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Abstract Increasing interest has recently been

devoted to interlocking blocks/interfaces capable to

enhance the sliding resistance of masonry joints to

external forces. In this framework, this paper deals

with the assessment of the torsion-shear capacity of

the contact interface between the lock and the main

body of an interlocking block, assumed to have a

cohesive behaviour. The interlocking block is a rigid

unit which, on its faces, have square cuboidal locks

keeping the adjacent/overlapped blocks together and

preventing blocks from sliding. Two numerical

approaches and a novel ad hoc experimental investi-

gation are proposed to simulate the torsion-shear

behaviour by applying eccentrical shear forces to the

lock. First, concave, convex and corrected concave

formulations provided by the literature for assem-

blages of rigid blocks with conventional planar joints

are extended to model the interlocking block beha-

viour. Then, according to a second approach based on

the discrete element method, the concave-shaped

interlocking block is modelled by convex polyhedrons

representing the lock and the main body of the block,

considered as individual rigid units stacked over each

other with a cohesive contact in between. A novel

experimental investigation on the limiting pure shear

and torsion-shear combinations at the lock interface

made of cohesive material is also presented. Two

different mortars were chosen to make the specimens,

which were casted using 3D printed moulds, and

different test configurations were set up to simulate

shear and torsion-shear failures. The analytical and

numerical results are compared with each other and

against the experimental ones, with interesting

remarks on the application of the different approaches.
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1 Introduction

Throughout the entire history of building construction,

masonry has been one of the most common and

efficient techniques, due to the simple geometry of

units, their affordability, and great structural proper-

ties. The discontinuous and non-homogenous nature

of the constitutive elements of masonry, i.e. units and

mortar, strongly affects the in-plane and out-of-plane

behaviour of masonry walls under various external

loading. In traditional masonry block structures sub-

jected to seismic loading, the joints between units act

as planes of weakness due to their low tensile and

shear bond strength, while the use of non-planar

interlocking joints is recently becoming very popular

to improve the mechanical behaviour at block

interfaces.

The interface behaviour of traditional planar

masonry joints has been widely studied with advanced

non-linear computational formulations, mostly based

on the homogenized finite element analysis (FEA) at

the micro-scale level, detailing blocks, mortar and the

block/mortar interface [1]. As an alternative, the

assessment of discontinuous media composed of

discrete bodies and contacts in between has increas-

ingly been investigated using the discrete element

method (DEM) first developed by Cundall [2]. This

approach, specifically its version based on an explicit

time integration method [2, 3], is the core of the

software 3DEC [4], suitable to model 3D masonry

systems as assemblages of deformable or rigid blocks

with contacts representing dry or mortar joints [5–12].

The greatest advantage of DEM compared with FEA is

its capability to simulate the large displacements

between the bodies as well as sliding and partial or

complete separation of neighbouring blocks. How-

ever, both FEA and DEM require high computational

cost and advanced operational knowledge to properly

define material properties, discretization, boundary

conditions, input parameters, etc., which make them

less convenient for everyday engineering professional

applications.

Less demanding methods in terms of computational

effort and accurate knowledge of state characteristics

are those based on limit analysis procedures, assuming

the masonry structure as an assemblage of rigid blocks

and contact interfaces, with infinitive or finite friction

[13]. The yield domains in terms of ultimate shear,

torsion-shear and torsion-shear-bending moment

interactions at joints are taken into account using

convex and concave formulations [13–15], and exper-

imental results carried out on 3D dry-stacked units

[16, 17]. For these simplified methods, several contri-

butions were recently proposed to assess the seismic

vulnerability of masonry buildings [18, 19].

On the other hand, increasing interest has recently

been devoted to interlocking blocks capable to

enhance the sliding resistance of masonry joints.

These blocks are rigid units which, on their faces, have

locks keeping the blocks together, preventing them

from sliding. Experimental and numerical tests [20]

investigated the in-plane and out-of-plane capacity of

masonry walls composed of blocks with corrugated

interfaces. Out-of-plane behaviour of osteomorphic

blocks and interfaces with cross-shaped locks were

also experimentally investigated by Dyskin et al. [21]

and Ali et al. [22], respectively. Similarly, experi-

mental and numerical investigations were carried out

on the different behaviour of wooden joinery connec-

tions with different geometric properties [23–26]. A

digital tool to design structurally feasible masonry

structures composed of interlocking blocks has been

developed by some of the presenting authors [27–29].

One of the key factors influencing the behaviour of

the conventional mortared block masonry is the bond

strength between the mortar and the units, which also

affects the pull-out strength of injected anchors

frequently used in masonry walls [30]. Similarly, the

shear strength between the locks and the main body of

an interlocking block is of utmost importance for dry

masonry structures made of units with corrugated

interfaces. This means that, if interlocking blocks are

composed of cohesive material at the interfaces

between their locks and main bodies, the Mohr–

Coulomb criterion can be adopted for both systems,

for which the bond strength itself depends on the initial

shear strength (cohesion) and the coefficient of

friction, as well as the level of normal stresses. To

determine the initial shear strength and the coefficient

of friction, only European Standard EN 1052–3 [31]

test method is available so far. However, the scientific

literature shows that different domestic test methods

have been developed worldwide, indicating the diffi-

culty of finding a general consensus [32].

