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Abstract Steel–concrete bond is instrumental in

transferring tensile forces to the concrete via the bond

stresses, whose values and distribution along a steel

bar vary with the level of the load applied to the

reinforcement. To study the profile of the strains in the

reinforcement, the variation of the bond-stress distri-

bution is considered and the bond stresses are intro-

duced according to Model Code 2010. The transfer

length where the bond stresses are active is shown to

be a function of the slip in the cracked sections. This

slip can be evaluated from the concrete strains based

on the plane-section hypothesis to take care of the

strain compatibility between the concrete and the

reinforcement. The equilibrium of the internal forces,

the constitutive laws of the materials and the bond

stress-slip law make it possible to model the kinematic

interaction between the concrete and the reinforce-

ment. An iterative algorithm is proposed to calculate

the steel strains, and the effectiveness of the numerical

procedure is checked against the test data coming from

simply-supported RC beams tested in this research

project or available in the literature. The results show

that the nonlinear evolution of steel–concrete slip

close to the cracks may increase the transfer length of

the bond stresses by 50% under increasing loads, and

the steel strains by up to 90% along the bonded length.

As a result, the steel-strain profile becomes a slightly-

nonlinear function of the load, which is also markedly

affected by the crack pattern.

Keywords Cracked RC beams � Steel–concrete

bond � Bar slip � Steel strains � Bond–slip law � Bond-

related internal forces

1 Introduction

Cracking easily occurs in reinforced concrete beams

due to the low tensile strength of the concrete, and

causes a slipping between the concrete and the steel

bars, to the possible detriment of steel–concrete bond.

In cracked sections, bars bear large tensile forces,

while the cracked concrete is practically load-free [1].

However, the concrete at a distance from cracked

sections still bears some tensile forces because of the

force transfer from the bars to the concrete through

bond stresses [2]. This phenomenon is known as

tension stiffening. The transfer length lt is defined as

an embedment length from the crack to the first point

at which the strains of steel and concrete are equal to

each other [3], and also can be taken as the active

length of the bond stresses.

C. Fu (&) � Z. Gao

College of Civil and Transportation Engineering, Hohai

University, Nanjing, China

e-mail: fuyupiece@163.com

P. Yan

SWJTU Railway Development Co., Ltd., Chengdu, China

Materials and Structures (2022) 55:209

https://doi.org/10.1617/s11527-022-02048-x(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1617/s11527-022-02048-x&amp;domain=pdf
https://doi.org/10.1617/s11527-022-02048-x


Due to tension stiffening, the distribution of the

steel strain along the beam axis is not uniform. The

strain rises to its maximum in the cracked sections and

drops to a minimum at the end of the transfer length

[4]. The steel-strain profile is accompanied by a

concrete-strain profile, that affects structural stiffness

[5] and may impact—even seriously—on structural

serviceability and safety. As a result, a model for the

steel-strain profile close to the cracks is needed to

predict the in-service behavior of RC beams.

Some models for the steel distribution were

formulated according to the structural mechanic

characteristics near cracks. Kwak et al. [6] directly

used a polynomial function to simulate the concrete-

strain profile, and adopted the force equilibrium to

obtain the steel strains. Xu et al. [7] proposed a method

for assessing the overall strains of the steel bars in

cracked zones based on the interpolation between the

steel strains at concrete cracking and steel yielding.

Manfredi et al.[8] assumed that the concrete in

compression could be analyzed according to the

plane-section hypothesis, and calculated the steel

strains based on the concrete compressive strain.

The steel strain may be calculated by integrating the

bond stresses and introducing the boundary conditions

in the cracked sections. Haskett et al. [9] used a linear

bond–slip relationship to formulate a model where the

steel strains are a function of crack width. Fayyad et al.

[10] adopted this model to analyze the crack propa-

gation of reinforced concrete beams. Yankelevsky

et al. [11] assumed a piece-wise linear distribution for

the bond stresses, to formulate an incremental model

for the steel strains. Wang et al. [12] proposed position

functions to modify the bond–slip relationship near

cracks, and analyzed the steel-strain profile along the

transfer length.

Castel et al. [13] modeled the steel-strain profile

between two primary cracks based on a linear

distribution of the bond stress, and established a

relationship between the steel strains and bending

moments. To analyze the effects of internal micro-

cracks on the steel strains, a damage variable was

introduced by Castel et al. [14] to reduce the bond at

the steel–concrete interface during a period of sus-

tained loading. The model was used to calculate the

static and dynamic displacements of cracked concrete

beams [5, 15].

