
Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 85

Test-driven verification/validation of model transformations*

László LENGYEL‡, Hassan CHARAF
(Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest 1117, Hungary)

E-mail: lengyel@aut.bme.hu; hassan@aut.bme.hu

Received Mar. 26, 2014; Revision accepted Dec. 15, 2014; Crosschecked Dec. 30, 2014

Abstract: Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-
formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible
to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different
requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/
validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This
paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of
model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/
validating model transformations. We provide a solution that makes it possible to automatically generate test input models for
model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model
transformations.

Key words: Graph rewriting based model transformations, Verification/validation, Test-driven verification
doi:10.1631/FITEE.1400111 Document code: A CLC number: TP311

1 Introduction

We often project a model into another domain or
format, for example, into a formal model. And we
always ask, what ensures that the projection is free of
conceptual errors? The central question of the area is
the following: how can we ensure that the model
transformation does what it is intended to do? This
paper is intended to contribute to answering this
question.

Model transformations have a wide application
field. Different transformation solutions support one
or more from the following scenarios: refining the
design to implementation (OMG, 2014), transforming
models into other domains (Varró and Pataricza,
2003), aspect weaving (Assmann and Ludwig, 2000),

analysis and verification (Assmann, 1996), software
refactoring (van Gorp et al., 2003), simulation and
execution of a model, querying some information and
providing a view for it, abstracting models, assigning
concrete representation to model elements, migration,
normalization, optimization, and synchronization
(Amrani et al., 2012).

As model transformations are being applied to so
many different scenarios, there is a compelling need
for methods regarding their development, and also for
verifying/validating them. Verification and validation
of a model transformation is the process of ensuring
that the transformation definition meets requirements
and fulfills its defined role.

The goals of the transformations’ analysis are to
show that, in the case of a valid input model, certain
properties will be true for the output model. The
analysis of a transformation is said to be static when
the implementation of the transformation and the
language definition of the input and output models are
used during the analysis process, but we do not take
concrete input models into account. In the case of a

‡ Corresponding author

* Project partially supported by the European Union and the Euro-
pean Social Fund (No. TAMOP-4.2.2.C-11/1/KONV-2012-0013)

 ORCID: László LENGYEL, http://orcid.org/0000-0002-5129-
4198; Hassan CHARAF, http://orcid.org/0000-0002-8911-0219
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 86

dynamic approach, we analyze the transformation
for a specific input model, and then check whether
certain properties hold for the output model during or
after the successful application of the transformation.
The static technique is more general and poses more
complex challenges. The goal of static analysis is to
determine if the transformation itself meets various,
specific requirements.

In model-driven system development, a software
design and analysis process involves designing the
system, projecting it into the analysis domain, and
executing the verification on the analysis model.
Model transformation is a powerful and convenient
method frequently used to automate this conversion
(Narayanan and Karsai, 2008). However, the verifi-
cation of different properties at the model level is
useful only if automatic code generation is guaranteed
to be correct. This means that the verified properties
should be true for the generated code as well (Giese et
al., 2006).

For most computer-controlled systems, an ef-
fective design process requires an early validation of
the concepts and architectural choice. However, a
standard modeling language alone does not guarantee
the correctness of the design. Therefore, during the
design of software systems, the design models are
frequently projected into various mathematical do-
mains to perform formal analysis of the system under
design via automatic model transformations (Varró
and Pataricza, 2003).

To summarize, it is significant to understand that
model transformations themselves can be incorrect;
therefore, uncovering solutions to make model
transformations free of conceptual errors is crucial.

2 Background

This section introduces the classification of
model transformation approaches, discusses the ba-
sics of graph rewriting based model transformation,
and summarizes the ideas and motivations related to
testing model transformations.

2.1 Classification of model transformation
approaches

There are several model transformation ap-
proaches ranging from relational specifications

(Akehurst and Kent, 2002) to graph transformation
techniques (Ehrig et al., 1999), and to algorithmic
techniques for implementing a model transformation.
Based on Czarnecki and Helsen (2006) and Mens and
van Gorp (2006), we distinguish between the fol-
lowing approaches (Fig. 1):

Traversal-based and direct manipulation ap-
proaches: These model processing approaches pro-
vide mechanisms to visit the internal representation of
a model and write text (source code or other text, e.g.,
XML) to a stream while optimizing and generating
models and other artifacts. Furthermore, modeling
and model processing approaches (aside from the
model representation) offer some application pro-
gramming interfaces (APIs) to manipulate the models.
These approaches are usually implemented using an
imperative programming language (Vajk et al., 2009).

Template-based approaches: Approaches in this
category are applied mainly in the case of model-to-
code generation. A template usually consists of the
target text containing splices of source code (meta-
code) used to access information from the source and
to perform code selection and iterative expansion.
The meta-code may be imperative program code or
declarative queries as is the case with OCL (OMG,
2012), XPath, or T4 text templates.

Relational approaches: These approaches de-
claratively map between source and target models.
This mapping is specified by constraints, which de-
fine the expected results, not the way in which they
are achieved. Some examples of this are Query, Views,
Transformations (QVT) (OMG, 2011) and partially
Triple Graph Grammars (TGGs) (Schürr, 1994).

Graph rewriting based approaches: Models are
represented as typed, attributed, labeled graphs. The
theory of graph transformation is used to transform
models. Some examples of these approaches are AGG

 Fig. 1 Classification of model transformation approaches

Traversal-based and direct
manipulation approaches

Relational approaches

Template-based
approaches

Graph rewriting based
approaches

Hybrid approaches

Structure-driven
approaches

Different types of model transformation approaches

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 87

(http://www.user.tu-berlin.de/o.runge/AGG/), AToM3
(http://atom3.cs.mcgill.ca), GReAT (http://www.isis.
vanderbilt.edu/tools/GReAT), TGGs, VIATRA2 (http://
eclipse.org/gmt/VIATRA2), and VMTS (http://www.
aut.bme.hu/vmts).

Structure-driven approaches: The transformation
is performed in phases: the first phase is concerned
with creating the hierarchical structure of the target
model, whereas the second phase sets the attributes
and references for the target, e.g., OptimalJ and QVT
(OMG, 2011).