This paper is particularly focused on the assessment

of the torsion-shear capacity of the contact interface

between the lock and the main body of an interlocking

block, assumed to have a cohesive behaviour. To this
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aim, two numerical approaches and a novel ad hoc

experimental investigation are herein proposed to

simulate this behaviour by applying eccentrical shear

forces to the upper lock.

The paper is organised as follows. In Sect. 2, the

analytical formulations of the concave, convex and

corrected concave models proposed by Casapulla and

Maione [14] are extended to such an interface,

considering the shear resistance different from the

frictional resistance. Section 3 explores the DEM

capability to model interlocking joints for the simplest

case study of an interlocking cuboidal block with a

square cuboidal lock on its main body. A novel test

method is then proposed in Sect. 4 to evaluate the

initial shear and torsion-shear capacity of a single lock

of an interlocking block. The test setup is similar to

that used for dry-stacked tuff blocks [16], but with

different load applications and constraints, to allow the

absence of normal force on the cohesive interface

between the two parts of the block (lock and main

body) kept rigid during the tests. Section 5 presents the

comparison of the analytical and numerical results

against the experimental ones, with interesting

remarks on the application of the different approaches.

Finally, the conclusions are summarized in Sect. 6.

2 Analytical contact formulations for torsion-

shear interactions in limiting conditions

An assemblage of interlocking blocks can be modelled

as a set of units with potential failure surfaces at their

inner sides and boundaries. For an interlocking block

represented in Fig. 1a, its main body and locks

(projections keeping the blocks together) can be

considered rigid enough, so that the failure surfaces

are assumed to be the dry joints between two blocks

(blue planes), with potential sliding along the locks,

together with the fracture planes at which each block

might crack (red planes). The assumption of rigid

bodies for the main body and the locks becomes even

more reliable as the number of locks is increased;

therefore, the key issue is to define the load-bearing

capacity of each lock connection.

Basically, a lock connection can be cracked due to

bending or torsion-shear failure when the lock is

subjected to lateral forces. Considering a sufficiently

thick lock to avoid its bending failure [27], the

cracking at the interface with the main body may occur

for different combinations of torsion moment and

shear force.

The main objective of this paper is to investigate

these yield conditions at the single lock connection

(Fig. 1b), which is carried out using different ideal-

izations of the contact interfaces (listed above), among

which the convexity and the concavity models are the

most common ones [13]. These models are generally

used for the dry contact interfaces between masonry

units, governed by the cohesionless Coulomb’s law of

friction, to predict the limiting forces at the interface,

though providing some discrepancy in the evaluation

of the torsion capacity [33]. The related analytical

formulations have recently been validated by compar-

ison of the results with the experimental investigation

carried out by Casapulla and Portioli [16], based on an

ad hoc setup of two dry-stacked tuff stones. A reliable

corrected concave formulation has then been devel-

oped to account for the discrepancy in the torsion

capacity [14].

However, to apply these models to the lock

connections, a shear resistance different from the

frictional resistance should be defined. The following

sections will address the extension of these two

formulations to the lock connection, together with

the assumed interface law.

2.1 Convex and concave formulations

The concave or point contact formulation is a dom-

inant approach to model the stress states of assem-

blages of rigid blocks, first developed by Livesley

[13]. In this method, the contact interfaces are

idealized so that the internal forces are distributed on

a few contact points, usually located at the vertices of

these interfaces. The stress resultant vector at each

point has only a normal and a shear component, while

the torsion capacity of the interface is represented by

two couples of shear forces orthogonal to the interface

diagonals. Moreover, different twisting centres are

possible for uniform and non-uniform distributions of

shear components and normal forces.

Instead, the convex contact formulation represents

the interaction between two blocks via the stress state

at a single point on their interface [13]. The stress

resultant vector at this point includes six components

of normal and shear forces as well as bending and

torsion moments. It is worth noting that, although this

formulation implies that the contact occurs at a single

Materials and Structures (2021) 54:134 Page 3 of 20 134



point, as if the two surfaces in contact were slightly

convex, the shear, bending and torsion components

imply their interactions along the entire surfaces [16].

To apply these formulations to the contact interface

between the main body and the lock of an interlocking

block, first the shear resistance of the interface should

be introduced. In the case of cohesive-frictional

material at this interface, the Mohr–Coulomb law

may be used, which considers the shear resistance of a

lock subjected to shear and compressive forces greater

than the shear resistance of a lock only subjected to

pure shear forces, because of the effect of the

compression. However, for the sake of safety and to

make the shear resistance independent of the normal

force, the Tresca yield criterion [27, 34] is herein

assumed and the pure shear resistance, e.g. due to

cohesion, is considered as the limiting value, neglect-

ing the contribution of the compressive forces. This

means that the limiting pure shear force for the lock

interface is (Fig. 1b):

V0 ¼ s0ab ð1Þ

where s0 is the cohesion or the pure shear strength

depending on the material properties. Based on the so

defined pure shear resistance, the two formulations for

torsion-shear interaction previously developed for dry

contact interfaces in [14] can easily be applied to the

lock interface, as summarised in the following.

