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Abstract:    Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-
formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible 
to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different 
requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ 
validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This 
paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of 
model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/  
validating model transformations. We provide a solution that makes it possible to automatically generate test input models for 
model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model 
transformations. 
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1  Introduction 
 

We often project a model into another domain or 
format, for example, into a formal model. And we 
always ask, what ensures that the projection is free of 
conceptual errors? The central question of the area is 
the following: how can we ensure that the model 
transformation does what it is intended to do? This 
paper is intended to contribute to answering this 
question. 

Model transformations have a wide application 
field. Different transformation solutions support one 
or more from the following scenarios: refining the 
design to implementation (OMG, 2014), transforming 
models into other domains (Varró and Pataricza, 
2003), aspect weaving (Assmann and Ludwig, 2000), 

analysis and verification (Assmann, 1996), software 
refactoring (van Gorp et al., 2003), simulation and 
execution of a model, querying some information and 
providing a view for it, abstracting models, assigning 
concrete representation to model elements, migration, 
normalization, optimization, and synchronization 
(Amrani et al., 2012). 

As model transformations are being applied to so 
many different scenarios, there is a compelling need 
for methods regarding their development, and also for 
verifying/validating them. Verification and validation 
of a model transformation is the process of ensuring 
that the transformation definition meets requirements 
and fulfills its defined role. 

The goals of the transformations’ analysis are to 
show that, in the case of a valid input model, certain 
properties will be true for the output model. The 
analysis of a transformation is said to be static when 
the implementation of the transformation and the 
language definition of the input and output models are 
used during the analysis process, but we do not take 
concrete input models into account. In the case of a 
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dynamic approach, we analyze the transformation  
for a specific input model, and then check whether 
certain properties hold for the output model during or 
after the successful application of the transformation. 
The static technique is more general and poses more 
complex challenges. The goal of static analysis is to 
determine if the transformation itself meets various, 
specific requirements. 

In model-driven system development, a software 
design and analysis process involves designing the 
system, projecting it into the analysis domain, and 
executing the verification on the analysis model. 
Model transformation is a powerful and convenient 
method frequently used to automate this conversion 
(Narayanan and Karsai, 2008). However, the verifi-
cation of different properties at the model level is 
useful only if automatic code generation is guaranteed 
to be correct. This means that the verified properties 
should be true for the generated code as well (Giese et 
al., 2006). 

For most computer-controlled systems, an ef-
fective design process requires an early validation of 
the concepts and architectural choice. However, a 
standard modeling language alone does not guarantee 
the correctness of the design. Therefore, during the 
design of software systems, the design models are 
frequently projected into various mathematical do-
mains to perform formal analysis of the system under 
design via automatic model transformations (Varró 
and Pataricza, 2003). 

To summarize, it is significant to understand that 
model transformations themselves can be incorrect; 
therefore, uncovering solutions to make model 
transformations free of conceptual errors is crucial.  

 
 

2  Background 
 

This section introduces the classification of 
model transformation approaches, discusses the ba-
sics of graph rewriting based model transformation, 
and summarizes the ideas and motivations related to 
testing model transformations. 

2.1 Classification of model transformation  
approaches 

There are several model transformation ap-
proaches ranging from relational specifications 

(Akehurst and Kent, 2002) to graph transformation 
techniques (Ehrig et al., 1999), and to algorithmic 
techniques for implementing a model transformation. 
Based on Czarnecki and Helsen (2006) and Mens and 
van Gorp (2006), we distinguish between the fol-
lowing approaches (Fig. 1): 

Traversal-based and direct manipulation ap-
proaches: These model processing approaches pro-
vide mechanisms to visit the internal representation of 
a model and write text (source code or other text, e.g., 
XML) to a stream while optimizing and generating 
models and other artifacts. Furthermore, modeling 
and model processing approaches (aside from the 
model representation) offer some application pro-
gramming interfaces (APIs) to manipulate the models. 
These approaches are usually implemented using an 
imperative programming language (Vajk et al., 2009). 

Template-based approaches: Approaches in this 
category are applied mainly in the case of model-to- 
code generation. A template usually consists of the 
target text containing splices of source code (meta- 
code) used to access information from the source and 
to perform code selection and iterative expansion. 
The meta-code may be imperative program code or 
declarative queries as is the case with OCL (OMG, 
2012), XPath, or T4 text templates.  

Relational approaches: These approaches de-
claratively map between source and target models. 
This mapping is specified by constraints, which de-
fine the expected results, not the way in which they 
are achieved. Some examples of this are Query, Views, 
Transformations (QVT) (OMG, 2011) and partially 
Triple Graph Grammars (TGGs) (Schürr, 1994). 

Graph rewriting based approaches: Models are 
represented as typed, attributed, labeled graphs. The 
theory of graph transformation is used to transform 
models. Some examples of these approaches are AGG  
 

 
 
 
 
 
 
 
 
 
 Fig. 1  Classification of model transformation approaches
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(http://www.user.tu-berlin.de/o.runge/AGG/), AToM3 
(http://atom3.cs.mcgill.ca), GReAT (http://www.isis. 
vanderbilt.edu/tools/GReAT), TGGs, VIATRA2 (http:// 
eclipse.org/gmt/VIATRA2), and VMTS (http://www. 
aut.bme.hu/vmts). 