Hybrid approaches: Hybrid approaches combine
two or more of the previous categories. For example,
ATL (http://eclipse.org/atl/) combines template-based,
direct manipulation, and graph rewriting based ap-
proaches. Another hybrid approach worth mentioning
is TGGs.

One of the most popular model transformation
approaches, taking both the literature and the industry
into consideration, is the graph rewriting based ap-
proach. In this method, the concentration is on the
verification and validation capabilities of the graph
transformation based approaches. Therefore, the next
section summarizes the theoretical foundations of this
approach.

2.2 Graph rewriting based model transformation

Graph rewriting based transformation is a widely
used technique for model transformation (Karsai et al.,
2003; de Lara et al., 2004). Graph transformation has
its roots in classical approaches to rewriting, such as
Chomsky grammars and term rewriting (Rozenberg,
1997). There are many other representations of this,
which are not yet mentioned. In essence, a rewriting
rule is composed of a left-hand side (LHS) pattern and
a right-hand side (RHS) pattern.

Operationally, a graph transformation from a
graph G to a graph H follows these main steps: (1)
Choose a rewriting rule; (2) Find an occurrence of the
LHS in G satisfying the application conditions of the
rule; (3) Replace the subgraph matched in G by RHS.

There are many different graph transformation
approaches applying the above steps (Rozenberg,
1997; Syriani, 2009). One of them is the popular
algebraic approach, based on category theory with
push-out constructs on the category (Ehrig et al.,
2006). Algebraic graph transformations have two
branches, i.e., single-push-out (SPO) and double-
push-out (DPO) approaches.

The DPO approach has a large variety of graph
types and other kinds of high-level structures, such as
labeled graphs, typed graphs, hypergraphs, attributed
graphs, Petri nets, and algebraic specifications. This
extension from graphs to high-level structures was
initiated in Ehrig et al. (1991a; 1991b), leading to the
theory of high-level replacement (HLR) systems. In
Ehrig et al. (2004), the concept of HLR systems was
joined with adhesive categories, introduced by Lack
and Sobocinski (2004), leading to the algebraic con-
struct of adhesive HLR categories and systems. In
general, an adhesive HLR system is based on the DPO
method. However, these are not only for the category
of graphs (also called rules), which describe ab-
stractly how objects in this system can be transformed.
Ehrig et al. (2006) provided a detailed presentation of
adhesive HLR systems. In the context of this paper, it
is relevant only for typed, attributed graphs.

Graph transformations define the transformation
of models. The LHS of a rule defines the pattern to be
found in the host model; therefore, the LHS is con-
sidered the positive application condition (PAC).
However, it is often necessary to specify what pattern
should not be present. This is referred to as the nega-
tive application condition (NAC) (Habel et al., 1996).
Besides NACs, some approaches such as AGG and
VIATRA2 use other constraint languages, e.g., OCL,
to define the execution conditions.

The scheduling of transformation rules can be
achieved by explicit control structures or can be im-
plicit, due to the nature of their rule specifications.
Moreover, several rules may be applicable at the same
time. Blostein et al. (1996) have classified graph
transformation organization in four categories: (1) An
unordered graph-rewriting system simply consists of
a set of graph-rewriting rules. Applicable rules are
selected non-deterministically until none are appli-
cable. (2) A graph grammar consists of the rules, a
start graph, and terminal states. Graph grammars are
used for generating language elements and language
recognition. (3) In ordered graph-rewriting systems, a
control mechanism explicitly orders the rule applica-
tion of a set of rewriting rules (e.g., priority-based,
layered/phased, or with an explicit control flow
structure). (4) In event-driven graph-rewriting sys-
tems, rule execution is triggered by external events.
This approach has recently seen a rise in popularity
(Guerra and de Lara, 2007).

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 88

Controlled (or programmed) graph transfor-
mations impose a control structure over the trans-
formation rules to maintain a stricter ordering over the
execution of a sequence of rules. The control structure
primitives of a graph transformation may provide the
following properties: atomicity, sequencing, branch-
ing, looping, non-determinism, recursion, parallelism,
back-tracking, and/or hierarchy (Rozenberg, 1997;
Lengyel, 2006).

Some examples of control structures are as fol-
lows: AGG uses layered graph grammars. The layers
fix the order in which rules are applied. The control
mechanism of AToM3 is a priority-based transfor-
mation flow. Fujaba (http://www.fujaba.de/) uses
story diagrams to define model transformations. The
control structure language of GReAT uses a dataflow
diagram notation. GReAT also has a test rule con-
struction; a test rule is a special expression that is used
to change the control flow during execution. VIA-
TRA2 applies abstract state machines (ASMs).
VMTS uses stereotyped Unified Modeling Language
(UML) (OMG, 2010) activity diagrams to further
specify control flow structures. The model transfor-
mation process is depicted in Fig. 2. In Taentzer et al.
(2005), a comparative study was provided that ex-
amines the control structure capabilities of the tools
AGG, AToM3, VIATRA2, and VMTS.

2.3 Testing model transformation

Software testing is an investigation conducted to
provide stakeholders with information about the
quality of the product or service under test (Kaner,
2006). Testing can never completely identify all the
defects within software (Pan, 1999). Instead, it com-
pares the state and behavior of the artifact by which
someone (the software engineer or the domain spe-
cialist) might recognize a problem (Leitner et al.,
2007).

Testing model transformation is any activity
aimed at evaluating a property or behavior of a model

processor and determining that it meets its required
results. The difficulty in the testing of model trans-
formations stems from the complexity. Testing is
more than just debugging the execution of the trans-
formation. The purposes of testing are quality assur-
ance and verification/validation (Hetzel, 1998).

A reasonable part of the defects in transfor-
mations is the design error. Bugs on software artifacts,
including model transformations, will almost always
exist in any software component with acceptable size.
This is not because architects and engineers are
careless or irresponsible, but because the complexity
of software artifacts is generally hard to manage.
Humans have only limited ability to handle it. It is
also true that for any complex systems, design defects
can never be completely eliminated (Kaner, 2006).

Regardless of the limitations, testing is an inte-
gral part of model transformation development. In our
context testing is usually performed to improve the
quality and verify/validate transformations.

