. Thus, small ṙ−f is desired at
touchdown.

In summary, the complete hybrid system model
for the biped running motion is given as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋs = fs(xs) + gs(xs)Γs, xs ∈ Ss,

x+
f =Δf

s(x
−
s ), x−

s ∈ Ss→f ,

ẋf = ff(xf) + gf(xf)Γf , xf ∈ Sf ,

x+
s =Δs

f(x
−
f ), x−

f ∈ Sf→s.

(20)

3 Reference gait generation

3.1 Running-feasible conditions

In a complex and varied ground environment, a
biped needs to change its running gait at every step
for better adaption to the environment. The problem
is rather difficult when the ground information is un-
known and the biped has degrees of underactuation.

We adopt the sustainable running criterion, which
was originally developed in our previous work (Yi
et al., 2015), for the purpose of sustaining running in
a rough ground environment.
Definition 1 (Running-feasible state) A state of a
biped is said to be ‘running-feasible’ if there exists a
control input such that, starting from this state, the
biped results in a trajectory consisting of an infinite
number of running steps.
Definition 2 (Sustainable running) A biped is said
to be in ‘sustainable running’ if every system state is
running-feasible.

Thus, a running-feasible initial state is a nec-
essary condition for successful running. Given a
running-feasible state, a biped is able to generate
a running step gait. Given that the initial state of
the next step is determined by the end state of the
current step, we consider a ‘running-feasible step’
if it goes though the stance, takeoff, flight, and
touchdown phases and the state after touchdown is
running-feasible. In our previous work, an estima-
tion for a set of running-feasible states is given by
the following lemma:
Lemma 1 (Running-feasible set (Yi et al., 2015))
Assume the centroid angular moment is ignored and
a running biped is modeled by an inverted pendulum
model. The COG state of the biped [xc, zc, ẋc, żc]

T

is a running-feasible state if it belongs to the set

Ω(x) = {xs ∈ Ss|xc < 0, żc < 0, ẋmin
c ≤ ẋc ≤ ẋmax

c },

where

ẋmax
c =

Fmax

Mlo

xczc
żc

− xcg

żc
,

ẋmin
c =

xcżc − xc
√
żc + 4gzc

2zc
,

and lo = ‖rc − ro‖ represents the distance between
the COG and the standing foot in the inverted pen-
dulum model.

To tackle the problem of a biped running over
varied terrain, the placement of the swing foot before
touchdown should be adjusted to ensure that the
state after touchdown is within the running-feasible
set. Therefore, the running-feasible set is rewritten
as

Ω1(x) = {p ∈ C|xc < 0, żc < 0, xmin
c ≤ xc ≤ xmax

c },
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where ⎧⎪⎪⎨
⎪⎪⎩

xmax
c =

Mloẋcżc
Fmaxzc −Mglo

,

xmin
c =

2ẋczc
żc −

√
żc + 4gzc

.

(21)

Note that xc here is the horizontal position of the
COG in the local frame with its origin at the position
of the supporting foot. As shown in Fig. 3, the gray
area represents the estimation of the running-feasible
set at the beginning of every step. The biped has to
adjust its posture to place the swing foot in this safe
area.

Fig. 3 A running biped with a pre-known safe area

3.2 Reference gait generation

Sustainable running allows a biped to change
its running gaits in an external varied environment.
Given the initial state of a running step within a
running-feasible set, we propose the following speci-
fications for the reference gait generation at the be-
ginning of every running step:

1. Make the centroid angular moment close to
zero in the stance phase. By Eq. (10), the centroid
angular moment will remain constant in the flight
phase. So, the assumption in Lemma 1 is satisfied.

2. Make the foot placement before touchdown
within the running-feasible set in Eq. (21). As long
as the state jump at touchdown is limited, a running-
feasible gait is obtained.

3. Make the velocity of the touching foot near to
zero when the biped is about to touchdown. As com-
mented in Remark 1, if the velocity of the touching
foot is small enough, the amount of velocity change
before and after touchdown is also small, which lim-
its the state jump at touchdown.