The above models consider the dependence of the

steel strains on steel–concrete slip through bond

stresses in cracked reinforced concrete beams, but

tend to neglect that the variation in the transfer length

of the bond stress, which may cause an underestimate

of the steel strains near cracks. In fact, existing

experiments of cracked reinforced concrete members

had proved that the transfer length was strongly load-

dependent [16, 17], so the bond-stress distribution

varies with the loads, and the steel strains are affected.

In order to investigate the steel strains, the variation

of the bond-stress distribution should be accurately

introduced and its effects on the steel strains should be

analyzed as well. Therefore, in this paper, the bond

stress is derived based on a bond–slip relationship

given by Model Code 2010 [18], and its transfer length

of the bond stress is shown to change with the slip at

the crack, which can be calculated from the concrete

strains with the aid of the deformation compatibility of

the beam. The steel strains are obtained by integrating

the bond stresses, and their effects on the concrete

strains are analyzed using the equilibrium of internal

forces, so the steel strains and the bond stress interact

with each other. An iterative algorithm is adopted to

build a solving model for the interaction, and based on

the solution, a new method for assessing nonlinear

steel strains in cracked RC beams is proposed.

2 Theoretical approach

2.1 Model for steel strains

A reinforced concrete beam with cracks is considered,

as shown in Fig. 1, and its depth and width are

respectively h and b. An infinitesimal element of a

steel bar and its surrounding concrete in the beam is

isolated as a free body, as shown in Fig. 2. The steel

and concrete strains are defined as es(x) and ec(x)

respectively, where the axial direction of the beam is

taken as the x axis. The relationships between the

strains and the bond stress s can be obtained using the

force equilibrium conditions.

EsAs
des
dx

¼ sLs ð1Þ

EcAct
dec
dx

¼ sLs ð2Þ

where Ls is the contact perimeter of the steel bar with

the surrounding concrete, As and Act denote
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respectively the areas of the steel bar and tensile

concrete, and Es and Ec are their elastic modulus. The

slip ds between the steel bar and concrete over a length

dx can be regarded as a difference between the strains

of the steel bar and concrete

ds

dx
¼ es � ec ð3Þ

Then through differentiating Eq. (3) with respect to

x and substituting Eqs. (1) and (2) into Eq. (3), the

following equation is obtained

d2s

dx2
¼ sLs

1

EsAs
þ 1

EcAct

� �
ð4Þ

Equation (4) represents the general governing

ordinary differential equation defining the bond

behavior between the steel bar and concrete [10]. Its

solution depends on the function that defines the

bond–slip relationship s(s). Typical bond–slip rela-

tionships were given by Model Code 2010 [18], and

based on the behavior of reinforced concrete beams

with cracks, the relationship for unconfined concrete

whose splitting failure may occur is adopted, as shown

in Fig. 3 and Eq. (5).

s sð Þ ¼
smax

s

s1

� �0:4

s� s1

smax

s3 � s1

ðs3 � sÞ s1 � s\ s3

8>><
>>:

ð5Þ

where s1, s3 and smax are the material coefficients

which are determined experimentally and depend on

the concrete and steel properties.

By substituting Eq. (5) into Eq. (4), differential

equations are obtained

d2s

dx2
� s0:4b1 ¼ 0 s� s1

d2s

dx2
þ b2

2s ¼ b2
2s3 s1 � s\ s3

8>><
>>:

ð6Þ

where b1 and b2 are calculated coefficients and can be

expressed as

Fig. 1 Bond stress distribution in a cracked RC beam

Fig. 2 Strains and stresses in an infinitesimal element

Fig. 3 CEB-FIP bond stress–slip relationship
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b1 ¼ smaxLs

s0:4
1

1

EsAs
þ 1

EcAc

� �

b2
2 ¼ smaxLs

s3 � s1ð Þ
1

EsAs
þ 1

EcAc

� �
8>>><
>>>:

ð7Þ

Assuming the coordinate origin is located at the first

point where the steel and concrete strains are equal to

each other, as shown in Fig. 1, Eq. (6) can be solved

using the boundary condition that s = 0 and ds
dx

¼ 0 at

x = 0, and the following solution can be obtained

s xð Þ ¼
10

7
b1

� �5
3 3

10
x

� �10
3

s� s1

c1 cos b2xþ c2 sin b2xþ s3 s1 � s\ s3

8<
:

ð8Þ

where c1 and c2 are calculated coefficients, x1 denotes

the x-axis coordinate of the point where the slip is

equal to s1, and they can be expressed as

x1 ¼ 10s0:3
1 =3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10b1=7

p

c1 ¼ s1 � s3ð Þ cos b2x1 �
10

7
b1

� �5
3 3

10
x1

� �7
3

sinb2x1

c3 ¼ s1 � s3ð Þ sin b2x1 þ
10

7
b1

� �5
3 3

10
x1

� �7
3

cos b2x1

8>>>>>>><
>>>>>>>:

ð9Þ

If the slip s along the steel bar is smaller than s1, by

combining Eqs. (1), (5) and Eq. (8) and integrating

with respect to x, the tensile force P of the steel bar is

calculated.

P ¼ EsAses ¼ EsAses0 þ
3

7

3

10

� �4
3smaxLs

s0:4
1

10

7
b1

� �2
3

x
7
3

ð10Þ

where es0 is the steel strain at the coordinate origin, and

its value is equal to the concrete strain ecs0 at the steel

level. So es0 can be calculated according to the plane-

section assumption.

According to Eq. (10), the steel-strain profile in the

x-direction and the strain value can be obtained if the

coordinate origin is determined. As mentioned above,

the coordinate origin is assumed at the first point

where the steel and concrete strains are equal to each

other, and its distance to the crack is defined as a

transfer length lt, which can be calculated by rewriting

Eq. (8) as a function that defines the relationship

between lt and the slip sc in the cracked section.

lt ¼
10

3

10

7
b1

� ��1
2

s
3

10
c ð11Þ

If there is any slip larger than s1, the tensile force of

the steel bar can be obtained by using Eq. (10) for

s\ s1, and for s C s1, its value is calculated by the

integrating

P ¼ EsAses

¼ EsAses0 þ
3

7

3

10

� �4
3smaxLs

s0:4
1

10

7
b1

� �2
3

x
7
3

1

þ smaxLs
b2 s3 � s1ð Þ �c1 sin b2xþ c2 cos b2xð Þ ð12Þ

by rewriting Eq. (8), the transfer length lt can be

expressed as

lt ¼
1

b2

arcsin
sc � s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ c2
2

p
 !

� arctan
c1

c2

" #
ð13Þ

From Eqs. (11) and (13), it is seen that the transfer

length lt is a variable which varies with the slip sc in the

cracked section. As sc changes with the load acting on

the beam, lt also varies with the load and the internal

force of the beam.

2.2 Calculation of the slip sc in the cracked

sections

The steel bars are subjected to a large tensile force in

the cracked sections, while the strains of the concrete

near the bars are nearly equal to 0. Therefore, there is a

large slip between the steel bars and concrete at the

crack. As the slip is directly related to concrete strains,

the strain profile should be analyzed.

The concrete strains of the beam bottom are studied

firstly. At the coordinate origin, the section is hardly

affected by the crack, and its strain profile accords

with the plane-section hypothesis, so the bottom strain

ecb0 can be obtained by using the classical beam theory

ecb0 ¼ M0

EcI0
yn ð14Þ

where yn is the y-axis coordinate of section neutral

axis, I0 denotes the inertia of sections unaffected by

the crack, Ec is the concrete elastic modulus, and M0 is

the section bending moment.
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In the cracked sections, however, the strains in the

bottom fibers are equal to 0, as crack interfaces are

load-free. Therefore, the bottom strains change from

ecb0 to 0 along the transfer length. This change can be

described by a quadratic polynomial [13], and by using

the boundary conditions at the coordinate origin and

the crack, the bottom strains ecb can be written as

ecbðxÞ ¼ 1 � x2

l2t

� �
ecb0 ð0� x� ltÞ ð15Þ

Then the strain profiles along the depth of sections

near the crack are analyzed. Because of cracking, the

distribution is no longer linear. A nonlinear model is

used to simulate the distribution, as shown in Fig. 4.

An inflection point appears at the position whose

height is identical with that of the crack tip, because

the crack occurrence causes two distinct strain profiles

of the parts above and below the tip. The strains of the

above part keep linear along the depth, while the

strains of the below part follow a nonlinear distribu-

tion, which can be expressed as

ec yð Þ ¼ ect
dc � yn
h� yn

� ecb

� �
y

dc

� �g

þecb y� dc

ð16Þ

where the parameter g denotes the nonlinear distribu-

tion, and here is assumed to be related to the rate of

rcb0 to rcb [19].

g ¼ intðecb0=2ecbÞ ð17Þ

where int() denotes an algorithm that rounds a number

to the nearest integer.