Structure-driven approaches: The transformation 
is performed in phases: the first phase is concerned 
with creating the hierarchical structure of the target 
model, whereas the second phase sets the attributes 
and references for the target, e.g., OptimalJ and QVT 
(OMG, 2011). 

Hybrid approaches: Hybrid approaches combine 
two or more of the previous categories. For example, 
ATL (http://eclipse.org/atl/) combines template-based, 
direct manipulation, and graph rewriting based ap-
proaches. Another hybrid approach worth mentioning 
is TGGs. 

One of the most popular model transformation 
approaches, taking both the literature and the industry 
into consideration, is the graph rewriting based ap-
proach. In this method, the concentration is on the 
verification and validation capabilities of the graph 
transformation based approaches. Therefore, the next 
section summarizes the theoretical foundations of this 
approach. 

2.2  Graph rewriting based model transformation 

Graph rewriting based transformation is a widely 
used technique for model transformation (Karsai et al., 
2003; de Lara et al., 2004). Graph transformation has 
its roots in classical approaches to rewriting, such as 
Chomsky grammars and term rewriting (Rozenberg, 
1997). There are many other representations of this, 
which are not yet mentioned. In essence, a rewriting 
rule is composed of a left-hand side (LHS) pattern and 
a right-hand side (RHS) pattern. 

Operationally, a graph transformation from a 
graph G to a graph H follows these main steps: (1) 
Choose a rewriting rule; (2) Find an occurrence of the 
LHS in G satisfying the application conditions of the 
rule; (3) Replace the subgraph matched in G by RHS. 

There are many different graph transformation 
approaches applying the above steps (Rozenberg, 
1997; Syriani, 2009). One of them is the popular 
algebraic approach, based on category theory with 
push-out constructs on the category (Ehrig et al., 
2006). Algebraic graph transformations have two 
branches, i.e., single-push-out (SPO) and double- 
push-out (DPO) approaches. 

The DPO approach has a large variety of graph 
types and other kinds of high-level structures, such as 
labeled graphs, typed graphs, hypergraphs, attributed 
graphs, Petri nets, and algebraic specifications. This 
extension from graphs to high-level structures was 
initiated in Ehrig et al. (1991a; 1991b), leading to the 
theory of high-level replacement (HLR) systems. In 
Ehrig et al. (2004), the concept of HLR systems was 
joined with adhesive categories, introduced by Lack 
and Sobocinski (2004), leading to the algebraic con-
struct of adhesive HLR categories and systems. In 
general, an adhesive HLR system is based on the DPO 
method. However, these are not only for the category 
of graphs (also called rules), which describe ab-
stractly how objects in this system can be transformed. 
Ehrig et al. (2006) provided a detailed presentation of 
adhesive HLR systems. In the context of this paper, it 
is relevant only for typed, attributed graphs. 

Graph transformations define the transformation 
of models. The LHS of a rule defines the pattern to be 
found in the host model; therefore, the LHS is con-
sidered the positive application condition (PAC). 
However, it is often necessary to specify what pattern 
should not be present. This is referred to as the nega-
tive application condition (NAC) (Habel et al., 1996). 
Besides NACs, some approaches such as AGG and 
VIATRA2 use other constraint languages, e.g., OCL, 
to define the execution conditions. 

The scheduling of transformation rules can be 
achieved by explicit control structures or can be im-
plicit, due to the nature of their rule specifications. 
Moreover, several rules may be applicable at the same 
time. Blostein et al. (1996) have classified graph 
transformation organization in four categories: (1) An 
unordered graph-rewriting system simply consists of 
a set of graph-rewriting rules. Applicable rules are 
selected non-deterministically until none are appli-
cable. (2) A graph grammar consists of the rules, a 
start graph, and terminal states. Graph grammars are 
used for generating language elements and language 
recognition. (3) In ordered graph-rewriting systems, a 
control mechanism explicitly orders the rule applica-
tion of a set of rewriting rules (e.g., priority-based, 
layered/phased, or with an explicit control flow 
structure). (4) In event-driven graph-rewriting sys-
tems, rule execution is triggered by external events. 
This approach has recently seen a rise in popularity 
(Guerra and de Lara, 2007). 
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Controlled (or programmed) graph transfor-
mations impose a control structure over the trans-
formation rules to maintain a stricter ordering over the 
execution of a sequence of rules. The control structure 
primitives of a graph transformation may provide the 
following properties: atomicity, sequencing, branch-
ing, looping, non-determinism, recursion, parallelism, 
back-tracking, and/or hierarchy (Rozenberg, 1997; 
Lengyel, 2006). 

Some examples of control structures are as fol-
lows: AGG uses layered graph grammars. The layers 
fix the order in which rules are applied. The control 
mechanism of AToM3 is a priority-based transfor-
mation flow. Fujaba (http://www.fujaba.de/) uses 
story diagrams to define model transformations. The 
control structure language of GReAT uses a dataflow 
diagram notation. GReAT also has a test rule con-
struction; a test rule is a special expression that is used 
to change the control flow during execution. VIA-
TRA2 applies abstract state machines (ASMs). 
VMTS uses stereotyped Unified Modeling Language 
(UML) (OMG, 2010) activity diagrams to further 
specify control flow structures. The model transfor-
mation process is depicted in Fig. 2. In Taentzer et al. 
(2005), a comparative study was provided that ex-
amines the control structure capabilities of the tools 
AGG, AToM3, VIATRA2, and VMTS. 