The interaction effect of the torsion moment MT

and the shear force V (Vx, Vy) occurs when the shear

force is applied to the lock with some eccentricity

e (ex, ey) with respect to the centroid O of the contact

interface (Fig. 2a, b) so that MT = Vxey ? Vyex. In this

case, using the superimposed symbols ^ and _ to

denote convexity and concavity, respectively, the

convexity model (Fig. 2a) provides highly non-linear

relationships among the variables V̂x, V̂y, M̂T and the

coordinates of the torsion centre T (xT, yT), as

described by Casapulla [35]. In particular, when V̂x ¼
0 (torsion centre on the X axis), still assuming that the

shear stress at each point of the interface is orthogonal

to a line connecting the point and T, the torsion-shear

interaction is described by the following equilibrium

equations (Fig. 2c):

V̂y ¼ V̂ ¼ V0

4ab
b A� Bð Þ þ 2 xT þ að Þ2

ln
bþ A

�bþ A
þ 2x2

T ln
�bþ B

bþ B

� �

ð2Þ

M̂T ¼ V0

6ab
�xTbB þ xT þ að ÞbA þ x3

T ln
�bþ B

bþ B

�

þ xT þ að Þ3
ln

bþ A

�bþ A
� b3

4
ln

2xT þ B

2 xT þ að Þ þ A

�
þ�V̂y xT þ a

2

� �

ð3Þ

where:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 xT þ að Þ2þb2

q
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

T þ b2

q
ð4Þ

Like the convexity model, the concavity model also

assumes that the shear strengths at the contact points

are orthogonal to the lines connecting them to T, but

these strengths are concentrated in four vertices whose

distances from T are denoted as di, with i = 1 to 4

(Fig. 2b). Assuming again �Vx ¼ 0, the torsion centre is

on the X axis and the following relations can be

derived depending on the block dimensions (Fig. 2d):

Fig. 1 3D representation of an interlocking block with a three locks and b only one lock
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�Vy ¼ �V ¼ V0

2
sin a1 þ sin a2ð Þ ð5Þ

�MT ¼ b2 d1 þ d2ð Þ þ 4d1a aþ xTð Þ
8d1d2

� �
V0 �

a

2
�V ð6Þ

where:

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
T þ b

2

� �2
s

; d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT þ að Þ2þ b

2

� �2
s

ð7Þ

A family of interaction curves can numerically be

obtained for both formulations, for different aspect

ratios a/b. However, the results obtained by the two

models are not coincident with each other, and their

difference increases with the prevalence of the torsion

moment, as highlighted in [14]. In that paper, it was

also demonstrated how this difference is related to the

overestimation of the pure torsion capacity in the

concavity model, and therefore a ‘‘corrected’’ concave

formulation was proposed. This can also be applied to

the lock connection, as developed in the following.

2.2 Corrected concave formulation

As remarked in the previous section, the torsion and

torsion-shear yield domains obtained by the concave

formulation appear to be less reliable in comparison

with those obtained by the convex formulation, but the

former allows enhancing the computational efficiency

when it is used in micro-modelling approaches for

limit analysis of masonry walls [13].

To benefit from this advantage, the efficient

correction of the torsion capacity proposed by Casa-

pulla and Maione [14] is herein applied to the lock

connection of the interlocking block (Fig. 1b), with its

direct effects on the torsion-shear interaction. It is

based on finding the corrected positions of the contact

points in the concave model that provide the pure

torsion capacity equal to the convex formulation

(Fig. 3a). In fact, from the equation:

M̂T0 ¼ V0cT ¼ �MT0 ¼ V0c1 ð8Þ

it is derived that the position c1 of the single contact

point in Fig. 3b will be:

Fig. 2 Torsion-shear interaction by the a, c convex and b, d concave contact interfaces
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c1 ¼ cT ¼ 1

12ab
a3ln

bþ d

a
þ b3ln

aþ d

b
þ 2abd

� �

ð9Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
is the length of the diagonals.

This means that a reduced effective area can be

derived, with dimensions:

a1 ¼ cT
c
a; b1 ¼ cT

c
b ð10Þ

where c is the actual half-diagonal, i.e. c = d/2.

Therefore, Eqs. (5) and (6) become:

�Vy ¼ �V ¼ V0

2
sin a1 þ sin a2ð Þ ð11Þ

�MT ¼ b2
1 d1 þ d2ð Þ þ 4d1a1 a1 þ xTð Þ

8d1d2

� �
V0 �

a1

2
�V

ð12Þ

where V0, d1 and d2 are derived by Eqs. (1) and (7),

respectively, by replacing a and b with a1 and b1 in

Eq. (10).

As will be shown in Sect. 5, this criterion also

affects the torsion-shear interaction and can therefore

be used as a potential yield domain for the lock

connection.

