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Abstract An analysis-oriented mechanical model

for shear strength evaluation of Reinforced Concrete

(RC) beams with transverse reinforcement with two

different inclinations, which required a numerical

analysis, is turned into a design-oriented analytical

model that can easily be utilized for practical

purposes. The model assessed the shear resistance,

according to the ‘‘lower-bound solution’’, employing a

numerical procedure that maximizes the element shear

strength varying the stresses in the two sets of

transverse reinforcement and the magnitude and

inclination of the web concrete compressive stress

field. The model is formulated with the aim of

representing an extension of Eurocode 2 framework

to RC beams with two orders of stirrups. In this paper,

an analytical procedure is derived, substituting the

former numerical maximization procedure, in order to

obtain the optimal values of the aforementioned

parameters, for any layout and amount of shear

reinforcement. Comparison between shear strength

predictions provided by the model and test results

available in the literature confirms the model’s

efficiency.

Keywords Shear strength � Design-oriented

analytical model � Different inclined stirrups �
Variable inclination of compressive stress field

List of symbols

a Shear span

bw Cross-section minimum web width

d Cross-section depth

fc Compressive strength of concrete

fcd Design compressive strength of concrete

f 0cd Design reduced compressive strength of

concrete

fyd Design tensile strength of steel

stw1 Spacing of the first order of transverse

reinforcement

stw2 Spacing of the second order of transverse

reinforcement

m Non-dimensional shear strength

xc Neutral axis

z Internal lever arm, equal to 0.9 d

A0
s Cross-sectional area of the top longitudinal

reinforcement
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As Cross-sectional area of the bottom longitudinal

reinforcement

Atw1 Cross-sectional area of the first order of

transverse reinforcement

Atw2 Cross-sectional area of the second order of

transverse reinforcement

1 Angle of inclination, with respect to the beam

axis, of the first order of transverse

reinforcement

2 Angle of inclination, with respect to the beam

axis, of the second order of transverse

reinforcement

Slope of the web concrete stress field

m0 Coefficient to be applied to the compressive

strength of concrete fc to take into account the

biaxial stress state

n Non-dimensional neutral axis depth, equal to

xc/z

~rcw Non-dimensional stress of the web concrete

~rlw Non-dimensional stress of the web

longitudinal reinforcement

~rtw1 Non-dimensional stress of the first order of

transverse reinforcement

~rtw2 Non-dimensional stress of the second order of

transverse reinforcement

xlw Mechanical ratio of the web longitudinal

reinforcement

x0
s Mechanical ratio of the top longitudinal

reinforcement

xs Mechanical ratio of the bottom longitudinal

reinforcement

xtw1 Mechanical ratio of the first order of transverse

reinforcement

xtw2 Mechanical ratio of the second order of

transverse reinforcement

1 Introduction

Shear failure in RC elements is one of the most

undesirable modes of failure due to its rapid progres-

sion. Diagonal cracks are the warning signs of

incipient shear failure. Usually, the inclined shear

cracks start at the middle height of the beam or at the

location of the longitudinal reinforcement, and extend

towards the compression zone. In order to prevent

shear cracking or reduce its width, transverse

reinforcement has to be provided. Since the principal

tensile stresses act in an inclined direction, the most

effective configuration is obtained when the shear

reinforcement is inclined along the direction of the

principal tensile force. However, in order to control

shear cracking and to provide adequate beam shear

strength, stirrups are the most commonly used shear

reinforcement, for their simplicity in fabrication and

installation. Stirrups are spaced closely at the beam

end, aiming to provide both strength in the high shear

region, and concrete confinement in the zone of

possible plastic hinge activation. However, reinforce-

ment congestion near the support of the RC beams due

to the presence of a large amount of longitudinal

reinforcement and closely spaced stirrups increases

the cost and time required for installation, and calls for

the study of other alternatives.