The steel bars and concrete are assumed to be

elastic, and their stress–strain relationships are linear.

So the steel stress rs and concrete stress rc can be

written as

rs ¼ Eses ð18Þ

rc ¼ Ecec ð19Þ

To evaluate the strain in the top fibers of the section

and the position of the neutral axis, the internal force

equilibria of the sections are used under the bending

moment [19, 20].Z
Ac

rc yð ÞdAþ rsAs ¼ 0 ð20Þ

Z
Ac

rc yð Þ y� ynð ÞdAþ rsAs dt � ynð Þ ¼ M0 ð21Þ

By substituting the steel and concrete strains into

Eqs. (18) and (19), the top strain and the neutral axis

are determined.

Based on these strain profiles, the slip sc between

the steel and concrete at the crack will be calculated.

The slip sc can be considered as the difference between

the deformations of the steel bar and its surrounding

concrete, which is expressed as

sc ¼ Dls � Dlc ð22Þ

where Dls denotes the elongation of the steel bar, and

Dlc is the deformation of the surrounding concrete. Dlc
can be viewed as the sum of the concrete strain, and

written as

Dlc ¼
Z lt

0

ecsðxÞdx ð23Þ

where ecs is the strain of the surrounding concrete.

The concrete in compression and the bars in tension

are continuous across the cracked sections, and their

deformations meet the plane-section assumption at the

coordinate origin. Furthermore, the deformations are

assumed to be symmetric about the crack. Therefore,

the steel elongation Dls is considered to be compatible

with the compression of the beam top concrete over

the transfer length, and expressed as a function of the

concrete strain ect at the top.

Dls ¼
Z lt

0

ect xð Þ
h� yn xð Þ yn xð Þ � dt½ �dx ð24Þ

Fig. 4 Strain profile in a cracked section
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Once the slip sc is determined, the transfer length

can be calculated using Eqs. (11) or (13), and the steel

strains can be obtained using Eqs. (10) or (12).

2.3 Computational algorithm

The previous analysis allows to conclude that the bond

stress affects the steel strain, but its acting length, the

transfer length, depends on the steel–concrete slip in

the cracked sections according to Eqs. (11) and (13).

As the slip can be calculated from the concrete strains,

whose values are related to the steel strains based on

the internal force equilibria in Eqs. (20) and (21), the

steel strains and the bond stress interact with each

other. An iterative algorithm is adopted to build a

solving model for the interaction and calculate the

steel strains:

1. Estimate an initial value of the transfer length ltj
(j = 0).

2. Use ltj to calculate the steel strains through

Eqs. (10) or (12).

3. Select key sections along the transfer length, and

calculate their bottom strains using Eq. (15); then

build the strain profiles for the sections.

4. Use Eqs. (20) and (21) to calculate the top strains

and neutral axes of the sections.

5. Use these top strains and neutral axes to calculate

the slip sc at the crack through Eqs. (22)– (24).

6. Calculate the transfer length lt(j?1) using Eqs. (11)

or (13), and by comparing the latest transfer

lengths, assess whether they satisfy the equation as

follows

ltðjþ1Þ � ltj
�� ��\e ð25Þ

where e is the permissible error.

7. If Eq. (25) is valid, the transfer length is equal to

ltj, and calculatethe steel strains using Eq. (10) or

Eq. (12); otherwise, j is assigned to j ? 1, and

return Step (2) to calculate again.

3 Experimental validation

3.1 Experimental work in this study

Two reinforced concrete beams with simple supports,

denoted B1 and B2, were cast by using the same

materials. In both cases, the span was 2.6 m and the

section rectangular (b 9 h = 200 9 310 mm). The

main longitudinal steel bars at the bottom of the beams

were hot-rolled ribbed bars of 16-mm diameter, and

the longitudinal bars at the top and the stirrups were

both round bars of 8-mm diameter. The stirrup spacing

was 100 mm near the supports, and increased to

150 mm near the midspan. The detailed reinforcement

layout of the beams is shown in Fig. 5. The mechan-

ical characteristics of concrete were as follows: mean

compressive strength fcm = 38.5 MPa; flexural tensile

strength fct = 2.2 MPa; and elastic modulus Ec = 23

GPa. The elastic modulus Es and the strength at

yielding fy of the bars were 200 GPa and 400 MPa,

respectively.