 
 
 
 
 
 
 
 
 

2.3  Testing model transformation 

Software testing is an investigation conducted to 
provide stakeholders with information about the 
quality of the product or service under test (Kaner, 
2006). Testing can never completely identify all the 
defects within software (Pan, 1999). Instead, it com-
pares the state and behavior of the artifact by which 
someone (the software engineer or the domain spe-
cialist) might recognize a problem (Leitner et al., 
2007).  

Testing model transformation is any activity 
aimed at evaluating a property or behavior of a model 

processor and determining that it meets its required 
results. The difficulty in the testing of model trans-
formations stems from the complexity. Testing is 
more than just debugging the execution of the trans-
formation. The purposes of testing are quality assur-
ance and verification/validation (Hetzel, 1998). 

A reasonable part of the defects in transfor-
mations is the design error. Bugs on software artifacts, 
including model transformations, will almost always 
exist in any software component with acceptable size. 
This is not because architects and engineers are 
careless or irresponsible, but because the complexity 
of software artifacts is generally hard to manage. 
Humans have only limited ability to handle it. It is 
also true that for any complex systems, design defects 
can never be completely eliminated (Kaner, 2006).  

Regardless of the limitations, testing is an inte-
gral part of model transformation development. In our 
context testing is usually performed to improve the 
quality and verify/validate transformations.  

Testing is heavily used as a tool in the process of 
verifying and validating software artifacts. There is 
no way to directly test quality, but we can test related 
issues to measure the quality level. 
 
 

3  Scenarios of model transformation verifi-
cation and validation 
 

In this section, we discuss the different scenarios 
of model transformation verification and validation. 
We refer to these scenarios as ‘paths’. Fig. 3 depicts 
the paths: the top half of the figure represents the 
operational part, and the bottom half depicts the  
verification/validation (V&V) part. The operational 
part is designed by the transformation engineer. 

The related verification/validation questions are 
as follows: Can we verify a property in one of the 
operational domains (e.g., in source model M1, 
transformation T, or target model M2)? If not, what 
other domains need to be involved (which path of  
Fig. 3 should be taken), and where the verification/  
validation can be performed or more aptly formed? In 
which way is the mapping arranged between the op-
erational and verification/validation domains? 

Sometimes properties that will be verified/  
validated cannot be expressed in the operational do-
mains. To address this, we have introduced the V&V 
part including additional domains. In Fig. 3, MM1 and 

Fig. 2  Model transformation process 
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MM2 are the language specifications (metamodels) 
and can define only two domains. In special cases, 
MM1 and MM2 can be identical. M1 and M2 are in-
stance models of MM1 and MM2, respectively. The 
instantiation is defined by the mappings i1 and i2. 
Transformation T converts M1 into M2. The mapping 
trace stores the relationship between elements of 
models M1 and M2. Based on this mapping, for each 
element of model M1, we can identify the appropriate 
target model elements (image) in model M2, and vice 
versa; for each element of model M2, we can identify 
the appropriate source model elements in model M1. 
Our goal is to verify the semantic correctness of 
transformation T; therefore, if the formalism used by 
M1, M2, and T is not adequate, then they are mapped 
into a different semantic domain. Their images are S1, 
S2, and TS, respectively. The mapping is defined by 
ms1, ms2, and tts. The correspondence between S1 and 
S2 is a specific knowledge: a special semantic rela-
tionship expected by the transformation designer. 
This correspondence is verified in a semantic domain. 
Next, assuming that the mappings (ms1, ms2, and tts) 
from the domain-specific artifacts (M1, M2, and T) 
into the semantic domains (S1, S2, and TS) are correct, 
we can reason the correctness of transformation T. 

 
 
 
 
 
 
 
 
 
 
 
Recall that in Fig. 3 we have demonstrated a 

general case scheme, incorporating several special 
cases. The introduced scheme represents a one-way 
transformation, but the bi-directional scenario can be 
constructed by repeating this structure in the opposite 
direction. In a general case, the two directions require 
different mappings; only in special cases can the same 
mapping be applied. 

Based on the architecture of the paths, we  
have identified the following semantic verification/ 
validation types: (1) verification of the models M1 and 
M2 (PathModels); (2) verification of the transformation 

T (PathTransT); (3) verification of the transformation 
TS (PathTransTS); (4) verification of the correspond-
ence (PathCorresp); (5) hybrid verification, with two or 
more of the previous verification types being com-
bined (PathHybrid). 

Each of these verification/validation types de-
fines a path. During the verification and validation, 
we traverse the paths of the framework in the fol-
lowing ways: 

PathModels: Verification of models M1 and M2 
means M1 and T (M1) are verified separately. This 
type of verification does not attempt to prove the 
validity of graph transformation T, but verifies that 
both of the models provide an appropriate solution to 
the problem. Typically, the conformance into meta-
models is validated with this path: the modeling tool 
allows the creation of appropriate model elements 
only, while a constraint checker (e.g., OCL checker) is 
executed on the source model (M1). Next, transfor-
mation T processes the model and generates the out-
put model (M2), which conforms to the output meta- 
model (MM2). Output model M2 is validated again in 
the modeling environment: validation of metamodel 
convergence, including constraint checking. 