In this regard, many of the innovative solutions, as

well as the construction practice of the past, used

inclined transverse reinforcement [1–15]. One of the

most interesting attempts, characterized by the pres-

ence of inclined transverse reinforcement, consists in

the use of continuous spirals [1–4]. It is well known

that RC elements with rectangular or circular cross-

section reinforced using continuous spirals show an

enhanced response both in terms of strength and

ductility if compared to members provided with

normal stirrups [1–4]. Shear capacity of RC elements

having continuous spirals as transverse reinforcement

has been found to be higher than that provided by

beams with traditional shear reinforcement [5–7].

Among the several transverse reinforcement layouts

developed over the last years that use inclined bars, the

swimmer bar system is described in detail in [8]. It is

constituted by inclined bars having both ends bent

parallel to beam axis and anchored to top and bottom

flexural reinforcement using welds or bolts, obtaining

inclined shear reinforcing bars in addition to or to

replace the classic vertical stirrups, similar to the bent-

up bars used until the seventies in RC frames. In old

RC building construction practice, shear cracking and

shear strength were controlled by adding bent rein-

forcing bars to the traditional stirrups. Where all the

tensile reinforcement at the top chord was not needed

to carry the bending moment leaving the beam-to-

column connection zone, some of the tensile bars were

bent-down in the high shear region to form the inclined

legs of shear reinforcement. This practice was also

extended to slabs due to the efficiency of bent bars
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both as shear reinforcement and as integrity reinforce-

ment, as reported by Tassinari et al. [9]. Moham-

madyan-Yasouj et al. [10], and Saravanakumar and

Govindaraj [11], performing shear tests on slender and

wide beams, having several typologies of transverse

reinforcement, demonstrate that specimens with both

vertical and inclined stirrups showed not only an

increment in shear capacity, but also stiffer behavior

and more gradual failure compared to beams only

reinforced with vertical or inclined stirrups.

Currently, a novel strategy for shear reinforcement

of RC beams is gaining in popularity, constituted by

two orders of transverse reinforcement arranged with

two different inclinations. Several structural elements

use this configuration, i.e. deep beams typical of

bridges, in which transverse reinforcement are consti-

tuted by vertical and inclined stirrups. Furthermore,

semi-precast Hybrid Steel-Trussed Concrete Beams

(HSTCBs), which consist in a factory-made steel truss

completed with cast-in situ concrete, adopt a trans-

verse reinforcement arranged with two different

inclinations as well [12–15].

In the American code and past European codes,

where shear strength was evaluated on the basis of the

additive contributions due to concrete and steel

reinforcement, the strength of multiple inclinations

of reinforcement could easily have been taken into

account by adding their contributions. Currently, the

European design codes (e.g. [16]) contain no specific

provisions for the abovementioned structural cases,

and their design can be performed only by adjusting

the existing models developed for other structural

typologies. Recently, in Colajanni et al. [17] a physical

model for evaluation of the shear capacity in beams

containing two sets of stirrups with different inclina-

tions is derived. Formulated by means of a suit-

able modification of a model proposed in previous

papers [18, 19], it is a generalization of the classical

model currently proposed in Eurocode 2. In both these

two models, and in those derived from them [20],

evaluation of shear strength is obtained, according to

the ‘‘lower-bound solution’’, by means of a numerical

procedure that maximizes the element shear capacity

by varying the stress in the two orders of transverse

reinforcement and the value and inclination of the web

concrete compressive stress field.

Here, the procedure of maximization is analysed,

and analytical expressions of the optimal values of the

aforementioned parameters are derived, for different

arrangements and amounts of transverse reinforce-

ment. Thus, the analysis model is turned into a design

model, and the implication of different layout and

amounts of reinforcement is analysed. Moreover, the

analytical results prove that the model represents an

extension of Eurocode 2 model to RC beams with two

orders of stirrups.