To record the strain of the longitudinal reinforce-

ment bars, the bars were cut open, slots were milled in

the bar interior, and then strain gauges were attached

to the inner slots. The size of each gauge was

3.5 mm 9 6.5 mm, and the spacing between the

adjacent gauges was 20 mm. 30 gauges were attached

for each beam, and their distribution is shown in

Fig. 6. The central point of the distribution coincided

with the beam midspan. To lead out the wires of the

gauges, three holes were drilled in the milled zone, and

their diameter was 6 mm. After the gauge attachment,

epoxy resin was poured into the slots, and the two parts

of each bar were pasted together. Then the bars were

placed inside the formwork and the concrete was

poured.

The test beams had been moist cured for 28 days

and then cracked under a precracking loading test. In

the precracking loading test, the beams were subjected

to a three-point bending load. The peak load was equal

to 50kN, and a stabilized cracking pattern was

established, which was accurately recorded, as shown

in Fig. 7. After concrete cracking, the loading and

unloading cycles of four-point bending were per-

formed, as shown in Fig. 5, and the maximum loads in

the cycles were not bigger than 64 kN. The loading

progress of each cycle is divided into 10 steps, each of

which has a same loading increment and a holding

time longer than 20 min. The unloading progress of

each cycle is divided into 5 steps, each of which has a

same holding time with the loading step. Before the

start of the cycles, the readings of all the strain gauges

were reset to zero, and the steel strains and load values

were recorded at each step.
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Based on the recorded load, the steel strains and slip

in the cracked section are calculated by the proposed

method, and the strains are also analyzed using the

Castel et al.’s method [13]. The strain results are

compared with the recorded data, as shown in Fig. 8

where dl denotes the distance of the strain gauge to the

left end of the beams. It is observed that an accept-

able agreement is obtained between the experimental

data and the results calculated by the proposed method.

Since the specimens were tested in 4-point bending,

the bending moment was constant between the two

point-loads and so in the cracked region. In this region,

however, the steel strains were not constant in the

zone, because of their concentration close to the

cracks. From the correlation between the crack

location in Fig. 7 and the strain profile in Fig. 8, it is

seen that the steel strains reach their maximum at the

crack, and over a certain length, reduce to es0, whose

value is unaffected by the crack and equal to the

concrete strain at the steel level.

From Fig. 8, it is also observed that the distribution

of the steel strains varies with the loads. At small load

Fig. 5 Geometry of the specimens (a) and test setup (b) (unit: mm)

Fig. 6 Distribution of steel strain gauges: a size of the gauge distribution region and b photo of the attached gauges (unit: mm)
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levels, the length of the strain change from the

maximum to es0, also taken as the transfer length, is

short, while under the big loads, the length is relatively

long. For an example, the length is 50 percent longer

under the load of 32kN than under the load of 17kN. It

is because the slip sc at the crack increases with the

loads, as shown in Fig. 9, and according to Eq. (10),

the transfer length lt becomes bigger with the increase

of sc.

lt represents the length of the region whose steel

strains are affected by the bond stress and not equal to

es0, so the change of lt means the redistribution of the

steel strains. Therefore, under the bigger load, there

are more gauges whose measured strains are larger

than es0. For an example, under the load of 32 kN, the

steel strain rises by nearly 90% in the position whose dl
is equal to 1.25 m, compared to es0 whose value is

1.52 9 10–4. By considering the change of the transfer

length, the proposed method can obtain the strain

results which are consistent with test data. However,

the Castel et al.’s method assumed that the transfer

length was constant [13], and its result is still equal to

es0 in this position, as shown in Fig. 8.

Figure 10 shows the effects of load on the steel

strains of different positions. The strain changes with

the load, but its change rate increases suddenly at some

positions when the load reaches a certain value. As the

steel bars and concrete are assumed to be elastic in the

calculation, the change can be attributed to the fact

that the steel–concrete slip varies with the load, as

shown in Fig. 9. At small load levels, the slip may not

appear, and the steel strains can be calculated based on

the plane-section hypothesis, so the change rate of the

strains is small. At larger load levels, however, the slip

appears at some positions, and causes the steel bars to

bear a larger tensile force, thus the change rate

becomes larger. For an example, at the position whose

dl is equal to 1.26 m, the rate is about 1.5 times bigger

at large load levels than at small load levels.