Testing is heavily used as a tool in the process of
verifying and validating software artifacts. There is
no way to directly test quality, but we can test related
issues to measure the quality level.

3 Scenarios of model transformation verifi-
cation and validation

In this section, we discuss the different scenarios
of model transformation verification and validation.
We refer to these scenarios as ‘paths’. Fig. 3 depicts
the paths: the top half of the figure represents the
operational part, and the bottom half depicts the
verification/validation (V&V) part. The operational
part is designed by the transformation engineer.

The related verification/validation questions are
as follows: Can we verify a property in one of the
operational domains (e.g., in source model M1,
transformation T, or target model M2)? If not, what
other domains need to be involved (which path of
Fig. 3 should be taken), and where the verification/
validation can be performed or more aptly formed? In
which way is the mapping arranged between the op-
erational and verification/validation domains?

Sometimes properties that will be verified/
validated cannot be expressed in the operational do-
mains. To address this, we have introduced the V&V
part including additional domains. In Fig. 3, MM1 and

Fig. 2 Model transformation process

Metamodel A Metamodel B

Instance model A Instance model BTransform

instantiatesinstantiates

Meta-level

Model-level

Rules and
control flow

define

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 89

MM2 are the language specifications (metamodels)
and can define only two domains. In special cases,
MM1 and MM2 can be identical. M1 and M2 are in-
stance models of MM1 and MM2, respectively. The
instantiation is defined by the mappings i1 and i2.
Transformation T converts M1 into M2. The mapping
trace stores the relationship between elements of
models M1 and M2. Based on this mapping, for each
element of model M1, we can identify the appropriate
target model elements (image) in model M2, and vice
versa; for each element of model M2, we can identify
the appropriate source model elements in model M1.
Our goal is to verify the semantic correctness of
transformation T; therefore, if the formalism used by
M1, M2, and T is not adequate, then they are mapped
into a different semantic domain. Their images are S1,
S2, and TS, respectively. The mapping is defined by
ms1, ms2, and tts. The correspondence between S1 and
S2 is a specific knowledge: a special semantic rela-
tionship expected by the transformation designer.
This correspondence is verified in a semantic domain.
Next, assuming that the mappings (ms1, ms2, and tts)
from the domain-specific artifacts (M1, M2, and T)
into the semantic domains (S1, S2, and TS) are correct,
we can reason the correctness of transformation T.

Recall that in Fig. 3 we have demonstrated a

general case scheme, incorporating several special
cases. The introduced scheme represents a one-way
transformation, but the bi-directional scenario can be
constructed by repeating this structure in the opposite
direction. In a general case, the two directions require
different mappings; only in special cases can the same
mapping be applied.

Based on the architecture of the paths, we
have identified the following semantic verification/
validation types: (1) verification of the models M1 and
M2 (PathModels); (2) verification of the transformation

T (PathTransT); (3) verification of the transformation
TS (PathTransTS); (4) verification of the correspond-
ence (PathCorresp); (5) hybrid verification, with two or
more of the previous verification types being com-
bined (PathHybrid).

Each of these verification/validation types de-
fines a path. During the verification and validation,
we traverse the paths of the framework in the fol-
lowing ways:

PathModels: Verification of models M1 and M2
means M1 and T (M1) are verified separately. This
type of verification does not attempt to prove the
validity of graph transformation T, but verifies that
both of the models provide an appropriate solution to
the problem. Typically, the conformance into meta-
models is validated with this path: the modeling tool
allows the creation of appropriate model elements
only, while a constraint checker (e.g., OCL checker) is
executed on the source model (M1). Next, transfor-
mation T processes the model and generates the out-
put model (M2), which conforms to the output meta-
model (MM2). Output model M2 is validated again in
the modeling environment: validation of metamodel
convergence, including constraint checking.

PathTransT: Most of the verification/validation
approaches aim to check the correctness of the
transformation rules in general. There are both static
(offline) and dynamic (online) approaches. For ex-
ample, Asztalos et al. (2010a) developed a formal
language that is able to express a set of model trans-
formation properties. Basically, the language is ap-
propriate to specify both the properties of the output
models and the properties of the relationship between
the input and output model pairs. They introduced a
final formula which describes the properties that re-
main true at the end of the transformation. The ap-
proach is able to derive the proof or refutation of a
verifiable property from the final formula. An exam-
ple dynamic approach was provided by Lengyel
(2006), in which the validation of the transformation
is achieved with constraints assigned to the trans-
formation rules as pre- and postconditions.

PathTransTS: In the most generic case, transform-
ing models into other domains means a projection
from the source language to the target language, pos-
sibly with an intentional loss of information. There-
fore, in certain cases, proving full semantic equiva-
lence between source and target models is not the

Fig. 3 The paths of model transformations

MM1 MM2

M1 M2T

S1 S2TS

Operational part

V&V part

i1
Trace

Correspondence

ms2ms1 tts

i2

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 90

objective. Instead, we can define transformation or
language-specific (source and target domain) valida-
tion properties that should be satisfied by the
transformation.

The transformation definition describes the re-
quired model manipulation in either an imperative or
a declarative (mostly relational) way. This represen-
tation is often inappropriate as a subject of verifying
certain properties. Therefore, we map the transfor-
mation to a domain more suitable to perform formal
verification/validation. There are several approaches
that map M1, M2, and T into a semantic domain and
perform the verification either on the image of the
transformation (TS: PathTransTS) or on the corre-
spondence between the images of the source and
generated models (S1 and S2: PathCorresp).

An example of PathTransTS was provided in Varró
et al. (2006) in which model transformations were
mapped into Petri nets with the goal of performing
termination analysis in a more appropriate domain.

PathCorresp: The correspondence relationship
between S1 and S2 is domain-specific knowledge; this
is the semantics expected by the language and/or
model transformation designer. We should realize that
the source and the target domains (MM1 and MM2)
could be quite distant from each other (e.g., abstrac-
tion level, domain concepts, or model structure). Thus,
the correspondence may be an optional domain-
specific knowledge that represents the semantic
mapping between the images of source and target
models in a semantic domain.