2 Mechanical model

Colajanni et al. [17] developed a model able to assess

the shear resistance of RC beams having two orders of

transverse reinforcement. Here, the assumptions on

which the mechanical model was based, are quoted

verbatim from [17]: ‘‘the model is derived assuming

that at the Ultimate Limit State (ULS) the resistant

mechanism can be represented (Fig. 1) by:—two

chords, the top compressed chord formed by the

concrete and its reinforcement, and the bottom tensile

one formed by the bottom longitudinal reinforcement

and the prestressing reinforcement (if any); and the

web, carrying the shear action, formed by the concrete,

longitudinal reinforcement (if any), and stirrups. Other

assumptions are the following: (1) both the stirrups

and the longitudinal web reinforcement (if any) are

subjected only to axial force (i.e. dowel action is

considered elsewhere, as explained below); (2) com-

pared to the size of the structural members, the spacing

of the stirrups and of the web longitudinal bars is so

small that their actions can be modelled via different

uniform stress fields; (3) the concrete stress field in the

web is inclined by the angle h to the longitudinal axis,

which may differ from b * 45�, which is the

alignment of the first cracks in a structural member

subjected merely to bending and shear (like a beam at

the Service Limit State, SLS); the maximum shear

capacity is achieved for cot h varying in the range

1 B cot h B 2.5; more severe limitations must be

imposed in elements where flexural ductility is

demanded; (4) the constitutive laws of the materials

are consistent with the theory of plasticity; (5) the

contributions to the shear capacity of dowel action and

aggregate interlock are indirectly taken into account

by introducing (through the angle h) different orien-

tations for the principal directions of the stress fields

and the cracks; (6) the contribution due to the tensile

strength of the concrete (Vc) is neglected; (7) the arch

action, which plays a remarkable role in the
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D (Disturbed) regions, is neglected; hence, the validity

of the model is limited to B (Bernoulli) regions. It has

to be pointed out that according to [21], assumption

(ii) may be used for beams with a transverse minimum

shear reinforcement mechanical ratio of 0.16/fc
0.5,

being fc the concrete strength in compression’’.

The model was derived on the basis of a model

formulated in [18, 19], and was extended to beams

with two orders of transverse reinforcement arranged

with two different inclinations a1 and a2. Each order of

stirrups can experience both tension or compression,

on the basis of the arrangement and the amount of

reinforcement. Four stress field are used to represent

the internal forces acting in the beam web, being two

representative of the two sets of transverse reinforce-

ment inclined by the angles a1 and a2 respectively, one

representative of the concrete strut inclined by the

angle h and one representative of the longitudinal web

reinforcement.

The mechanical model was developed using the

static theorem of the theory of plasticity [21, 22],

through which the shear resistance of a RC beam can

be calculated using the commonly-named ‘‘lower-

bound solution’’. The mechanical model was

Fig. 1 Distinct beam segments obtained through three differently-oriented sections parallel to either one of the two sets of transverse

reinforcement or concrete stress field direction
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formulated by using the following notation: Atw1, Atw2,

and stw1, stw2 are the cross-sectional areas of the

transversal web reinforcements with inclinations a1

and a2 and their spacings, respectively; bw and h are

the web minimum width and the cross-section depth,

respectively; fyd and f 0cd the design tensile strength of

steel and the design reduced compressive strength of

concrete, respectively. Therefore, assuming Atwi the

cross-sectional area of the generic order of stirrups, the

respective mechanical ratios are: xtwi ¼ Atwi= bwstwið
sin aiÞ fyd=f

0
cd

� �
(i = 1, 2). Similarly, the mechanical

ratio of the web longitudinal reinforcement is equal to

xlw ¼ Alw=ðbwhÞ ðfyd=f
0
cdÞ, in which Alw is the cross-

sectional area of the web longitudinal bars. It should

be reminded that, being the web concrete subjected to

a biaxial state of stress and cracked in shear, the design

compressive strength of concrete fcd has to be multi-

plied by an efficiency coefficient m0 (B 1), obtaining

the reduced design compressive strength f 0cd= m0 fcd.