PathTransT: Most of the verification/validation 
approaches aim to check the correctness of the 
transformation rules in general. There are both static 
(offline) and dynamic (online) approaches. For ex-
ample, Asztalos et al. (2010a) developed a formal 
language that is able to express a set of model trans-
formation properties. Basically, the language is ap-
propriate to specify both the properties of the output 
models and the properties of the relationship between 
the input and output model pairs. They introduced a 
final formula which describes the properties that re-
main true at the end of the transformation. The ap-
proach is able to derive the proof or refutation of a 
verifiable property from the final formula. An exam-
ple dynamic approach was provided by Lengyel 
(2006), in which the validation of the transformation 
is achieved with constraints assigned to the trans-
formation rules as pre- and postconditions.  

PathTransTS: In the most generic case, transform-
ing models into other domains means a projection 
from the source language to the target language, pos-
sibly with an intentional loss of information. There-
fore, in certain cases, proving full semantic equiva-
lence between source and target models is not the 

Fig. 3  The paths of model transformations  
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objective. Instead, we can define transformation or 
language-specific (source and target domain) valida-
tion properties that should be satisfied by the  
transformation. 

The transformation definition describes the re-
quired model manipulation in either an imperative or 
a declarative (mostly relational) way. This represen-
tation is often inappropriate as a subject of verifying 
certain properties. Therefore, we map the transfor-
mation to a domain more suitable to perform formal 
verification/validation. There are several approaches 
that map M1, M2, and T into a semantic domain and 
perform the verification either on the image of the 
transformation (TS: PathTransTS) or on the corre-
spondence between the images of the source and 
generated models (S1 and S2: PathCorresp). 

An example of PathTransTS was provided in Varró 
et al. (2006) in which model transformations were 
mapped into Petri nets with the goal of performing 
termination analysis in a more appropriate domain. 

PathCorresp: The correspondence relationship 
between S1 and S2 is domain-specific knowledge; this 
is the semantics expected by the language and/or 
model transformation designer. We should realize that 
the source and the target domains (MM1 and MM2) 
could be quite distant from each other (e.g., abstrac-
tion level, domain concepts, or model structure). Thus, 
the correspondence may be an optional domain-  
specific knowledge that represents the semantic 
mapping between the images of source and target 
models in a semantic domain. 

In the context of our verification/validation 
classification framework, the equilibrium (property 
preservation) between the source and generated 
models, which most of the approaches (e.g., Varró and 
Pataricza (2003), de Lara and Taentzer (2004), and 
Giese et al. (2006)) attempt to verify, is a special 
mapping among the source and the target domains. 
Similarly, other special mappings have already been 
configured, e.g., bi-similarity: two systems can be 
said to be bi-similar if they behave in the same way; 
i.e., one system simulates the other, and vice versa 
(Narayanan and Karsai, 2008). 

An example for PathCorresp is the following: 
within the domains of the source and the target mod-
eling languages, it is hard to prove the correctness of 
the design. Therefore, the models are projected into a 
formal domain, such as transition systems, and the 

formal analysis is performed in this domain, e.g., by 
applying bi-simulation (Narayanan and Karsai, 2008). 

PathHybrid: This path combines two or more of the 
paths introduced above. For example, a certain devel-
opment scenario requires the verification/validation 
of both transformation termination and some  
domain-specific properties. PathTransTS is applied to 
verify termination and PathTransT to validate the re-
quired domain-specific properties, e.g., attribute 
value requirements. 

 
 

4  Dynamic validation method 
 

Model transformation rules can be made more 
relevant to software engineering models if the trans-
formation specifications allow assigning validation 
constraints to the transformation rules. 

An example rule that assembles database models 
from UML class diagrams is depicted in Fig. 4. Con-
straints are assigned to the rules: Cons_C1, Cons_C2, 
Cons_H1, Cons_T1, and Cons_T2. These constraints 
require the rule to meet different properties (Asztalos 
et al., 2010b). 

 
context Class inv NonAbstract: 
not self.abstract 

 

The constraint NonAbstract (Cons_C1) is a 
precondition. It requires the rule to process only 
non-abstract classes. 

 
context Table inv PrimaryKey: 
self.columns->exists(c|c.datatype=‘int’ and  

c.is_primary_key) 
 

The constraint PrimaryKey (Cons_T1) is a 
postcondition. This rule requires that all the tables 
should have a primary key of type int. 

 
 
 
 
 
 
 
 
 
 
 Fig. 4  Example transformation rule: ClassToTable 
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context Atom inv ClassAttrsAndTableCols: 
self.class.attribute->forAll(self.table.column 

->exists(c|(c.columnName=class.attribute. 
name)) 

 
The constraint ClassAttrsAndTableCols (Cons_ 

H1) is propagated to the node TableHelperNode. It 
requires that each class attribute should have a created 
column with the same name in the resultant table. 

The constraints propagated to the rule guarantee 
certain properties. After a successful rule execution, 
the conditions should hold; i.e., the output should be 
valid. The successful execution of the rule guarantees 
that the valid output cannot be achieved without these 
validation constraints. 