In the context of our verification/validation
classification framework, the equilibrium (property
preservation) between the source and generated
models, which most of the approaches (e.g., Varró and
Pataricza (2003), de Lara and Taentzer (2004), and
Giese et al. (2006)) attempt to verify, is a special
mapping among the source and the target domains.
Similarly, other special mappings have already been
configured, e.g., bi-similarity: two systems can be
said to be bi-similar if they behave in the same way;
i.e., one system simulates the other, and vice versa
(Narayanan and Karsai, 2008).

An example for PathCorresp is the following:
within the domains of the source and the target mod-
eling languages, it is hard to prove the correctness of
the design. Therefore, the models are projected into a
formal domain, such as transition systems, and the

formal analysis is performed in this domain, e.g., by
applying bi-simulation (Narayanan and Karsai, 2008).

PathHybrid: This path combines two or more of the
paths introduced above. For example, a certain devel-
opment scenario requires the verification/validation
of both transformation termination and some
domain-specific properties. PathTransTS is applied to
verify termination and PathTransT to validate the re-
quired domain-specific properties, e.g., attribute
value requirements.

4 Dynamic validation method

Model transformation rules can be made more
relevant to software engineering models if the trans-
formation specifications allow assigning validation
constraints to the transformation rules.

An example rule that assembles database models
from UML class diagrams is depicted in Fig. 4. Con-
straints are assigned to the rules: Cons_C1, Cons_C2,
Cons_H1, Cons_T1, and Cons_T2. These constraints
require the rule to meet different properties (Asztalos
et al., 2010b).

context Class inv NonAbstract:
not self.abstract

The constraint NonAbstract (Cons_C1) is a
precondition. It requires the rule to process only
non-abstract classes.

context Table inv PrimaryKey:
self.columns->exists(c|c.datatype=‘int’ and

c.is_primary_key)

The constraint PrimaryKey (Cons_T1) is a
postcondition. This rule requires that all the tables
should have a primary key of type int.

 Fig. 4 Example transformation rule: ClassToTable

<<Class>>
Class

<<Class>>
Class

<<Atom>>
HelperNode

<<Table>>
Table

<<Column>>

Column

<<Attribute>>
Attribute

<<DataType>>
DataType

Cons_C1

Cons_C2
Cons_C1

Cons_H1

Cons_T1

Cons_T2

class
class

attributes

type

attribute

helperNode

helperNode

pkey cols

table*

*

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 91

context Atom inv ClassAttrsAndTableCols:
self.class.attribute->forAll(self.table.column

->exists(c|(c.columnName=class.attribute.
name))

The constraint ClassAttrsAndTableCols (Cons_

H1) is propagated to the node TableHelperNode. It
requires that each class attribute should have a created
column with the same name in the resultant table.

The constraints propagated to the rule guarantee
certain properties. After a successful rule execution,
the conditions should hold; i.e., the output should be
valid. The successful execution of the rule guarantees
that the valid output cannot be achieved without these
validation constraints.

Dynamic validation covers both the attribute
value and the structure validation, which can be ex-
pressed in first-order logic extended with traversing
capabilities. Example languages currently applied for
defining attribute value and interval conditions are
Object Constraint Language (OCL), C, Java, and
Python. These conditions and requirements are pre-
and postconditions of a transformation rule.
Definition 1 (Precondition) A precondition assigned
to a rule is a Boolean expression that must be true at
the moment of rule firing.
Definition 2 (Postcondition) A postcondition as-
signed to a rule is a Boolean expression that must be
true after the completion of a rule.

If a precondition of a rule is not true, then the
rule fails without being fired. If a postcondition of a
rule is not true after the execution of the rule, the rule
fails.

With pre- and postconditions, the execution of a
rule is as follows (Fig. 2): (1) Find the match ac-
cording to the LHS structure. (2) Validate the con-
straints defined in LHS on the matched parts of the
input model. (3) If a match satisfies all the constraints
(preconditions), then execute the rule; otherwise, the
rule fails. (4) Validate the constraints defined in RHS
on the modified/generated model. If the result of the
rule satisfies the postconditions, then the rule is suc-
cessful; otherwise, the rule fails.

A direct corollary is that an expression in LHS is
a precondition to the rule, and an expression in RHS is
a postcondition to the rule. A rule can be executed if,
and only if, all conditions enlisted in LHS are true.
Also, if a rule finishes successfully, then all condi-
tions enlisted in RHS must be true.

This method can be followed in Fig. 4. Finding
the structural match the preconditions Cons_C1 and
Cons_C2 are validated, and after performing rewrit-
ing, postconditions Cons_C1, Cons_H1, Cons_T1,
and Cons_T2 are validated. Both of the validations
should be successful in order for the whole rule to be
successful.

With this method, the required properties can be
defined at low level, i.e., on the level of the rules. In
summary, we can state that the presented dynamic
approach guarantees that if the execution of a rule
finishes successfully, the generated output is valid and
fulfills the required conditions. The validation of the
transformations can be achieved with constraints
assigned to the rules as pre- and postconditions.

5 Test-driven validation approaches

The main purpose of testing is to catch software
failures (Kaner et al., 1990). The scope of model
transformation testing often includes analysis of the
transformation definition, execution of that trans-
formation in different conditions. Results derived
from testing may also be used to correct the process
by which the transformations are developed (Kolawa
and Huizinga, 2007).

The goal of the test-driven validation approach is
to test graph rewriting based model transformations
by automatically generating appropriate input models,
executing the transformations, and involving domain
specialists to verify the output models based on the
input models. It is important that the semantic cor-
rectness of the output models cannot be automatically
verified; i.e., we need the domain specialists during
both the transformation design and testing.

The test-driven validation method needs a model
transformation definition and the metamodels of both
the input and output domains. The method automati-
cally generates input models that cover all execution
paths of the transformation. Covering the whole
transformation means that each of the rules in the
transformation will be executed at least once. Fur-
thermore, each of the decision points (branching
points, forks) is evaluated for both true and false
branches; i.e., all of the paths in the control flow
model are traversed. The generated input models
represent a set of input models. We use the expression

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 92

‘set’ for a bunch of input models that cover the whole
transformation. The number of the models in the sets
can vary based on the actual domain and also on the
actual transformation definition. An objective of the
solution is to make these model sets minimal, i.e., to
minimize the number and the size of these models.