4. Maintain the upper body upwards to avoid
damage to the on-board hardware inside it.

To meet the above specifications 1–4, we con-
sider controlling a gait of four variables ψs =

[Hcs, q3, q5, zc]
T in stance andψf = [q2, q3, xf , zf ]

T

in flight. In a running step, denote the initial and
end time instants of a stance phase by tso and tse
respectively, and denote the initial and end time in-
stants of a flight phase by tfo and tfe respectively.
Here tse is also taken as the beginning time of the
flight phase. Then the reference gait represented by
the four variables is given as

ψref
s (t) =

⎡
⎢⎢⎢⎢⎢⎣

Href
cs (t)

qref3 (t)

qref5 (t)

zrefc (t)

⎤
⎥⎥⎥⎥⎥⎦ , ψ

ref
f (t) =

⎡
⎢⎢⎢⎢⎢⎣

qref2 (t)

qref3 (t)

xreff (t)

zreff (t)

⎤
⎥⎥⎥⎥⎥⎦ .

The fifth-order polynomial is used to generate the
reference trajectory in the stance phase. That is,

ψref
s (t) = an0+an1t+an2t

2+an3t
3+an4t

4+an5t
5,

(22)
where the parameters anj (n = 1, 2, 3, 4, j =

0, 1, . . . , 5) are determined by the initial state
ψs(tso) of the current step, the desired ending
state ψs(tse), and their first and second derivatives
ψ̇s(tso), ψ̈s(tso), ψ̇s(tse), ψ̈s(tse). In this study, the
initial state of the reference trajectory is set to be
the true state of the biped at the moment of starting
a new running step such that the tracking control
starts with zero tracking error.

However, when the information of the varied ter-
rain environment is not given, the touchdown time tfe
becomes unpredictable, which means that the ending
state of the flight phase ψf(tfe) cannot be designed.
For this reason the fifth-order polynomial method
is unsuitable for realizing specifications 1 and 3 in
the flight phase. To solve this problem, we decom-
pose the flight phase into the rising sub-phase and
falling sub-phase. Namely, in the rising sub-phase
the biped has positive or zero vertical velocity, and
in the falling sub-phase the biped has negative verti-
cal velocity. Then specifications 2 and 3 are replaced
by the following alternatives:

a. Make both legs of the biped draw upwards in
the rising sub-phase and then put downwards in the
falling sub-phase. So, the biped has a touchdown
with a negative vertical velocity in the falling sub-
phase; i.e., żc < 0 is satisfied for the running-feasible
set in Eq. (21).
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b. Make the velocity of the swinging foot within
a small range in the whole falling sub-phase. The oc-
currence of a touchdown requires the swinging foot
to move downward with a negative vertical veloc-
ity. When the swinging foot moves faster toward the
ground, the time duration of the falling sub-phase be-
comes smaller, which makes the vertical velocity of
the COG larger. Based on Eq. (21) a larger running-
feasible set will also be obtained. However, a fast
swinging foot will cause an undesirable and large
state jump at touchdown. Considering both factors,
the velocity of the swinging leg should be a compro-
mise design between zero and far below zero during
the whole falling sub-phase.

c. Make the horizontal position of the swing-
ing foot within the running-feasible set in the whole
falling sub-phase. Thus, whenever the biped touches
the terrain, specification 2 is satisfied.

Denote the divided reference gait in the flight
phase by ψf = [ψf1, ψf2]

T and the ending time in-
stant of the rising sub-phase by tfm. The fifth-order
polynomial is used to generate the reference trajec-
tory of the rising sub-phase to meet the above alter-
native specifications. That is,

ψref
f1 (t) = bn0+bn1t+bn2t

2+bn3t
3+bn4t

4+bn5t
5, (23)

where the parameters bnj (n=1, 2, 3, 4, j = 0, 1,
. . . , 5) are determined by the ending state of the
stance phase ψf1(tse), ψ̇f1(tse), ψ̈f1(tse) and the
design of the ending state of the rising sub-phase
ψf1(tfm), ψ̇f1(tfm), ψ̈f1(tfm).

Now we design the reference trajectory during
the falling sub-phase. Let the joint angles q2 and q3
remain constant during this sub-phase,

qref2 (t) = q2(tfm), q
ref
3 (t) = q3(tfm). (24)

Note that after touchdown the swinging foot be-
comes the supporting foot on the ground for the next
step, and its horizontal position becomes the origin
of the local coordinates of the biped. Thus, before
touchdown the horizontal distance between the COG
and the swinging foot represents the initial COG hor-
izontal position of the next step, which is designed as
a value in the middle of the running-feasible set Ω1.
As the horizontal COG position in flight is calculated
as

xc(t) = xc(tfo) + ẋc(tfo)(t− tfo),

the horizontal swinging foot in the falling sub-phase

is designed as

xreff (t) = xc(tfo)+ẋc(tfo)(t−tfo)−x
min
c +xmax

c

2
. (25)

Then the alternative specification c is ensured. For
the vertical velocity of the swinging foot, we set

żreff (t) = −2,

which gives the reference gait

zreff (t) = −2(t− tfm). (26)

By Eqs. (24)–(26), the falling sub-phase reference
gait ψref

f2 is determined as long as the rising gait
states xf(tfo) and xf(tfm) are given. Now a reference
running-feasible step gait is generated. In the next
section, we will design a control law to track the
reference gait with zero initial tracking error.