3 Numerical analysis for torsion-shear

interactions in limiting conditions using discrete

element modelling (3DEC)

The torsion-shear capacity of the lock connection in

Fig. 1b is herein also investigated using the discrete

element approach by means of 3DEC [4], a 3D

numerical modelling code for advanced analysis of

discontinuous media subjected to either static or

dynamic loading [2, 3].

Generally speaking, a concave-shaped element

simulating the interlocking block in Fig. 1b could be

modelled in 3DEC by joining two convex polyhe-

drons, representing the lock and the main body

(Fig. 4a). However, to reproduce the torsion-shear

behaviour at their interface better, these two convex

polyhedrons are herein considered as individual rigid

units stacked over each other with a cohesive contact

in between (Fig. 4b). Each of the rigid blocks is a body

with three translational and three rotational degrees of

freedom, while the deformable contact is discretized

into finite elements, with three translational degrees of

freedom at each vertex, based on the contact stress-

displacement law.

Considering the interlocking block under study,

high stiffnesses and Mohr–Coulomb criterion are

assumed for the deformable interface between the

two rigid parts (lock and main body). In particular, to

approach the rigid-plastic behaviour assumed within

the analytical formulations in Sect. 2, the normal and

tangential stiffnesses of the contact interface can be

considered equal to (or greater than) 1010 N/m, while

to avoid the tensile failure at the same contact, the

tensile strength is considered large enough, i.e. 105

N/m2. On the other hand, while the cohesion value is

equal to the material shear strength, as applied in Sect.

5, to make the shear resistance independent of the

normal stress (like the Tresca model), the contact

friction angle is set to be zero.

To investigate the torsion-shear behaviour of the

lock connection, the lower main body is fully fixed,

while the upper lock is subjected to lateral point loads.

These have different eccentricities with respect to the

contact centroid to find the maximum load the contact

Fig. 3 Shear stresses and/or forces over the a convex and b corrected concave contact interfaces under axial compression and pure

torsion moment
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can bear. Since applying point loads to the rigid block

boundary is not possible in 3DEC, boundary stresses

are instead applied as non-uniformly distributed

forces, equivalent to a point load with some

eccentricity.

Two directions of the point load are herein consid-

ered, including the lateral force normal to X (Fig. 4c)

and 45� inclined with respect to this axis (Fig. 5a).

A force Vy normal to the X axis with eccentricity ex
can be substituted by the same force and a torque

My = Vyex applied to the centroid of the vertical lock

face (Fig. 4d). Their distributions on the 2D lateral

face of the lock (equal to ah) are displayed in Fig. 4e,

where:

Vdy;h ¼
Vy

ah
; Mdy;h ¼

6My

a2h
ð13Þ

and the slope ky of the linear distribution is:

ky ¼
12My

a3h
ð14Þ

On the other hand, an inclined force V with eccentric-

ity e can be decomposed by two components normal to

the X and Y axes, i.e. Vx ¼ Vy ¼
ffiffi
2

p

2
V and ex ¼ ey ¼

Fig. 4 a Concave-shaped block modelled in 3DEC, b 3DEC interlocking block modelled in this paper with a cohesive contact between

its main body and lock, c to f replacing the pointed force normal to the X axis with a linearly distributed force

Materials and Structures (2021) 54:134 Page 7 of 20 134



ffiffi
2

p

2
e (Fig. 5a,b). The components of the force and

torque in the two directions can be substituted by

{Vdy,h, Mdy,h} and {Vdx,h, Mdx,h} (Fig. 5c), respectively

defined by Eq. (13) and by:

Vdx;h ¼
Vx

bh
; Mdx;h ¼

6Mx

b2h
ð15Þ

while the slope kx of the linear distribution is:

kx ¼
12Mx

b3h
ð16Þ

Summing up each pair of the distributed forces

representing V and M, a linearly non-uniform dis-

tributed force is obtained (Figs. 4f and 5d).

To study the torsion-shear behaviour of the cohe-

sive contact, the ultimate normal and inclined V are

found for different eccentricities, by incrementally

increasing V. The ultimate V is, in fact, the maximum

lateral force equilibrating the system. However, in the

case of the pure shear condition, the shear stress at the

interface multiplied by the contact area has turned out

to be different from the applied V. This discrepancy

occurs when the width of the lock is smaller than that

of the main body, and to remedy this drawback, the

main block has been divided into three fixed parts

(Fig. 6a). The shear and tensile strengths at the vertical

contacts between them are considered very large to

simulate they are part of a unique rigid block.

Furthermore, it has been observed that applying the

non-uniformly distributed force on a rigid model, the

shear stress distribution varies for different types of

face triangulations. A contact can be discretised using

different triangulation commands provided by 3DEC

and the ideal commands are those that can discretize a

contact symmetrically. Two of these commands are

‘‘radial’’ and ‘‘rad8’’, where the former adds a vertex

on the face centroid, the latter adds vertices on the face

centroid and on the middle of boundary edges

(Fig. 6b–d).

Also, the contact can be discretised into smaller

sub-contacts with more contact points through divid-

ing and then joining the related polyhedrons. Fig-

ures 6c–e show a cohesive interface divided into four

Fig. 5 Replacing the pointed force 45� inclined with respect to the X axis with two linearly distributed forces
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pieces, triangulated using rad8, and joined again

(divide-join rad8), respectively.