The method should generate those typical mod-
els that effectively cover the whole transformation.
Executing the transformation for these input models
we obtain the results of the transformation executions.
At this point domain specialists are involved. We
provide the input model and output model pairs to the
domain specialists. Then, based on the input and
outputs, and not considering the transformation defi-
nition, they can decide whether the transformation
does the right processing. Without domain specialists,
we cannot verify that the output model is really right,
i.e., which is the appropriate output for a given input
model.

As we have already mentioned, the input model
sets should cover the whole transformation. Therefore,
the main goal of the approach is to minimize the
possibility that the transformation works perfectly for
N input models, but fails for the (N+1)th input model.
Or what is even worse: the output is generated for the
(N+1)th input model, but the output is not the ex-
pected one; i.e., there is a conceptual error within the
transformation definition.

Fig. 5 introduces the architecture of the approach.
Input model sets are automatically generated based on
the input metamodel (metamodel A), and the trans-
formation processes transform the input models. The
output models should instantiate the output meta-
model (metamodel B). Finally, domain specialists
verify the correspondence between the input and
output models (corresponds).

Scenarios that are targeted to be supported by the
test-driven validation approach are as follows:

1. Automatic generation of valid input models
that support the testing of the model transformation.
The generation is based on the metamodel of the input
domain and the transformation definition (control
flow model and the transformation rules).

2. Automatic generation of valid input model
sets that cover the whole model transformation, i.e.,
executing the transformation with an input model set
means that all of the transformation rules will be
executed, and all of the paths in the control flow
model are traversed.

3. Automatic generation of a valid and minimal
input model set that covers the whole model
transformation.

4. Automatic generation of valid input models
that support the testing of one or more selected
transformation rules, i.e., executing the transfor-
mation with these input models means that the se-
lected transformation rules will be executed. Other
transformation rules of the control flow model can be
skipped in this scenario; e.g., certain branches or
loops of the whole transformation can be omitted. The
main goal of this scenario is the debugging of the
selected transformation rules.

5. Automatic generation of valid and minimal
input models that support the testing of one or more
selected transformation rules, e.g., a selected se-
quence of transformation rules within the whole
transformation definition.

Addressing the above scenarios, the test-driven
validation approach can effectively support the
verification/validation of graph rewriting based
model transformations. As highlighted in Section 2,
there is no question that testing software artifacts,
including model transformations, is costly, but not
testing model transformations is even more expensive.

During the analysis and implementation of the
above scenarios, we have to consider the following
elements and aspects of model transformations and
transformation rules:

1. To cover all of the transformation rules, all
LHS patterns should either be present in the generated
input model or be established during the transfor-
mation execution before reaching the rule that re-
quires the pattern.

2. In the method the modifications performed by
the rules should be considered. Rules can also delete
or break LHS patterns prepared for other rules. Also,

Fig. 5 Architecture of the test-driven validation approach

Metamodel A Metamodel B

Transform

instantiatesinstantiates

Meta-level

Model-level

Rules and
control flow

define

Input model
set

Output model
set

corresponds
(performed by domain specialists)

Generate

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 93

rules can prepare LHS patterns for other rules exe-
cuted later. Therefore, deletion and creation of nodes
and edges, furthermore the attribute value modifica-
tion, should also be considered in at least the ad-
vanced version of the solution.

3. The control flow model of the model trans-
formation has an effect on the processing. Not only
rule sequences but the effects of the conditional
branches and the loops should be considered.

4. Different handling is required by the in-place
transformations and the transformations generating a
separate output model. We should know whether the
transformation modifies the input model. Further-
more, we should consider that if the transformation
generates a separate output model, does it modify the
input model as well?

5. The generated input model is ideally con-
nected, but it is not a strict requirement. This depends
on the actual domain and the metamodel of the
domain.

We have worked out the concept of two versions
of the test-driven validation approach, basic and
advanced.

The basic algorithm considers the following
aspects of model transformation definitions: (1)
transformation rules that should be covered by the
generated input model; (2) LHS structure of the
concerned rules.

The advanced solution extends it with the fol-
lowing considerations:

1. Collects the RHS patterns of the processed
rules in a global store, and considers both the actually
generated input model and the RHS patterns of the
already processed rules when it decides whether the
LHS pattern of the next rule can be present in the
model at a certain point of model processing.

2. Takes into account rule sequences and their
operations (node and edge deletion, creation and at-
tribute modifications).

(i) The solution applies rule concatenations to
calculate the resulting RHS patterns at a certain point
of the transformation. Rule concatenation means
contracting two rules to derive one transformation
rule whose behavior functionally replaces the appli-
cation of the two original rules. The concatenation
results in a new rule with a new LHS and RHS pattern.
The calculated RHS pattern is also considered when
the method searches the LHS of the next patterns.

(ii) The solution includes the conditional
branches, and therefore considers the possible execu-
tion paths of the transformation. This is also sup-
ported by rule concatenation, and can result in dif-
ferent rule execution sequences.

(iii) The solution takes into account the loops of
the control flow definition. Loops can also result in
different execution paths and thus have an effect on
the result of the rule execution sequences; therefore,
they can also result in different patterns in the pro-
cessed model.

The GENERATESINPUT-BASIC algorithm pro-
vides the transformation definition, the collection of
the concerned rules, and the input metamodel as pa-
rameters. It initializes a model based on the input
metamodel. This model is built by the next part of the
algorithm. The core of the algorithm is a loop that
takes the next transformation rule based on the control
flow model of the transformation and the collection of
the rules that should be covered by the generated
input model. Next, the algorithm checks if the LHS of
the actual rule is already present in the generated
model. If not, then it clones the LHS and attaches the
copy of the LHS to the input model under generation.
This method, attaching the LHS of the actual rule, can
occur in different ways. In the case of the basic algo-
rithm, we search for a common node based on the
meta type of the node, and attach the new pattern
using this common point. Necessarily, this step con-
siders the rules of the input metamodel in order for the
generated model to be a valid instance of the meta-
model.