The values of m0 recommended by Eurocode 2 [16] or

by Italian Construction Technical Code [23], namely

m0 = 0.6(1-fck/250) or m0 = 0.5, respectively, can be

used.

In order to assess the shear strength of a RC beam,

three distinct beam segments are obtained through

three differently-oriented sections parallel to either

one of the two sets of transverse reinforcement or

concrete stress field direction (Fig. 1). The equilib-

rium equations along the vertical axis for each of the

three segments read:

v ¼ ~rtw1xtw1 cot hþ cot a1ð Þ sin2 a1

þ ~rtw2xtw2 cot hþ cot a2ð Þ sin2 a2 ð1Þ

v ¼ ~rcw cot hþ cot a2ð Þ sin2 h
þ ~rtw1xtw1 cot a1 � cot a2ð Þ sin2 a1 ð2Þ

v ¼ ~rcw cot hþ cot a1ð Þ sin2 h
þ ~rtw2xtw2 cot a2 � cot a1ð Þ sin2 a2 ð3Þ

in which ~rtw1, ~rtw2 and ~rcw are the stresses of the two

orders of reinforcement and of the web concrete

respectively, made non-dimensional using the design

strength of steel fyd and the reduced design compres-

sive strength of concrete f 0cd respectively, v the shear

made non-dimensional by dividing by bwzf
0
cd. As

already said, the mechanical model assesses the shear

resistance of a RC beam employing the static theorem

of the theory of plasticity, which provides an

evaluation of the shear capacity as the maximum

value among the possible solutions validating the

equilibrium conditions (1)–(3) and satisfying the

following conditions of plastic admissibility:

0� ~rcw; ~rtw1j j; ~rtw2j j � 1 ð4Þ

By combining (1) and (4), the following inequal-

ities, representing the plastic admissible condition for

the stress fields of the transverse reinforcement, are

derived:

0�ð~rtw1xtw1 sin2 a1

þ ~rtw2xtw2 sin2 a2Þ 1 þ cot2 h
� �

� 1 ð5Þ

(5) elucidates the interaction between the inclination

of the concrete strut and the stress fields of the two

orders of stirrups. With the aim of assessing the shear

resistance of RC beams via the ‘‘lower-bound solu-

tion’’, the shear capacity obtained through (1) (or (2)

and (3)) has to be maximized, by varying ~rtw1, ~rtw2,

and cot h in the ranges given in (4) and (5). This

operation constitutes the main drawback of the

mechanical model. For this reason, in the following

section an analytical procedure is derived, replacing

the numerical maximization procedure which charac-

terizes the mechanical model, with the purpose of

obtaining equations able to provide the optimal values

of the three above-mentioned parameters (e.g.: ~rtw1,

~rtw2, and cot h), for any configuration and amount of

transverse reinforcement, limited only to the absence

of web longitudinal reinforcement (xlw = 0).

3 Analytical evaluation of shear strength

In order to derive the analytical expression of the

values of the three aforementioned parameters, pre-

liminarily it has to be recognized that, since the truss

model is one time redundant, according to the

Nielsen’s limit analysis application to the concrete

members [21], the collapse condition is attained when

at least two of the three web stress fields reach their

normalized stress limit values ± 1. Two different

cases are now considered, depending on the inclina-

tion of the two transverse reinforcement orders,

namely the first case in which both a1, and a2

are B 90�, and the second case where a1 B 90�, and

a2[ 90�. The former is the more frequent, and is

recurrent when more effectiveness of reinforcement
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placed along the inclined direction of the principal

tensile stress is exploited; the second one is distinctive

of over-reinforced sections, where the shear strength is

limited by the capacity of the concrete web, as in thin-

walled bridge sections.