Dynamic validation covers both the attribute 
value and the structure validation, which can be ex-
pressed in first-order logic extended with traversing 
capabilities. Example languages currently applied for 
defining attribute value and interval conditions are 
Object Constraint Language (OCL), C, Java, and 
Python. These conditions and requirements are pre- 
and postconditions of a transformation rule. 
Definition 1 (Precondition)    A precondition assigned 
to a rule is a Boolean expression that must be true at 
the moment of rule firing.  
Definition 2 (Postcondition)    A postcondition as-
signed to a rule is a Boolean expression that must be 
true after the completion of a rule.  

If a precondition of a rule is not true, then the 
rule fails without being fired. If a postcondition of a 
rule is not true after the execution of the rule, the rule 
fails.  

With pre- and postconditions, the execution of a 
rule is as follows (Fig. 2): (1) Find the match ac-
cording to the LHS structure. (2) Validate the con-
straints defined in LHS on the matched parts of the 
input model. (3) If a match satisfies all the constraints 
(preconditions), then execute the rule; otherwise, the 
rule fails. (4) Validate the constraints defined in RHS 
on the modified/generated model. If the result of the 
rule satisfies the postconditions, then the rule is suc-
cessful; otherwise, the rule fails. 

A direct corollary is that an expression in LHS is 
a precondition to the rule, and an expression in RHS is 
a postcondition to the rule. A rule can be executed if, 
and only if, all conditions enlisted in LHS are true. 
Also, if a rule finishes successfully, then all condi-
tions enlisted in RHS must be true. 

This method can be followed in Fig. 4. Finding 
the structural match the preconditions Cons_C1 and 
Cons_C2 are validated, and after performing rewrit-
ing, postconditions Cons_C1, Cons_H1, Cons_T1, 
and Cons_T2 are validated. Both of the validations 
should be successful in order for the whole rule to be 
successful. 

With this method, the required properties can be 
defined at low level, i.e., on the level of the rules. In 
summary, we can state that the presented dynamic 
approach guarantees that if the execution of a rule 
finishes successfully, the generated output is valid and 
fulfills the required conditions. The validation of the 
transformations can be achieved with constraints 
assigned to the rules as pre- and postconditions. 

 
 

5  Test-driven validation approaches 
 

The main purpose of testing is to catch software 
failures (Kaner et al., 1990). The scope of model 
transformation testing often includes analysis of the 
transformation definition, execution of that trans-
formation in different conditions. Results derived 
from testing may also be used to correct the process 
by which the transformations are developed (Kolawa 
and Huizinga, 2007). 

The goal of the test-driven validation approach is 
to test graph rewriting based model transformations 
by automatically generating appropriate input models, 
executing the transformations, and involving domain 
specialists to verify the output models based on the 
input models. It is important that the semantic cor-
rectness of the output models cannot be automatically 
verified; i.e., we need the domain specialists during 
both the transformation design and testing. 

The test-driven validation method needs a model 
transformation definition and the metamodels of both 
the input and output domains. The method automati-
cally generates input models that cover all execution 
paths of the transformation. Covering the whole 
transformation means that each of the rules in the 
transformation will be executed at least once. Fur-
thermore, each of the decision points (branching 
points, forks) is evaluated for both true and false 
branches; i.e., all of the paths in the control flow 
model are traversed. The generated input models 
represent a set of input models. We use the expression 
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‘set’ for a bunch of input models that cover the whole 
transformation. The number of the models in the sets 
can vary based on the actual domain and also on the 
actual transformation definition. An objective of the 
solution is to make these model sets minimal, i.e., to 
minimize the number and the size of these models.  

The method should generate those typical mod-
els that effectively cover the whole transformation. 
Executing the transformation for these input models 
we obtain the results of the transformation executions. 
At this point domain specialists are involved. We 
provide the input model and output model pairs to the 
domain specialists. Then, based on the input and 
outputs, and not considering the transformation defi-
nition, they can decide whether the transformation 
does the right processing. Without domain specialists, 
we cannot verify that the output model is really right, 
i.e., which is the appropriate output for a given input 
model. 

As we have already mentioned, the input model 
sets should cover the whole transformation. Therefore, 
the main goal of the approach is to minimize the 
possibility that the transformation works perfectly for 
N input models, but fails for the (N+1)th input model. 
Or what is even worse: the output is generated for the 
(N+1)th input model, but the output is not the ex-
pected one; i.e., there is a conceptual error within the 
transformation definition. 

Fig. 5 introduces the architecture of the approach. 
Input model sets are automatically generated based on 
the input metamodel (metamodel A), and the trans-
formation processes transform the input models. The 
output models should instantiate the output meta-
model (metamodel B). Finally, domain specialists 
verify the correspondence between the input and 
output models (corresponds).  

 
 
 
 
 
 
 
 
 
 

Scenarios that are targeted to be supported by the 
test-driven validation approach are as follows: 

1. Automatic generation of valid input models 
that support the testing of the model transformation. 
The generation is based on the metamodel of the input 
domain and the transformation definition (control 
flow model and the transformation rules). 

2. Automatic generation of valid input model 
sets that cover the whole model transformation, i.e., 
executing the transformation with an input model set 
means that all of the transformation rules will be 
executed, and all of the paths in the control flow 
model are traversed. 