Algorithm 1 GENERATESINPUT-BASIC
GENERATESINPUT-BASIC(Transformation T, Collection
 RuleCollection, Model InputMetamodel): Model
1 Model InputModel=INITIALIZEMODEL(InputMetamodel)
2 while (Rule rule=T.GetNextRule(RuleCollection)) do
3 if not InputModel.ContainsPattern(rule.LHS) then
4 Model temporaryPattern=CLONEMODEL(rule.LHS)
5 InputModel.AddStructure(temporaryPattern)
6 end if
7 end while
8 return InputModel

The computational complexity of the GENER-

ATESINPUT-BASIC algorithm for generating valid in-
put models that support the testing of the model
transformation is O(∑1...k(vk

2+vk*vm)), where k is the
number of rules in RuleCollection, vk is the number of

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 94

vertices in the kth transformation rule of RuleCollec-
tion, and vm is the number of vertices in the meta-
model of the generated model, i.e., the metamodel of
the input model for transformation T. The first part of
the sum stands for pattern matching (ContainsPattern)
and the second part for the appropriate model con-
catenation (AddStructure).

The GENERATESINPUT-ADVANCED algorithm
extends the basic algorithm with the following steps:

1. It stores the RHS patterns of the processed
transformation rules in RHS-Store. Furthermore, the
LHS of the actual rule is searched not only in the
actual version of the generated model, but also in
RHS-Store.

The CALCULATERHSPATTERNVARIATIONS meth-
od applies the rule concatenation technique and cal-
culates the different RHS pattern variations. The
method gets the transformation, the actual rule, and
the RHS patterns from RHS-Store to use them during
the calculation of the pattern variations.

The CALCULATERHSPATTERNVARIATIONS meth-
od also considers both the conditional branches and
the loops of the transformation definition.

These techniques of the GENERATESINPUT-

ADVANCED algorithm make it possible to generate
minimal model sets that support the testing of the
whole transformation. This means that the techniques
help to minimize the number and the size of the gen-
erated models.

Algorithm 2 GENERATESINPUT-ADVANCED
GENERATESINPUT-ADVANCED(Transformation T, Collection
RuleCollection, Model InputMetamodel): Model
1 Model InputModel=INITIALIZEMODEL(InputMetamodel)
2 PatternStore RHS-Store=INITIALIZEPATTERNSTORE()
3 while (Rule rule=T.GetNextRule(RuleCollection)) do
4 if not InputModel.ContainsPattern(rule.LHS) && not

RHS-Store.ContainsPattern(rule.LHS) then
5 Model temporaryPattern=CLONEMODEL(rule.LHS)
6 InputModel.AddStructure(temporaryPattern)
7 RHS-Store.AddPattern(rule.RHS)
8 Pattern[] RHS-PatternVariations=CALCULATERHSPAT-

TERNVARIATIONS(T, rule, RHS-Store)
9 RHS-Store.AddPatterns(RHS-PatternVariations)
10 end if
11 end while
12 return InputModel

The complexity of the GENERATESINPUT-

ADVANCED algorithm for generating valid input
models that support the testing of the model trans-

formation is O(∑1...k(2*vk
2+vk*vm+k*vk

2))=O(Σ1...k((2+
k)*vk

2+vk*vm)). The first part of the sum stands for
pattern matching (ContainsPattern), the second part
for the appropriate model concatenation (AddStruc-
ture), and the third part for RHS pattern variation
calculation (CALCULATERHSPATTERNVARIATIONS).
Finally, the sum is consolidated.

The presented algorithms address the above re-
quirements; i.e., applying these algorithms we can
automatically generate valid input models that sup-
port the testing of one or more selected transformation
rules. Using these algorithms with different input
parameters, we can also generate valid and minimal
input model sets that cover whole model transfor-
mations. The details of certain parts of the algorithms,
e.g., the ‘get next’ rule of the transformation (taking
into account the branches and the loops), the pattern
search in the generated model and in RHS-Store, and
the CALCULATERHSPATTERNVARIATIONS method,
can be implemented in different ways. This also
means that further optimization can be introduced,
e.g., with the application of different heuristics.

6 Open issues in the field of verification/
validation of model transformations

In our terminology, a model transformation is a
program that processes graph-based models. The
operation of such transformations is based on the
theory of graph rewriting. Based on the current ca-
pabilities of the available approaches and tools, and
also considering the results available in the field, we
identified the following open issues as challenges
related with the verification/validation of model
transformations. We believe that solving these issues
will significantly improve the usability and availabil-
ity of model transformation based approaches.

1. Verification and validation of global proper-
ties. The scope of a property can be either local or
global. With the exception of the model checking
approach, one of the main limitations of the current
approaches and tools is the local nature of their
transformation rules. Local nature of a property
means that if we aim to specify a constraint for an
element, it must be included in the context of a
transformation rule, or must be referenced by a tra-
versal expression assigned to a rule element. Ele-
ments not appearing in a rule cannot be included in

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 95

the verification/validation expressions. Therefore,
this method does not provide an easy solution to
checking constraints of a global nature (e.g., deadlock
examination). Of course, there are numerous cases,
for example, source code generation from a state-
chart model, user interface generation from a resource
model, or projecting a source model into a different
domain, in which the entire right side is generated.
Thus, all the output model elements are included in
transformation rules.

Approaches should be developed that support
the verification/validation of global properties in the
processed models.

2. High-level languages/methods to define the
verification/validation properties. Generating source
code from software models is a widely used method
to make system development more effective. While
generating model artifacts we can require rather usa-
ble quality factors, but in the case of source code
generation, functional and complex source code
properties still cannot be defined. There are ap-
proaches (e.g., Fujaba, VIATRA2, and VMTS) that
facilitate source code generation, but they are
language-specific (they can process only a few types
of source languages) (Fujaba), or the verification/
validation opportunities of such transformations are at
too low levels. Low-level verification/validation ca-
pabilities mean that even a short source code requires
a relatively large model, e.g., an abstract syntax tree
model; the transformation designer must be familiar
with all of the details regarding the generated source
code to be able to define its quality requirements. On
the other hand, the goal is to involve a wider range of
users group in order to provide their quality-related
verification/validation properties. High-level, easy-
to-use languages should be provided that facilitate
defining verification/validation requirements against
model transformation.