Difference in the shear stress distribution results in

finding different ultimate force V, and the difference

increases with the eccentricity. Later in Sect. 5, the

obtained ultimate V found by these four face triangu-

lation types are compared to those obtained by

analytical and experimental investigations.

4 Experimental investigation on the lock

under torsion-shear loading

In this section, an experimental investigation on the

limiting pure shear and torsion-shear combinations at

the lock interface of a simple interlocking block made

of cohesive material is presented. An ad hoc test setup

was realized to estimate these resistances at the

interface between the lock and the main body, while

keeping them rigid.

Two different mortars were chosen to make the

specimens, which were casted using 3D printed

moulds, and four different test configurations (sets)

were set up to simulate shear and torsion-shear

failures. Combining the four sets and the two mortars,

eight samples were tested. Two samples were tested in

pure shear (each involving four specimens), while six

samples were tested in torsion-shear condition (each

involving three specimens), in total providing twenty-

six experimental results.

The experimental investigation was carried out

with standard and non-standard equipment at Labora-

tory of the Department of Structures for Engineering

and Architecture (DiSt) of the University of Napoli

Federico II (Italy).

4.1 Specimen shape and characterization of two

mortars

The first phase of the experimental investigation

focused on finding the proper shape and dimensions

for the interlocking block and appropriate mechanical

properties for the specimens made of cohesive

material.

The designed specimen is composed of a main

body, which is a 100 x 90 x 50mm3 cuboid, with a

100 x 30 x 15mm3 cuboidal lock located on its upper

face (Fig. 7a). Before defining this final shape, several

specimens were made by casting mortars with differ-

ent mixtures in a mould (an ad hoc formwork to make

the customized lock dimensions), and different

moulds were also explored. The final formwork was

Fig. 6 a, b Discretisation of the main body to remove the equilibration error; different face triangulation models for the contacts

between rigid blocks as: c radial, d rad8 and e divide-join rad8
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composed of pieces provided in the desired shape and

dimension by a 3D printer (Fig. 7b, c).

On the other hand, calibrating the mechanical

properties of the appropriate mortar was a crucial

issue, and the first phase of the experimental program

was aimed to obtain: (1) failure load values consistent

with the designed setup (limit load = 500 N) and

within the valid range of the employed instrumenta-

tion; (2) failure modes corresponding to instantaneous

and clear cutting of the lock from the main block

(cohesive crack). After several attempts with tradi-

tional mortars, non-standard M1 and M2 mortars were

finally defined, whose composition and curing time are

reported in Table 1.

The main components of M1 are Pozzolana, a

volcanic material from Pozzuoli (Naples, Italy) with a

range of colours between grey and red [36, 37], and

lime, supplied by the Neapolitan company Cimmino

Calce s.r.l., which is a calcium-containing inorganic

mineral still extensively used as a building and

engineering material. M2 is instead a cement-based

mortar in which the cement took the place of lime,

with different percentages. The mixtures were pre-

pared using the amount of water required to ensure

enough workability and normal consistency. Accord-

ing to the European Standard UNI EN 1015–2 [38], the

pastes were compacted during the casting process to

remove any air bubbles and voids. Curing was

performed in ambient laboratory conditions (relative

humidity 60 ± 10% and 20 ± 5 �C) until the test day

(Fig. 7d). Flexural and compressive tests were also

carried out using standard equipment, based on the

UNI EN 1015–11 [39], and the mean values of the

measured density and strengths are summarized in

Table 1.

4.2 Test setup

The test setup was specifically designed to investigate

the pure shear and torsion-shear resistances of the lock

interface, and to this aim several issues were taken into

account. To minimise the effect of bending usually

experienced during shear tests [32] and to neglect the

pre-compression force, which are the main challenges

of the classical experimental setup [31], a new setup

was developed for the experimental tests.

Actually, a horizontal load was directly applied on

the front face of the lock by the static gravity load via a

pulley system, while the main body of the interlocking

block was held fixed, until the collapse of the lock. On

the other hand, to consider the pure shear resistance

and torsion-shear combinations, different positions

and orientations of the designed pulley system were

explored.

The test setup is schematically shown in Fig. 8a, b:

the horizontal point-load was applied to the side face

of the specimen lock by means of an electric hydraulic

jack, monotonically increasing until the failure mech-

anism. As shown in Fig. 8b, c, the main body of the

block was fixed to a wooden board to avoid sliding and

to the upper support to avoid rotation, while the board

was fixed to the upper support against sliding as well.

It is worth noting that this setup only allows torsion-

shear combinations with low and intermediate eccen-

tricities of the applied force (Fig. 8c), while the

simulation of the pure torsion moment would require

the application of a couple of forces as carried out for

dry-stacked units [16].

The application of an iron cup on the lock allowed

both to simulate this body as a rigid block and to

distribute the applied shear force along the whole lock

face (Fig. 8e). On the other hand, the main body of the

interlocking block was kept rigid during the tests by

using a 3D printed rigid cup-shaped box. The load was

applied under displacement control at a constant rate

of 3 mm/min.