3. Automatic generation of a valid and minimal 
input model set that covers the whole model  
transformation. 

4. Automatic generation of valid input models 
that support the testing of one or more selected 
transformation rules, i.e., executing the transfor-
mation with these input models means that the se-
lected transformation rules will be executed. Other 
transformation rules of the control flow model can be 
skipped in this scenario; e.g., certain branches or 
loops of the whole transformation can be omitted. The 
main goal of this scenario is the debugging of the 
selected transformation rules. 

5. Automatic generation of valid and minimal 
input models that support the testing of one or more 
selected transformation rules, e.g., a selected se-
quence of transformation rules within the whole 
transformation definition. 

Addressing the above scenarios, the test-driven 
validation approach can effectively support the  
verification/validation of graph rewriting based 
model transformations. As highlighted in Section 2, 
there is no question that testing software artifacts, 
including model transformations, is costly, but not 
testing model transformations is even more expensive. 

During the analysis and implementation of the 
above scenarios, we have to consider the following 
elements and aspects of model transformations and 
transformation rules: 

1. To cover all of the transformation rules, all 
LHS patterns should either be present in the generated 
input model or be established during the transfor-
mation execution before reaching the rule that re-
quires the pattern.  

2. In the method the modifications performed by 
the rules should be considered. Rules can also delete 
or break LHS patterns prepared for other rules. Also, 

Fig. 5  Architecture of the test-driven validation approach
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rules can prepare LHS patterns for other rules exe-
cuted later. Therefore, deletion and creation of nodes 
and edges, furthermore the attribute value modifica-
tion, should also be considered in at least the ad-
vanced version of the solution. 

3. The control flow model of the model trans-
formation has an effect on the processing. Not only 
rule sequences but the effects of the conditional 
branches and the loops should be considered.  

4. Different handling is required by the in-place 
transformations and the transformations generating a 
separate output model. We should know whether the 
transformation modifies the input model. Further-
more, we should consider that if the transformation 
generates a separate output model, does it modify the 
input model as well?  

5. The generated input model is ideally con-
nected, but it is not a strict requirement. This depends 
on the actual domain and the metamodel of the  
domain. 

We have worked out the concept of two versions 
of the test-driven validation approach, basic and  
advanced. 

The basic algorithm considers the following 
aspects of model transformation definitions: (1) 
transformation rules that should be covered by the 
generated input model; (2) LHS structure of the 
concerned rules. 

The advanced solution extends it with the fol-
lowing considerations: 

1. Collects the RHS patterns of the processed 
rules in a global store, and considers both the actually 
generated input model and the RHS patterns of the 
already processed rules when it decides whether the 
LHS pattern of the next rule can be present in the 
model at a certain point of model processing. 

2. Takes into account rule sequences and their 
operations (node and edge deletion, creation and at-
tribute modifications). 

(i) The solution applies rule concatenations to 
calculate the resulting RHS patterns at a certain point 
of the transformation. Rule concatenation means 
contracting two rules to derive one transformation 
rule whose behavior functionally replaces the appli-
cation of the two original rules. The concatenation 
results in a new rule with a new LHS and RHS pattern. 
The calculated RHS pattern is also considered when 
the method searches the LHS of the next patterns. 

(ii) The solution includes the conditional 
branches, and therefore considers the possible execu-
tion paths of the transformation. This is also sup-
ported by rule concatenation, and can result in dif-
ferent rule execution sequences. 

(iii) The solution takes into account the loops of 
the control flow definition. Loops can also result in 
different execution paths and thus have an effect on 
the result of the rule execution sequences; therefore, 
they can also result in different patterns in the pro-
cessed model. 

The GENERATESINPUT-BASIC algorithm pro-
vides the transformation definition, the collection of 
the concerned rules, and the input metamodel as pa-
rameters. It initializes a model based on the input 
metamodel. This model is built by the next part of the 
algorithm. The core of the algorithm is a loop that 
takes the next transformation rule based on the control 
flow model of the transformation and the collection of 
the rules that should be covered by the generated 
input model. Next, the algorithm checks if the LHS of 
the actual rule is already present in the generated 
model. If not, then it clones the LHS and attaches the 
copy of the LHS to the input model under generation. 
This method, attaching the LHS of the actual rule, can 
occur in different ways. In the case of the basic algo-
rithm, we search for a common node based on the 
meta type of the node, and attach the new pattern 
using this common point. Necessarily, this step con-
siders the rules of the input metamodel in order for the 
generated model to be a valid instance of the meta-
model.  

 
Algorithm 1    GENERATESINPUT-BASIC 
GENERATESINPUT-BASIC(Transformation T, Collection  
      RuleCollection, Model InputMetamodel): Model 
1 Model InputModel=INITIALIZEMODEL(InputMetamodel) 
2 while (Rule rule=T.GetNextRule(RuleCollection)) do 
3    if not InputModel.ContainsPattern(rule.LHS) then 
4       Model temporaryPattern=CLONEMODEL(rule.LHS) 
5       InputModel.AddStructure(temporaryPattern) 
6    end if 
7 end while  
8 return InputModel 

 
The computational complexity of the GENER-

ATESINPUT-BASIC algorithm for generating valid in-
put models that support the testing of the model 
transformation is O(∑1...k(vk

2+vk*vm)), where k is the 
number of rules in RuleCollection, vk is the number of 
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vertices in the kth transformation rule of RuleCollec-
tion, and vm is the number of vertices in the meta-
model of the generated model, i.e., the metamodel of 
the input model for transformation T. The first part of 
the sum stands for pattern matching (ContainsPattern) 
and the second part for the appropriate model con-
catenation (AddStructure). 