Currently, the most user-friendly languages are
OCL, Pyton, Java, and similar languages that can be
used to define the requirements. The research activi-
ties should identify the appropriate, first-order logic,
second-order logic, or other formalism. These lan-
guages should be general-purpose languages and easy
to use even for novice users.

3. Supporting the verification/validation of
domain-specific properties. Transformation methods
should be provided that are able to verify/validate

domain-specific properties using model transfor-
mations. These are output, model-related require-
ments that model transformations should support. In
several cases, model transformation rules do not
contain certain nodes or edge types that we seek to
include in our verification/validation requirements.
These requirements may relate to the temporary
(during model processing) or final (after model pro-
cessing) state of the processed or generated models.
There exist many different directions that can be
taken; e.g., we can state additional requirements
against the input and output models (metamodel
constraints), or the model transformations can be
automatically extended with appropriate testing and
validating transformation rules.

4. Compositionality conditions. Model trans-
formation related compositionality conditions should
be developed: if we can prove that certain elements of
a model transformation are correct, then what further
conditions are required for the whole transformation
to be free of conceptual errors?

5. Automatic identification of properties to be
verified/validated. Algorithms should be developed
that facilitate us to automatically identify (project or
metamodel-specific) model properties that should be
verified/validated.

6. Verification-related spatial and time com-
plexities. The verification-related spatial and time
complexities should be addressed. Most of the veri-
fication approaches require significant computational
capacity and a considerable amount of time to be
executed. These complexities, and thus the complex-
ity of the verification process, should be reduced.

7. Applicability of the existing approaches. The
applicability of the already existing approaches and
tools should be tested within industrial environments:
experiments should be performed on larger-scale
(industrial size) transformations and models.

8. Industrial model checkers. Model-checker
tools should be built with such properties that make it
possible to be applicable to the industry. For example,
model-checker tools should support the results of the
performed verifications that will be automatically
propagated back to the original domain.

9. Analysis patterns for static verification
methods. Static verification means that only the def-
inition of model transformation is used during the
analysis and no concrete input models are taken into

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 96

account. Hence, the results are valid for all possible
output models and the analysis has to be performed
only once. However, the disadvantage of this method
is the complexity of the analysis itself. The static
verification of all attributes is not possible in general,
since, e.g., the termination itself, is undecidable in
general (Plump, 1998). However, it would be benefi-
cial to collect some special cases when the verifica-
tion can always provide a result, for example, if cer-
tain design rules are applied during the implementa-
tion of the transformations. A promising method that
would improve the verification solutions is the use of
model transformation analysis patterns. These would
be design patterns that should be used during the
implementation of model transformations. The use of
a pattern would assure that certain properties are true
for the selected part of the model transformations.
These patterns should be well documented and pro-
vided in a standard catalogue form like the classical
design patterns.

According to the current state of the art, these
open issues can seem daunting. Each of them requires
further research and development. Some model
transformation approaches and/or tools partly address
one or two of these open issues, but most of these
tools are used only within academia and among re-
search groups. Therefore, the most important chal-
lenge is to ensure that these verification and valida-
tion approaches become applicable within industrial
environments.

7 Conclusions

Different semantic information can be lost or
misinterpreted in a transformation due to errors in the
definition of the transformation or in the processing
method. Methods are required to verify that the se-
mantics used during the analysis are indeed preserved
across the transformation. Automatic model pro-
cessing certainly increases the quality of model
transformations as errors are not added by accident
into transformation definitions. Verification and val-
idation of model transformations is required, which
assures that conceptual errors in model transfor-
mations do not remain hidden.

This paper has emphasized the necessity of
verification/validation methods which increase the

quality of model transformations and help to ensure
that model transformations perform what they are
intended to do. Focusing on graph rewriting based
model transformations, we have discussed the dif-
ferent scenarios of model transformation verification
and validation. Next, we have provided our dynamic
validation method, and introduced the key motivation
and challenging points of the test-driven validation
approach. Also, we have provided both the basic and
advanced versions of our solution, which make it
possible to automatically generate test input models
for model transformations. Finally, we have compiled
the actual open issues in the field of verification/
validation of model transformations. We believe that
addressing these issues will significantly improve the
capabilities and application of model transformation
verification/validation methods and tools.

References
Akehurst, D., Kent, S., 2002. A relational approach to defining

transformations in a metamodel. LNCS, 2460:243-258.
[doi:10.1007/3-540-45800-X_20]

Amrani, M., Dingel, J., Lambers, L., et al., 2012. Towards a
model transformation intent catalog. Proc. 1st Workshop
on the Analysis of Model Transformations, p.3-8.
[doi:10.1145/2432497.2432499]

Assmann, U., 1996. How to uniformly specify program anal-
ysis and transformation with graph rewrite systems.
LNCS, 1060:121-135. [doi:10.1007/3-540-61053-7_57]

Assmann, U., Ludwig, A., 2000. Aspect weaving with graph
rewriting. LNCS, 1799:24-36. [doi:10.1007/3-540-40048-
6_3]

Asztalos, M., Lengyel, L., Levendovszky, T., 2010a. Towards
automated, formal verification of model transformations.
IEEE Int. Conf. on Software Testing V&V, p.15-24.

Asztalos, M., Ekler, P., Lengyel, L., et al., 2010b. Applying
online verification of model transformations to mobile
social networks. Electronic Communications of the
EASST. Proc. 4th Int. Workshop on Graph-Based Tools.

Blostein, D., Fahmy, H., Grbavec, A., 1996. Issues in the
practical use of graph rewriting. LNCS, 1073:38-55. [doi:
10.1007/3-540-61228-9_78]

Czarnecki, K., Helsen, S., 2006. Feature-based survey of
model transformation approaches. IBM Syst. J., 45(3):
621-646. [doi:10.1147/sj.453.0621]

de Lara, J., Taentzer, G., 2004. Automated model transfor-
mation and its validation using AToM3 and AGG. LNCS,
2980:182-198. [doi:10.1007/978-3-540-25931-2_18]

de Lara, J., Vangheluwe, H., Alfonseca, M., 2004. Meta-
modelling and graph grammars for multiparadigm
modelling in AToM. Softw. Syst. Model., 3(3):194-209.
[doi:10.1007/s10270-003-0047-5]

Lengyel et al / Front Inform Technol Electron Eng 2015 16(2):85-97 97

Ehrig, H., Habel, A., Kreowski, H.J., et al., 1991a. From graph
grammars to high level replacement systems. LNCS,
532:269-291. [doi:10.1007/BFb0017395]

Ehrig, H., Habel, A., Kreowski, H.J., et al., 1991b. Parallelism
and concurrency in high-level replacement systems. Math.
Struct. Comput. Sci., 1(3):361-404.