Forces were measured using a load cell with 500 N

maximum capacity and 10 Hz acquisition frequency,

while the displacements were measured using linear

variable displacement transducers (LVDTs) with a

displacement range of ± 50 mm. A digital scanner,

distributed by Vishay Measurements Group, was

employed to acquire transducers data.

To record both pure shear and torsion-shear

failures, three LVDTs, supported by a steel frame,

were positioned to the lateral and back sides of the

lock, and numbered as shown in Fig. 8f.

4.3 Testing program

The experimental program was planned to analyse the

shear resistance of the lock interface in the case of pure

shear (S1) and torsion-shear (S2, S3 and S4). The

horizontal force, representing the shear force V, was

applied at variable eccentricity and direction with

respect to the vertical midplane of the lock.
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As introduced above, the specimens made of two

chosen mortars, M1 and M2, were tested using four

setups, resulting in eight samples (Table 2):

• S1M1 and S1M2 for the limiting pure shear

evaluation, each comprising four specimens;

• S2M1, S2M2, S3M1, S3M2, S4M1, S4M2 for the

limiting torsion-shear evaluation, each comprising

three specimens.

As shown in Table 2, the shear setup S1 was modified

in S2-4 to allow the expected torsion-shear behaviour,

in different ways:

• for S2, the force application point was moved

along the lock, while V was still orthogonal to the

lock front side, with the eccentricity e = 25 mm

from point O;

• for S3, the force application point was only

distanced from the centroid of the vertical lock

Fig. 7 a Designed specimen (the dimensions are in mm); b, c printed moulds; d curing phase

Table 1 Composition and mechanical properties of the tested mortars

Mortar Pozzolana

(%)

Sand

(%)

Cement

(%)

Lime

(%)

Curing time

(days)

Flexural strength

(MPa)

Compressive strength

(MPa)

Density (kN/

mc)

M1 50 24 2 24 28 1.05 2.69 12.7

M2 47 38 15 – 28 0.37 0.75 14.0
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face, with V rotated 45� counter clockwise,

providing the eccentricity e = 29 mm;

• for S4, the force application point was spaced from

the lock and moved to a different position, with

V rotated 45� clockwise, applying the eccentricity

e = 51 mm.

4.4 Experimental results

To determine the pure shear strength (cohesion) of the

two mortars, 8 tests were carried out using the M1 and

M2 mortar samples and the S1 shear test setup

described in the previous sections. The limiting pure

shear force for M1 and M2 are collected in Table 3,

together with the other sets. The coefficients of

variation (CV) show a low dispersion of the frequency

distributions and therefore a good reliability of the test

setup. The averages of the limiting forces related to the

pure shear failure are 430 N and 240 N for M1 and M2,

respectively. The greater shear resistance of M1

compared to M2 is in good agreement with similar

trends for the compressive and flexural strength results

shown in Table 1.

For this setup (pure shear), two LVDTs were used

to verify the effective displacements of the lock in the

absence of torsion. Figure 9a,b show the load–

displacement curves referred to some of the four tests

bFig. 8 Test setup. a, b Displacement and load measurement; c,

d constraints; e interlocking block with steel cup; f LVDT’s

position in the plan view

Table 2 Experimental set

configurations (the

distances are in mm)

Set Configuration

S1M1

S1M2

S2M1

S2M2

S3M1

S3M2

S4M1

S4M2
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performed on each of M1 and M2, i.e. T2 test in

Fig. 9a, and T1 and T3 Tests in Fig. 9b. From these

figures it is first evident the quasi-brittle behaviour of

the material for both mortars. It is then worth

emphasizing that the displacements of the two

LVDTs, registered as channels Ch.2 and Ch.3 in the

figure, substantially tend to overlap for each test. This

result confirms once again the reliability of the setup

realized ad hoc, since the specimens collapsed in pure

shear without torsion effect. The maximum capacity

values shown in the graphs correspond to the limiting

forces collected for the corresponding tests in Table 3.

The S2-3-4 setups were developed to analyse the

torsion-shear resistance of the lock. These setups

differ from each other in the eccentricity of the applied

force. To determine the torsion-shear strength of the

two mortars, a total of 18 specimens, three per each set

and mortar, were made out on the M1 and M2 samples,

as reported in Table 3. The first interesting remark is

that the values of the forces V related to the torsion-

shear failure of each mortar decrease with increasing

eccentricity, as expected. The small coefficients of

variation CV, except one, still show quite a good

reliability of the setup adopted.

On the other hand, through the load–displacement

curves in Fig. 9c–f, it is possible to confirm the quasi-

brittle behaviour of the involved materials and to

analyse the rotation of the lock until collapse and its

consistency with the eccentric load applied. Unlike the

curves for pure shear in Fig. 9a,b, where the displace-

ments of LVDTs Ch.2 and Ch.3 tend to coincide, for

the torsion-shear condition the displacements are very

different from each other. In particular, before the

collapse of the lock, the displacements of LVDT Ch.3

are generally limited into 0.5 mm, while the

displacements recorded by LVDT Ch.2 are even six

times higher than those reported by LVDT Ch.3.