4 Tracking control design

In this section we develop a running control law
for a five-link planar point-foot biped based on the
results in the preceding sections. We develop a track-
ing control law for the biped to track the designed
reference trajectoryψref

s in the stance phase andψref
f

in the flight phase.
Define an output ys = [ys1, ys2]

T in the stance
phase as

⎧⎪⎪⎨
⎪⎪⎩
ys1 = hs1(qs, q̇s) :=Hcs −Href

cs ,

ys2 = hs2(qs) :=

⎡
⎣ q3
q5
zc

⎤
⎦−

⎡
⎣ qref3

qref5

zrefc

⎤
⎦ .

Calculating the Lie derivatives of fs, ff , gs, and gf ,
we obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dys1
dt

= Lfshs1(qs, q̇s) + Lgshs1(qs, q̇s)Γs,

dys2
dt

= Lfshs2(qs),

d2ys2
dt2

= L2
fs
hs2(qs) + LgsLfshs2(qs)Γs.

For ys1 = ys2 ≡ 0, the system state in the stance
phase evolves on the set

Zs :={xs ∈ Ss|hs1=0, hs2=0, Lfshs2=0}. (27)

Here we write hs1 = hs1(qs, q̇s), hs2 = hs2(qs) for
brevity. The feedback control Γ ∗

s is then chosen to
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be continuous and to render Zs invariant under the
closed-loop dynamics. That is,{

Lfshs1 + Lgshs1Γ
∗
s = 0,

L2
fs
hs2 + LgsLfshs2Γ

∗
s = 0.

(28)

When hs1 	= 0, hs2 	= 0, Lgshs1 	= 0, and
LgsLfshs2 	= 0 are ensured, the control law Γ ∗

s is
written as

Γ ∗
s = −

[
Lgshs1

LgsLfshs2

]−1 [
Lfshs1
L2
fs
hs2

]
. (29)

Define an output yf = [yf1, yf2]
T for the rising

and falling sub-phases as{
yf1 = hf1(qf) := ψf −ψref

f1 ,

yf2 = hf2(qf) := ψf −ψref
f2 .

Also, denote the control input in the rising and falling
sub-phases by Γf = [Γf1, Γf2]

T. Thus, we have⎧⎪⎨
⎪⎩

dyfi
dt

= Lffhfi,

d2yfi
dt2

= L2
ff
hfi + LgfLffhfiΓfi,

(30)

where i = 1, 2. For yf1 = yf2 ≡ 0, the system state
evolves on the set

Zf := {xf ∈ Sf |hfi = 0, Lfshfi = 0, i = 1, 2}. (31)

When hf1 	= 0, hf2 	= 0, LgfLffhf1 	= 0, and
LgfLffhf2 	= 0 are ensured, consider the following
control to render Zf invariant under the closed-loop
dynamics:

Γ ∗
fi = −(LgfLffhfi)

−1L2
ff
hfi, i = 1, 2. (32)

Evaluating system (20) on the zero output sets (27)
and (31) yields the zero dynamics⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋs = fs(xs) + gs(xs)Γ
∗
s , xs ∈ Zs,

x+
f =Δf

s(x
−
s ), x−

s ∈ Ss→f ,

ẋf = ff(xf) + gf(xf)Γ
∗
f , xf ∈ Zf ,

x+
s =Δs

f(x
−
f ), x−

f ∈ Sf→s.

(33)

Note that onceψref
s (t) in the stance phase andψref

f (t)

in the flight phase are given, the reference gait con-
sisting of all the states is encoded. Thus, the choice
of two reference signals ψref

s (t) and ψref
f (t) should

also ensure that all the other states are bounded for
zero dynamics (33). Finally, to converge to the zero

output set, we add νs and νf in the feedback control
law, i.e.,

Γs = Γ
∗
s + νs, Γf = Γ

∗
f + νf ,

which results in the following closed-loop error track-
ing system (i = 1, 2):{

ÿsi +K
s
dẏsi +K

s
pysi = 0,

ÿfi +K
f
dẏfi +K

f
pyfi = 0.