Ehrig, H., Engels, G., Kreowski, H.J., et al. (Eds.), 1999.
Handbook on Graph Grammars and Computing by Graph
Transformation: Application, Languages and Tools.
World Scientific, Singapore.

Ehrig, H., Habel, A., Padberg, J., et al., 2004. Adhesive
high-level replacement categories and systems. LNCS,
3256:144-160. [doi:10.1007/978-3-540-30203-2_12]

Ehrig, H., Ehrig, K., Prange, U., et al., 2006. Fundamentals of
Algebraic Graph Transformation. Monographs in Theo-
retical Computer Science, Springer.

Giese, H., Glesner, S., Leitner, J., et al., 2006. Towards verified
model transformations. ModeVVa Workshop Associated
to MODELS, p.78-93.

Guerra, E., de Lara, J., 2007. Event-driven grammars: relating
abstract and concrete levels of visual languages. Softw.
Syst. Model., 6(3):317-347. [doi:10.1007/s10270-007-
0051-2]

Habel, A., Heckel, R., Taentzer, G., 1996. Graph grammars
with negative application conditions. Fundam. Inform.,
26:287-313.

Hetzel, W.C., 1998. The Complete Guide to Software Testing
(2nd Ed.). Wiley.

Kaner, C., 2006. Exploratory testing. Quality Assurance In-
stitute Worldwide Annual Software Testing Conf.

Kaner, C., Falk, J., Nguyen, H.Q., 1990. Testing Computer
Software (2nd Ed.). Wiley, New York.

Karsai, G., Agrawal, A., Shi, F., et al., 2003. On the use of
graph transformation in the formal specification of model
interpreters. J. Univ. Comput. Sci., 9(11):1296-1321.

Kolawa, A., Huizinga, D., 2007. Automated Defect Prevention:
Best Practices in Software Management. Wiley-IEEE
Computer Society Press, p.41-43.

Lack, S., Sobocinski, P., 2004. Adhesive categories. LNCS,
2987:273-288.

Leitner, A., Ciupa, I., Oriol, M., et al., 2007. Contract Driven
Development = Test Driven Development – Writing Test
Cases. Proc. 6th Joint Meeting of the European Software
Engineering Conf. and the ACM SIGSOFT Symp. on the
Foundations of Software Engineering, p.425-434.
[doi:10.1145/1287624.1287685]

Lengyel, L., 2006. Online Validation of Visual Model Trans-
formations. PhD Thesis, Department of Automation and
Applied Informatics, Budapest University of Technology
and Economics, Budapest, Hungary.

Mens, T., van Gorp, P., 2006. A taxonomy of model transfor-
mation. Proc. Int. Workshop on Graph and Model
Transformation, p.125-142.

Narayanan, A., Karsai, G., 2008. Towards verifying model
transformations. Electron. Notes Theor. Comput. Sci.,
211:191-200. [doi:10.1016/j.entcs.2008.04.041]

OMG, 2010. Unified Modeling Language (UML) Specifica-
tion, Version 2.3, OMG document formal/2010-05-03,
Available from http://www.uml.org/.

OMG, 2011. OMG Query/View/Transformation (QVT) Spec-
ification, Meta Object Facility 2.0 Query/Views/
Transformation Specification. OMG doc. formal/2011.
01.01. Available from http://www.omg.org/spec/QVT/.

OMG, 2012. OMG Object Constraint Language (OCL) Speci-
fication, Version 2.3.1. OMG Document Formal/2012-05-
09. Available from http://www.omg.org/spec/OCL/.

OMG, 2014. OMG Model-Driven Architecture (MDA) Speci-
fication. OMG Document ormsc/14-06-01. Available
from http://www.omg.org/mda/.

Pan, J., 1999. Software Testing - 18-849b Dependable Em-
bedded Systems. Carnegie Mellon University. Available
from http://users.ece.cmu.edu/~koopman/des_s99/sw_
testing/.

Plump, D., 1998. Termination of graph rewriting is undecida-
ble. Fundam. Inf., 33(2):201-209.

Rozenberg, G. (Ed.), 1997. Handbook on Graph Grammars and
Computing by Graph Transformation: Foundations.
World Scientific, Singapore.

Schürr, A., 1994. Specification of graph translators with triple
graph grammars. LNCS, 903:151-163. [doi:10.1007/3-
540-59071-4_45]

Syriani, E., 2009. Matters of Model Transformation. No.
SOCS-TR-2009.2, School of Computer Science, McGill
University.

Taentzer, G., Ehrig, K., Guerra, E., et al., 2005. Model trans-
formation by graph transformation: a comparative study.
ACM/IEEE 8th Int. Conf. on Model Driven Engineering
Languages and Systems, p.1-48.

Vajk, T., Kereskényi, R., Levendovszky, T., et al., 2009.
Raising the abstraction of domain-specific model trans-
lator development. 16th Annual IEEE Int. Conf. and
Workshop on the Engineering of Computer Based Sys-
tems, p.31-37. [doi:10.1109/ECBS.2009.30]

van Gorp, P., Stenten, H., Mens, T., et al., 2003. Towards
automating source-consistent UML refactorings. LNCS,
2863:144-158. [doi:10.1007/978-3-540-45221-8_15]

Varró, D., Pataricza, A., 2003. Automated formal verification
of model transformations. Proc. UML03 Workshop,
p.63-78.

Varró, D., Varró-Gyapay, S., Ehrig, H., et al., 2006. Termina-
tion analysis of model transformations by Petri nets.
LNCS, 4178:260-274. [doi:10.1007/11841883_19]