3.1 a1, a2 B 90�

The stress limit of the web concrete is reached when

~rcw = 1, i.e. (5) provides:

~rcw ¼ ð~rtw1xtw1 sin2 a1 þ ~rtw2xtw2 sin2 a2Þð1
þ cot2 hÞ

¼ 1 ð6Þ

From (6) the expression of cot h can be derived as

follows:

cot h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

~rtw1xtw1 sin2 a1 þ ~rtw2xtw2 sin2 a2

� 1

s

ð7Þ

If the normalized stress limit is reached both in the

compressed concrete and in the two reinforcement

orders in tension, i.e. ~rtw1 = ~rtw2 = 1 and ~rcw = 1, the

slope of the web concrete stress field can be evaluated

as:

cot h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

xtw1 sin2 a1 þ xtw2 sin2 a2

� 1

s

ð8Þ

Three cases can be considered, depending on the

value of cot h provided by (8):

• 1� cot h� 2:5: in this case, the shear strength can

be easily evaluated by one of (1)–(3), assuming

~rcw =1, and ~rtw1 = ~rtw2=1 and cot h provided by

(8), since all provide the same value;

• cot h[ 2.5: the shear strength is reached at the

attainment of the stress limit in the two tensile

transverse reinforcement orders (~rtw1=~rtw2= 1),

the limit value (cot h = 2.5) has to be assumed,

and the dimensionless design shear strength v is

evaluated by (1); the normalized concrete stress

can be derived from the right-hand side of (6)

assuming ~rtw1=~rtw2 = 1 and cot h = 2.5;

• cot h\ 1: when (8) provides cot h\ 1, the stress

limit in the web concrete is attained, and one of the

transverse reinforcement can be in the elastic

range. Assuming a1\ a2, and setting cot h = 1, (5)

reads:

ð~rtw1xtw1 sin2 a1 þ ~rtw2xtw2 sin2 a2Þ� 0:5 ð9Þ

By direct inspection of (2) and (3), it can be stated

that, since cot a1 [ cot a2, the maximum shear

strength is obtained as the minimum value given by

the above Eqs. (2) and (3), being:

~rtw1 ¼ 1 ðaÞ ~rtw2 ¼ �1 ðbÞ ð10Þ

In order to detect which of the two reinforcements

yields, i.e. which of (2) and (3) provides the minimum

shear strength and which of (10a) and (10b) is true,

(10a) and (10b) are assumed, and the inequality

(2)\ (3) can be rearranged in the following form:

xtw1 sin2 a1 � 0:5 þ xtw2 sin2 a2 ð11Þ

Thus, if (11) is true, the first order of transverse

reinforcement yields in tension (~rtw1 = 1), the shear

strength is given by (2), while the stress in the second

order of stirrups is:

~rtw2 ¼ 0:5 � xtw1 sin2 a1

� �
= xtw2 sin2 a2

� �
ð12Þ

If inequality (11) is false, the second order of

transverse reinforcement yields in compression

(~rtw2 = - 1), the shear strength is given by (3), while

the stress in the first order of stirrups is:

~rtw1 ¼ 0:5 þ xtw2 sin2 a2

� �
= xtw1 sin2 a1

� �
ð13Þ

In order to represent the above conditions, the

Cartesian plane of transverse reinforcement ratios

xtw1–xtw2 is considered, in which the following

regions are detected:

Region 1 By means of (8), assuming cot h[ 2.5,

the following relation can be derived:

xtw1 sin2 a1 þ xtw2 sin2 a2 � 7:25�1 ð14Þ

In this region, cot h = 2.5, ~rtw1 = ~rtw2 = 1 and the

shear strength is developed at the attainment of the

stress limit in the two reinforcement orders;

Region 2 By means of (8), assuming

1� cot h� 2:5, the following condition is obtained:

7:25�1 �xtw1 sin2 a1 þ xtw2 sin2 a2 � 0:5 ð15Þ

In this region ~rtw1 = ~rtw2 = 1 and cot h is given by

(8); web concrete and the two reinforcement orders

reach the stress limit at the same time;
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Region 3 By means of (8), assuming cot h\ 1, the

following conditions are obtained:

xtw1 sin2 a1 þ xtw2 sin2 a2 [ 0:5

xtw1 sin2 a1 � xtw2 sin2 a2 � 0:5
ð16Þ

In this region ~rtw1 = 1, cot h = 1, and ~rtw2 is

provided by (12);

Region 4 By means of (11) the following condition

is obtained:

xtw1 sin2 a1 � xtw2 sin2 a2 [ 0:5 ð17Þ

In this region ~rtw2 = - 1, cot h = 1 and ~rtw1 is

provided by (13).