(34)

By choosing negativeKs
d, K

f
d, K

s
p, K

f
p, the solution

of Eq. (34) converges exponentially quickly to zero.
In conclusion, the tracking control law is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γs = Γ ∗
s +

[
Lgshs1

LgsLfshs2

]−1

·
(
Ks

p

[
hs1

hs2

]
+Ks

d

[
Lfshs1

Lfshs2

])
,

Γfi=Γ ∗
fi+(LgfLffhfi)

−1(Kf
phfi +Kf

dLffhfi), i = 1, 2.

5 Simulation results

Assume Fmax = 2Mg and μ = 0.4 for the five-
link running biped. Given the initial state of the
stance phase x(tso) = [2.6469, 2.4861, 0, 3.2575

2.7057, −13.7305, −2.4342, −1, 0.9667, −2]T, the
initial condition of the stance reference gait is cal-
culated for ψref

s (tso), ψ̇
ref
s (tso) and designed for

ψ̈ref
s (tso) as⎡

⎢⎢⎣
ψref

s (tso)
T

ψ̇ref
s (tso)

T

ψ̈ref
s (tso)

T

⎤
⎥⎥⎦ =

⎡
⎣ 0.1 0.05 −0.27 0.70

3.03 −0.60 2.82 −0.03

0 0 −100 g

⎤
⎦ .

Consider the fifth-order polynomial reference gaits
in the stance phase and the rising sub-phase. As
the ending state at the stance phase results in the
beginning state of the rising sub-phase in flight, only
the values of ψref

s (tse), ψ
ref
f (tfm), and their first and

second derivatives need to be determined. We set⎡
⎢⎢⎣
ψs(tse)

T

ψ̇s(tse)
T

ψ̈s(tse)
T

⎤
⎥⎥⎦ =

⎡
⎣ 0 q3(tse) 2 zc(tso)

0 0 −5 0.6

0 0 100 g

⎤
⎦ ,

⎡
⎢⎢⎣
ψf(tfm)

T

ψ̇f(tfm)
T

ψ̈f(tfm)
T

⎤
⎥⎥⎦ =

⎡
⎣ 2 0.1 xf(tfm) 0.2

−1 −1 ẋc(tfo) 0

ς1 ς2 ς3 ς4

⎤
⎦ ,
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with

q3(tse) = q3(tso) + 0.2,

xf(tfm) = xc(tfo)− ẋc(tfo)
żc(tfo)

g
,

ςk =
ψ̇k(tfm)− ψ̇k(tf0)

tfe − tfo
, k = 1, 2, 3, 4.

By Eqs. (24)–(26), when the ending state of the rising
sub-phase is determined, the reference gait of the
falling sub-phase is also generated.

First, we let the biped run over the terrain with
one upward stair and one downward stair of a height
difference of 0.15 m. As in Figs. 4 and 5 the biped
handles this challenge appropriately.

Then we set the biped running over continuously
varied terrain (Fig. 6). The trajectories of the COG
are shown in Fig. 7. It shows the height of the COG
with respect to the varied ground level, zc, transiting
between near 0.7 m and 0.8 m and that the velocity of
the COG changes instantaneously at discrete times
due to touchdowns. When the robot recognizes these
changes in the varied terrain, it regenerates a new
reference trajectory and a new tracking control law
to maintain the running motion. Thus, the COG is
always able to return back to a proper position and
velocity without divergence. The non-periodic joint
trajectories are shown in Fig. 8. It shows that the
biped uses its body posture to remain upright and
maintains a steady human-like posture for running.

6 Conclusions

In the paper we proposed a strategy for an un-
deractuated biped running on unknown and varied
terrain. By controlling the height of the COG up-
wards and the centroid angular moment close to zero,
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Fig. 4 Running up a 0.15-m stair

the biped incorporates the environmental change
into its velocity. Based on a sustainable running
creation, we set the proper foot placement before
touchdown to make the biped sustain a running mo-
tion in the presence of terrain variation. The sim-
ulation results demonstrate that the biped is able
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Fig. 5 Running down a 0.15-m stair
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Fig. 6 Running over varied terrain
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Fig. 7 The dynamics of the COG in the horizontal
(a) and vertical (b) directions
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to q̇5 (e)

to react swiftly, resembling the reaction patterns of
human beings.
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