From Fig. 10, it is also observed that the closer the

positions are to the crack, the smaller the loads that

change the increase rate of the steel strain are. It is

because the slips at the closer positions appear at

smaller load levels, which causes the increase rate to

become larger. On the contrary, if the position is far

enough from the crack, the steel strain is not affected

by the crack, and its increase rate will remain constant.

Therefore, the steel-strain profile depends on the crack

location.

3.2 Validation using experimental data

from the literature

A second validation of the proposed model is made

using experimental data of reinforced concrete beams

cast by Brault and Hoult [21]. The beam LB2c is

considered in this study, as the values of the steel

strains and the crack patterns are well documented

[21]. The beam was simply supported (span = 2.0 m;

section b 9 h = 300 9 200 mm, Fig. 11). There

Fig. 7 Crack patterns in a the beam B1 and b the beam B2 (unit: mm)

209 Page 8 of 13 Materials and Structures (2022) 55:209



were no stirrup and the longitudinal reinforcement

consisted in 15-mm and 10-mm bars, at the bottom and

at the top, respectively. The compressive strength of

concrete was 29 MPa, and the yield stress and elastic

modulus of reinforced steel bars were 445 MPa and

210 GPa, respectively. The distributed steel strains of

the beam were measured using fiber optic sensors,

which were bonded to the steel surface. The beam was

tested in three-point bending until failure using a

hydraulic actuator. The load increment of each step

was 5kN before cracking, and increased to 10kN after

cracking. The crack pattern was recorded during the

loading.

According to the recorded data, three cracks,

labelled Crack 1, Crack 2, and Crack 3, occurred near

midspan, and their distances to the beam’s left support
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Fig. 8 Profiles of the steel strains astride a crack in a the beam B1 and b the beam B2
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were 0.74 m, 0.95 m, and 1.14 m, respectively. Based

on the crack pattern, the steel strains are calculated by

means of the proposed model, and compared with the

measured steel strains, as shown in Fig. 12. It is

observed that the calculated results are close to the

experimental data, and have almost the same changing

trend as the data.

Under the load of 30kN, the steel strains reach the

local maximums at every crack except Crack 1. It is

because Crack 1 has not formed, and the slips between

the steel bars and concrete do not occur. Thus, the steel

strains change linearly with the bending moment near

the crack. Under the load of 50 kN, however, Crack 1

is visible and its opening width reaches to 0.24 mm

[21]. If the opening width is taken as the slip sc in the

cracked section, the bond stress is large, and the steel

strains change greatly near the crack. As a result, the

steel-strain profile becomes nonlinear, and its local

maximum appears at the crack. Therefore, the steel

strains are severely affected by the crack pattern and

their nonlinearity becomes obvious at cracks with

large opening widths.

4 Conclusions

The following conclusions can be drawn:

1. A method for evaluating the steel strain along the

reinforcement in cracked RC beams is proposed

by introducing the profile of the bond stress, which

plays a major role in the interaction with steel

deformability; the equilibrium of the internal

forces, the constitutive laws of the materials and

the bond stress-slip law make it possible to model

the kinematic interaction between the concrete

and the reinforcement, which is analyzed by using

an iterative algorithm.

2. The effectiveness of the proposed approach has

been validated experimentally by testing a number

of simply-supported reinforced-concrete beams;

the results show that the nonlinear evolution of

steel–concrete slip close to the cracks may

increase the transfer length of the bond stresses

by 50% under increasing loads, and the steel

strains by up to 90% along the bonded length.

3. Under increasing loads, the steel strains close to

the cracked sections exhibit a nonlinear increase;

at small load levels, the slip may not appear and

the steel strains are equal to the concrete strains at

the steel level, while the steel bars may bear a

larger tensile force and the increase rate would be

substantial if the load is high enough to cause a

steel–concrete slip; the distribution of the steel

strains is also markedly affected by the crack

pattern associated with the structural shear-bend-

ing behavior, as the location and width of the

cracks play a substantial role on the magnitude of

the slip.

4. The proposed approach can be used to accurately

quantify the stress state and the structural behavior

of existing reinforced-concrete beams at the

Serviceability Limit State; however, the behavior
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may change due to the long-term effect of concrete

creep and shrinkage, which is not considered in the

proposed approach, so this effect should be

investigated in a future study.
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