It should be emphasized that (1) and (8) constitute a

direct extension of the equations contained in Euro-

code 2 for evaluation of the shear capacity of RC

beams with a single order of transverse reinforcement.

3.2 a1 B 90�, a2[ 90�

First of all, this layout is analysed considering the

transverse reinforcement with lower inclination (a1)

yielding in tension. If the attainment of the stress limit

in the concrete and the reinforcement order with lower

inclination is assumed, i.e. ~rcw = ~rtw1 = 1, by (5) the

following analytical expression of the stress in the

second order of transverse stirrups ~rtw2 as a function of

the concrete stress field slope h is obtained:

~rtw2 ¼ sin2 h� xtw1 sin2 a1

xtw2 sin2 a2

ð18Þ

By replacing (18) into (1) the following expression

of the normalized shear strength is obtained:

v ¼ ~rtw1xtw1 cot hþ cot a1ð Þ sin2 a1

þ
sin2 h� xtw1 sin2 a1

� �
xtw2 cot hþ cot a2ð Þ sin2 a2

xtw2 sin2 a2

ð19Þ

The value of shear strength provided by (19) has to

be maximized with respect to the inclination of the

web concrete stress field h. Therefore, taking the

derivative with respect to h, and setting it equal to

zero, the following equation is obtained:

dv xð Þ=dh ¼ 2 sin h cos h cot hþ cot a2ð Þ ¼ 0 ð20Þ

(20) can be rearranged in the following form:

cot2 hþ 2 cot h cot a2 � 1 ð21Þ

Thus, the positive solution of (21) is:

cot h ¼ � cot a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2 a2 þ 1

p
ð22Þ

If inclinations of the second order of reinforcement

are only considered in the range 90�\ a2 B 135�,
cot h will be found in the range 1� cot h� 2:5. By

replacing (22) into (18), two different cases can be

found, namely:

• �1� ~rtw2 � 1: i.e. the stress satisfies the condition

of plastic admissibility (4); thus the shear strength

can be evaluated employing (1)–(3), assuming

~rcw=~rtw1 = 1 and calculating ~rtw2 and cot h by

means of (18) and (22) respectively;

• ~rtw2 [ 1 or ~rtw2\� 1: since the solution would

violate the plastic admissibility condition, ~rtw2 ¼
�1 is assumed (with the sign chosen depending on

which of conditions (4) is violated by (18)), and

cot h is evaluated exploiting the following

expression:

cot h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

xtw1 sin2 a1 � xtw2 sin2 a2

� 1

s

ð23Þ

The result of (23) will be comprised in one of the

three following ranges:

• 1 B cot h B 2.5: in this case, the shear strength is

given by any of (1)–(3), which all provide the same

value;

• cot h[ 2:5: in this case, cot h = 2.5 is assumed,

and v is evaluated through (1). The web concrete

stress field can be calculated by (6);

• cot h\1: when cot h provided by (23) is less than

one, the collapse is due to the the attainment of the

stress limit in the web concrete and one of the web

reinforcements, and thus the other web reinforce-

ment can be in the elastic range. Analyzing (2) and

(3), it is observed that the maximum shear strength

is obtained in each of the two equations by

assuming respectively:

~rtw1 ¼ 1 ðaÞ ~rtw2 ¼ �1 ðbÞ ð24Þ

Evidently, only one of (24a) and (24b) can be true,

while the other stress has to ensure coincidence

between the strength values provided by (2) and (3).