The GENERATESINPUT-ADVANCED algorithm 
extends the basic algorithm with the following steps: 

1. It stores the RHS patterns of the processed 
transformation rules in RHS-Store. Furthermore, the 
LHS of the actual rule is searched not only in the 
actual version of the generated model, but also in 
RHS-Store. 

The CALCULATERHSPATTERNVARIATIONS meth- 
od applies the rule concatenation technique and cal-
culates the different RHS pattern variations. The 
method gets the transformation, the actual rule, and 
the RHS patterns from RHS-Store to use them during 
the calculation of the pattern variations.  

The CALCULATERHSPATTERNVARIATIONS meth- 
od also considers both the conditional branches and 
the loops of the transformation definition. 

These techniques of the GENERATESINPUT- 

ADVANCED algorithm make it possible to generate 
minimal model sets that support the testing of the 
whole transformation. This means that the techniques 
help to minimize the number and the size of the gen-
erated models. 

 
Algorithm 2    GENERATESINPUT-ADVANCED  
GENERATESINPUT-ADVANCED(Transformation T, Collection 
RuleCollection, Model InputMetamodel): Model 
1   Model InputModel=INITIALIZEMODEL(InputMetamodel) 
2   PatternStore RHS-Store=INITIALIZEPATTERNSTORE() 
3   while (Rule rule=T.GetNextRule(RuleCollection)) do 
4      if not InputModel.ContainsPattern(rule.LHS) && not 

RHS-Store.ContainsPattern(rule.LHS) then 
5         Model temporaryPattern=CLONEMODEL(rule.LHS) 
6         InputModel.AddStructure(temporaryPattern) 
7         RHS-Store.AddPattern(rule.RHS) 
8         Pattern[] RHS-PatternVariations=CALCULATERHSPAT- 

TERNVARIATIONS(T, rule, RHS-Store) 
9         RHS-Store.AddPatterns(RHS-PatternVariations) 
10    end if 
11 end while  
12 return InputModel 

 
The complexity of the GENERATESINPUT-  

ADVANCED algorithm for generating valid input 
models that support the testing of the model trans-

formation is O(∑1...k(2*vk
2+vk*vm+k*vk

2))=O(Σ1...k((2+ 
k)*vk

2+vk*vm)). The first part of the sum stands for 
pattern matching (ContainsPattern), the second part 
for the appropriate model concatenation (AddStruc-
ture), and the third part for RHS pattern variation 
calculation (CALCULATERHSPATTERNVARIATIONS). 
Finally, the sum is consolidated. 

The presented algorithms address the above re-
quirements; i.e., applying these algorithms we can 
automatically generate valid input models that sup-
port the testing of one or more selected transformation 
rules. Using these algorithms with different input 
parameters, we can also generate valid and minimal 
input model sets that cover whole model transfor-
mations. The details of certain parts of the algorithms, 
e.g., the ‘get next’ rule of the transformation (taking 
into account the branches and the loops), the pattern 
search in the generated model and in RHS-Store, and 
the CALCULATERHSPATTERNVARIATIONS method, 
can be implemented in different ways. This also 
means that further optimization can be introduced, 
e.g., with the application of different heuristics. 
 
 

6  Open issues in the field of verification/ 
validation of model transformations 
 

In our terminology, a model transformation is a 
program that processes graph-based models. The 
operation of such transformations is based on the 
theory of graph rewriting. Based on the current ca-
pabilities of the available approaches and tools, and 
also considering the results available in the field, we 
identified the following open issues as challenges 
related with the verification/validation of model 
transformations. We believe that solving these issues 
will significantly improve the usability and availabil-
ity of model transformation based approaches. 

1. Verification and validation of global proper-
ties. The scope of a property can be either local or 
global. With the exception of the model checking 
approach, one of the main limitations of the current 
approaches and tools is the local nature of their 
transformation rules. Local nature of a property 
means that if we aim to specify a constraint for an 
element, it must be included in the context of a 
transformation rule, or must be referenced by a tra-
versal expression assigned to a rule element. Ele-
ments not appearing in a rule cannot be included in 
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the verification/validation expressions. Therefore, 
this method does not provide an easy solution to 
checking constraints of a global nature (e.g., deadlock 
examination). Of course, there are numerous cases, 
for example, source code generation from a state- 
chart model, user interface generation from a resource 
model, or projecting a source model into a different 
domain, in which the entire right side is generated. 
Thus, all the output model elements are included in 
transformation rules.  

Approaches should be developed that support 
the verification/validation of global properties in the 
processed models. 