Using three LVDTs allows to record three final

displacements at the moment of the lock failure and

therefore to build the final deformation. Further

investigation will be carried out to define the pure

torsion strength as well, so that analytical yield

domains in torsion-shear interaction can be experi-

mentally validated, similarly to what developed in

[16] for dry-stacked tuff blocks.

5 Comparison of analytical, numerical

and experimental results

This section presents the analytical and numerical

results and their comparison with each other and

against the experimental outcomes, with reference to

the torsion-shear interactions on the lock interface of

the simple interlocking block experimentally investi-

gated (Fig. 7a). The analytical results include those

obtained by the convex, concave and corrected

concave formulations described in Sect. 2, while the

numerical results are referred to the three face

triangulation types (normal, radial and rad8) used in

3DEC. For each mortar, the value of the pure shear

force is considered as the mean value of the experi-

mental results displayed in Table 3, that are 430 N and

240 N for M1 and M2, respectively. The cohesion

values adopted for the 3DEC analyses are s0 = 0.14

N/mm2 for M1 and s0 = 0.08 N/mm2 for M2, which

are obtained applying Eq. (1).

The first remark is that the curves related to the two

different orientations of the applied shear force

(orthogonal and 45� inclined to the vertical lock face)

Table 3 Pure shear and

torsion-shear resistances of

the 26 specimens

Set ecc. (mm) Mortar Shear force V (N) CV (%) Average V (N)

T1 T2 T3 T4

1 0 M1 399 472 408 445 6.8 430

M2 250 242 226 243 3.7 240

2 25 M1 314 300 330 3.9 315

M2 213 203 181 – 6.7 199

3 29 M1 243 260 276 – 5.2 260

M2 181 193 192 – 2.9 189

4 51 M1 79 177 195 – 33.9 150

M2 118 133 106 – 9.3 119

134 Page 14 of 20 Materials and Structures (2021) 54:134



provide close results for both the 3DEC and the

convex models, as shown in Fig. 10a, b referred to M1.

In particular, the curves referred to 45� inclined forces

provide slightly higher values for all the cases and this

allows to proceed with the more conservative results

related to the orthogonal shear force. The similarity of

these results is mainly due to the fact that both the

distances of the instantaneous twisting centre and the

Fig. 9 Load–displacement curves for S1 tests: a M1_T2 – M2_T2 and b M1_T1– M2_T3. Load–displacement curves for S2 and S3

tests and: c, d M1 and e, f M2
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corresponding applied shear force from the centroid of

the interface almost lay on the same line, whatever the

inclination of the force, as highlighted in [35]. It is also

important to note that the outcomes of the 3DEC

model in Fig. 10a are represented by quite linear

curves, with the same pure shear force but different

pure torsion moments. This tendency is also followed

by the analytical curves, though they are not linear but

parabolic arcs.

In order to be compared, all the numerical and

experimental results are collected in Figs. 11a and 11b

with reference to M1 and M2, respectively.

By comparing the numerical and analytical results,

from both figures it emerges that the upper and lower

lines of the 3DEC results seem to be the chords with

the same endpoints as the parabolic curves provided

by the concave and convex formulations, respectively.

This suggests that the 3DEC normal model is more

similar to the concave model, while the 3DEC rad8

model is close to the convex model and even closer to

the corrected concave model (CCM in the figure).

The most interesting remark regards the compar-

ison of the analytical/numerical results with the

experimental ones, based on the assumption that the

value for the pure shear condition of both mortars is

the mean value of the corresponding experimental

results for S1. Figure 11a shows that, for the M1

specimens, the torsion-shear with low eccentricity

(S2) provides results between the two upper curves

obtained by 3DEC and the concave formulations,

while the experimental results corresponding to the

45� inclined forces (S3 and S4) with increasing

eccentricities mostly straddle the curve obtained by

the convex model. It is also evident that one of the S4

specimens is very far from the others and can be

discharged. On the other hand, similar results can be

observed for M2 from Fig. 11b, though with lower

results predicted by the same models as for M1 and

some anomaly for S3. In fact, from this figure it can be

observed that both the 3DEC normal and the concave

models underestimate the experimental values for S2,

while the 3DEC rad8 and the convex model underes-

timate the experimental values for S4, but the results

for the S3 sample are even higher than the concave

curve.

Increasing the density of the interface subdivision

by 3DEC will provide greater discrepancies with the

analytical and experimental results, as shown for the

3DEC divide-join rad8 model in Fig. 11a.

Besides, it should also be considered that the

experimental results on the cohesive joint are affected

by the mechanism of dilatancy, which tends to

increase with the decrease of shear displacement and

compression [1, 40] and therefore to provide larger

values of the initial shear strength (cohesion) [41].

Although this is a complex issue as addressed in [42],

it suggests that the analytical and numerical curves

herein obtained in favour of safety and without

considering dilatancy would be sufficiently reliable

even in the presence of compression on the joints, as

actually occurs in real structures.