2. High-level languages/methods to define the 
verification/validation properties. Generating source 
code from software models is a widely used method 
to make system development more effective. While 
generating model artifacts we can require rather usa-
ble quality factors, but in the case of source code 
generation, functional and complex source code 
properties still cannot be defined. There are ap-
proaches (e.g., Fujaba, VIATRA2, and VMTS) that 
facilitate source code generation, but they are  
language-specific (they can process only a few types 
of source languages) (Fujaba), or the verification/ 
validation opportunities of such transformations are at 
too low levels. Low-level verification/validation ca-
pabilities mean that even a short source code requires 
a relatively large model, e.g., an abstract syntax tree 
model; the transformation designer must be familiar 
with all of the details regarding the generated source 
code to be able to define its quality requirements. On 
the other hand, the goal is to involve a wider range of 
users group in order to provide their quality-related 
verification/validation properties. High-level, easy- 
to-use languages should be provided that facilitate 
defining verification/validation requirements against 
model transformation. 

Currently, the most user-friendly languages are 
OCL, Pyton, Java, and similar languages that can be 
used to define the requirements. The research activi-
ties should identify the appropriate, first-order logic, 
second-order logic, or other formalism. These lan-
guages should be general-purpose languages and easy 
to use even for novice users.  

3. Supporting the verification/validation of  
domain-specific properties. Transformation methods 
should be provided that are able to verify/validate 

domain-specific properties using model transfor-
mations. These are output, model-related require-
ments that model transformations should support. In 
several cases, model transformation rules do not 
contain certain nodes or edge types that we seek to 
include in our verification/validation requirements. 
These requirements may relate to the temporary 
(during model processing) or final (after model pro-
cessing) state of the processed or generated models. 
There exist many different directions that can be 
taken; e.g., we can state additional requirements 
against the input and output models (metamodel 
constraints), or the model transformations can be 
automatically extended with appropriate testing and 
validating transformation rules.  

4. Compositionality conditions. Model trans-
formation related compositionality conditions should 
be developed: if we can prove that certain elements of 
a model transformation are correct, then what further 
conditions are required for the whole transformation 
to be free of conceptual errors? 

5. Automatic identification of properties to be 
verified/validated. Algorithms should be developed 
that facilitate us to automatically identify (project or 
metamodel-specific) model properties that should be 
verified/validated. 

6. Verification-related spatial and time com-
plexities. The verification-related spatial and time 
complexities should be addressed. Most of the veri-
fication approaches require significant computational 
capacity and a considerable amount of time to be 
executed. These complexities, and thus the complex-
ity of the verification process, should be reduced. 

7. Applicability of the existing approaches. The 
applicability of the already existing approaches and 
tools should be tested within industrial environments: 
experiments should be performed on larger-scale 
(industrial size) transformations and models. 

8. Industrial model checkers. Model-checker 
tools should be built with such properties that make it 
possible to be applicable to the industry. For example, 
model-checker tools should support the results of the 
performed verifications that will be automatically 
propagated back to the original domain. 

9. Analysis patterns for static verification 
methods. Static verification means that only the def-
inition of model transformation is used during the 
analysis and no concrete input models are taken into 
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account. Hence, the results are valid for all possible 
output models and the analysis has to be performed 
only once. However, the disadvantage of this method 
is the complexity of the analysis itself. The static 
verification of all attributes is not possible in general, 
since, e.g., the termination itself, is undecidable in 
general (Plump, 1998). However, it would be benefi-
cial to collect some special cases when the verifica-
tion can always provide a result, for example, if cer-
tain design rules are applied during the implementa-
tion of the transformations. A promising method that 
would improve the verification solutions is the use of 
model transformation analysis patterns. These would 
be design patterns that should be used during the 
implementation of model transformations. The use of 
a pattern would assure that certain properties are true 
for the selected part of the model transformations. 
These patterns should be well documented and pro-
vided in a standard catalogue form like the classical 
design patterns.  

According to the current state of the art, these 
open issues can seem daunting. Each of them requires 
further research and development. Some model 
transformation approaches and/or tools partly address 
one or two of these open issues, but most of these 
tools are used only within academia and among re-
search groups. Therefore, the most important chal-
lenge is to ensure that these verification and valida-
tion approaches become applicable within industrial 
environments. 
 
 
7  Conclusions 
 

Different semantic information can be lost or 
misinterpreted in a transformation due to errors in the 
definition of the transformation or in the processing 
method. Methods are required to verify that the se-
mantics used during the analysis are indeed preserved 
across the transformation. Automatic model pro-
cessing certainly increases the quality of model 
transformations as errors are not added by accident 
into transformation definitions. Verification and val-
idation of model transformations is required, which 
assures that conceptual errors in model transfor-
mations do not remain hidden. 

This paper has emphasized the necessity of  
verification/validation methods which increase the 

quality of model transformations and help to ensure 
that model transformations perform what they are 
intended to do. Focusing on graph rewriting based 
model transformations, we have discussed the dif-
ferent scenarios of model transformation verification 
and validation. Next, we have provided our dynamic 
validation method, and introduced the key motivation 
and challenging points of the test-driven validation 
approach. Also, we have provided both the basic and 
advanced versions of our solution, which make it 
possible to automatically generate test input models 
for model transformations. Finally, we have compiled 
the actual open issues in the field of verification/ 
validation of model transformations. We believe that 
addressing these issues will significantly improve the 
capabilities and application of model transformation 
verification/validation methods and tools. 
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