Another interesting remark is that the shear stress

distributions at the contact for the different models and

types of discretization are in good agreement with the

Fig. 10 Numerical results for orthogonal and 45� inclined shear forces and M1, obtained by the: a 3DEC model and b convex model
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compared results. As an example, Fig. 12 reports the

stress distributions for the S4-M2 case (torsion-shear

with large eccentricity), where the position of the

torsion centres of the conservative models, i.e. the

analytical convex (Fig. 12b) and the 3DEC rad8

(Fig. 12e) models, are very close to each other and they

both well represent the experimental cracking of the

lock (Fig. 12a).

It can be concluded that, although further experi-

mental results are needed, especially referred to larger

eccentricities towards the pure torsion moment, the

comparison of all the results show that the analytical

concave and corrected concave models may respec-

tively represent the upper and lower bounds of the

torsion-shear behaviour of a cohesive joint. Moreover,

the curves obtained by 3DEC normal and rad8 models

are the conservative lines of these curves.

Fig. 11 Numerical and experimental results for orthogonal shear forces and a M1 and b M2

Fig. 12 S4-M2 case. aExperimental cracking and shear stress distributions for the b convex model and the c-e 3DEC face triangulation

types
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6 Conclusions

Analytical, numerical and experimental approaches

have been presented in this paper to investigate the

torsion-shear capacity of the contact interface between

the lock and the main body of an interlocking block,

assumed to have a cohesive behaviour.

Three analytical formulations, i.e. the concave,

convex and ‘‘corrected’’ concave models, previously

developed for assemblages of rigid blocks with

conventional planar joints, have been extended to

investigate the torsion-shear capacity of the lock

connection, introducing a shear resistance indepen-

dent of the normal force, based on the Tresca yield

criterion and the cohesion as limiting value. Like the

conventional planar dry interface, the overestimation

of the pure torsion capacity in the concavity model

with respect to the convex formulation has also been

observed in the lock connection of the interlocking

block, confirming the higher reliability of the ‘‘cor-

rected’’ concave model.

Numerical analyses employing the modelling code

3DEC for advanced analysis of discontinuous media

have been carried out on an interlocking cuboidal

block with a cuboidal lock on its main body, to model

the interlocking interface. As point loads cannot be

applied to the rigid block boundary in 3DEC, lateral

forces applied to the lock have been simulated as non-

uniformly distributed forces with a linear gradient, and

with different shear stress distributions varying with

the face triangulation type. In particular, ‘‘radial’’ and

‘‘rad8’’ triangulations provided by 3DEC have been

used, obtaining different ultimate forces, with differ-

ences increasing with eccentricity.

The third approach herein presented is the exper-

imental investigation carried out on the simplest

interlocking block, composed of a main body with a

square cuboidal lock located on its upper face and

subjected to lateral loading in absence of normal force.

An ad hoc test setup was realized to estimate the initial

shear and torsion-shear strengths at the lock interface,

with results reported in terms of load–displacement

curves. Two cement-based mortars M1 and M2 were

used for specimens, casted using moulds provided by a

3D printer.

Comparing analytical and numerical results on the

interlocking block experimentally tested, the follow-

ing comments are interesting to underline:

• in both cases, the two different orientations of the

applied shear force (orthogonal and 45� inclined to

the vertical lock face) provide close results, with

more conservative values obtained for the orthog-

onal direction;

• assuming the same pure shear values, different

pure torsion values are attained by the four

numerical models for the interlocking interface

(normal, radial, rad8, and divide-join rad8) and

analogous observations can be made for the three

analytical models (concave, convex and ‘‘cor-

rected’’ concave);

• the 3DEC normal model is similar to the concave

model, while the 3DEC rad8 model is close to the

convex model and even closer to the ‘‘corrected’’

concave model;

Comparing the analytical and numerical results with

experimental ones allows the following comments:

• both for M1 and M2, experimental results corre-

sponding to the 45� inclined forces with increasing

eccentricities mostly straddle the curve obtained

by the convex model, while the torsion-shear

condition with low eccentricity and orthogonal

shear forces provides results between the two

upper curves obtained by 3DEC and the concave

formulations, though with upper values for M2;

• increasing the density of the interface subdivision

by 3DEC, e.g. with divide-join rad8, is not

convenient since providing greater discrepancies

with both analytical and experimental results.

In conclusion, the analytical concave and ‘‘corrected’’

concave models, and the corresponding parabolic

curves obtained, can be assumed as the upper and

lower bounds of the torsion-shear behaviour of a

cohesive joint, while the 3DEC normal and rad8

models, and the corresponding linear curves obtained,

can be considered their conservative interpretation.
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51:336–355

29. Mousavian E, Casapulla C (2020) Structurally informed

design of interlocking block assemblages using limit anal-

ysis. J Comput Desig Eng 7(4):448–468

30. Giresini L, Puppio ML, Taddei F (2020) Experimental pull-

out tests and design indications for strength anchors instal-

led in masonry walls. Mat Struct 53:103

31. UNI EN 1052–3 (2007). Methods of test for masonry - Part

3: Determination of initial shear strength.
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