Thus, the actual shear strength is equal to the

minimum provided by (2) and (3) in which (24a) and

(24b) respectively are assumed. In order to recognize

Materials and Structures (2020) 53:18 Page 7 of 16 18



the reinforcement ratio amount for which (24a) or

(24b) is true, it is necessary to evaluate whether (2) or

(3) gives the minimum shear strength when (24a) and

(24b) are assumed. Thus, (24a) holds, i.e. the first

order of web reinforcement yields in tension, if the

following inequality is true:

xtw1 sin2 a1 � 0:5 þ xtw2 sin2 a2 ð25Þ

In this case the shear strength can be easily

evaluated by (2) where cot h = 1, and (24a) is

assumed, and the stress in the second order of web

reinforcement can be evaluated employing (12). By

contrast, if (25) is false, it turns out that failure is due to

the attainment of the stress limit in the web concrete

and the second order of stirrups at the same time, both

in compression. Thus, the shear strength is provided

by (3), where cot h ¼ 1 and (24b) have to be assumed.

The stress in the first order of web reinforcement can

be evaluated exploiting (13).

Thus, as done for the previous case, in the Cartesian

plane of the transverse reinforcement ratios xtw1–xtw2

the regions characterized by the previously evaluated

solutions are:

Region 1 by means of imposing cot h[ 2:5 in (23),

the following condition is derived:

xtw1 sin2 a1 þ xtw2 sin2 a2 � 7:25�1 ð26Þ

In this region cot h ¼ 2:5, and ~rtw1 = ~rtw2 = 1

have to be assumed, and the failure is due to yielding

of the two web reinforcement orders;

Region 2 in this region, the transverse reinforce-

ment orders still both yield in tension

(~rtw1 ¼ ~rtw2 ¼ 1) and the web concrete stress field

inclination is provided by (23). The upper border of

this region is determined by imposing the condition

that cot h must reach the value provided by (22). Thus,

by equating (8) and (22), the following expression of

the upper boundary of region 2 is obtained:

xtw1 sin2 a1 þ xtw2 sin2 a2 ¼ 1

2
1 þ cos a2ð Þ ð27Þ

Therefore, the region within ~rtw1 ¼ ~rtw2 ¼ 1 and

cot h provided by (23) is bounded by the following

conditions:

1

7:25
\xtw1 sin2 a1 þ xtw2 sin2 a2 �

1

2
1 þ cos a2ð Þ

ð28Þ

In this region both the web concrete and two orders

of web reinforcement reach their maximum normal-

ized stress at the same time.

Region 3 this region is characterized by ~rtw1 = 1, a

fixed value of cot h given by (22) and the elastic

behaviour of the second order of web reinforcement.

Its stress can be evaluated by (18) once (22) is

retained, as follows:

~rtw2 ¼ 0:5 1 þ cos a2ð Þ � xtw1 sin2 a1

xtw2 sin2 a2

ð29Þ

The boundaries of the region are determined by the

second order web reinforcement yielding in tension

(27) or in compression, i.e. ~rtw2 = - 1; replacing the

latter in (29) provides:

xtw1 sin2 a1 � xtw2 sin2 a2 ¼ 0:5 1 þ cos a2ð Þ ð30Þ

Thus, the region within which ~rtw1 = 1, ~rtw2 given

by (29) and cot h given by (22) is bounded by:

xtw1 sin2 a1 þ xtw2 sin2 a2 [ 0:5 1 þ cos a2ð Þ ð31Þ

xtw1 sin2 a1 � xtw2 sin2 a2 � 0:5 1 þ cos a2ð Þ ð32Þ

Region 4 in this region the two orders of web

reinforcement yield, the first one in tension (~rtw1 ¼ 1)

and the second one in compression (~rtw2 ¼ �1) and

cot h is given by (23). The upper bound is found by

imposing the condition that (23) has to provide the

value cot h ¼ 1. The boundaries of this region are

defined by the following inequalities:

0:5ð1 þ cos a2Þ�xtw1 sin2 a1 � xtw2 sin2 a2 � 0:5

ð33Þ

Region 5 further increment of transverse reinforce-

ment beyond the upper limit of region 4, i.e. when:

xtw1 sin2 a1 � xtw2 sin2 a2 [ 0:5 ð34Þ

means that the tensile web reinforcement ~rtw1 is in the

elastic range and its stress is given by (13), and

~rtw2 = - 1, cot h = 1 are the other parameter values.

It has to be emphasized that for both the two

aforementioned cases, namely a1, a2 B 90�, and

a1 B 90�, a2[ 90�, region 1 and region 2 are those

of major practical interest, while the other regions

describe the behaviour of beams over-reinforced in

shear, and are only of practical interest in a few special

cases.
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3.3 Tensile and compressive chord failure

The model described in Colajanni et al. [17] is able to

detect premature failure of either the compressive or

the tensile chord due to shear-flexure interaction. To

this aim, the following two equations are proposed to

calculate the internal forces in the top and bottom

chords:

~T xð Þ ¼ ~m xð Þ þ 0:5 xtw1 ~rtw1 cot2 h� cot2 a1

� �
sin2 a1

�

þ xtw2 ~rtw2 cot2 h� cot2 a2

� �
sin2 a2

�

ð35Þ

~C xð Þ ¼ ~m xð Þ � 0:5 xtw1 ~rtw1 cot2 h� cot2 a1

� �
sin2 a1

�

þ xtw2 ~rtw2 cot2 h� cot2 a2

� �
sin2 a2

�

ð36Þ

in which the non-dimensional bending moment is

equal to:

~m xð Þ ¼ v
x

z
0� x� a ð37Þ

(35) and (36) are consistent with the evaluation of the

additional tensile force in the longitudinal reinforce-

ment due to shear required by Eurocode 2. The

strength of the two chords has to satisfy the two

following conditions of ‘‘plastic admissibility’’:

~T xð Þ�xs ð38Þ

�x0
s � ~C xð Þ� n=m0 þ x0

s ð39Þ

where n = xc/z is the non-dimensional neutral axis

depth, A0
s; x

0
s ¼ A0

sfyd

� �
= bwz f

0
cd

� �
and As;xs ¼

Asfyd

� �
= bwz f

0
cd

� �
are the areas and the mechanical

ratios of the longitudinal reinforcement in the com-

pression and tension chords, respectively.

If the optimal parameters determined as described

in the previous section do not satisfy either (38) or

(39), the beam shear strength is ruled by the chord

strength.

Substituting v with (1), (35) and (36) can be

arranged as follows:

The optimal value of the three variables appearing

in (40) and (41), i.e.: ~rtw1, ~rtw2 and cot h, should be

determined according the amount of transverse

mechanical ratios xtw1 and xtw2. For instance, if the

beam belongs to ‘‘Case 1, Region 2’’, the three

parameter values are: ~rtw1 ¼ ~rtw2 ¼ 1 and cot h vari-

able. Consequently, ~rtw1 ¼ ~rtw2 ¼ 1 are assumed and

cot h is the only variable parameter in (40) and (41).

According to this procedure, for each of the afore-

mentioned cases/regions of xtw1–xtw2 plane, the

optimal values of two of the three parameters is

known, and (40) or (41) can be solved to determine the

third optimal value. In order to clarify the procedure in

case of chord failure, the example below elucidates the

flow chart of the strength evaluation. Once the shear

capacity has been calculated by means of (1)–(3), the

internal forces acting on the tension and compression

chords are computed using (35) and (36). Subse-

quently, the plastic admissibility conditions regarding

the two chords are checked employing (38) and (39). If

one of the two inequalities is not verified (e.g.
~TðxÞ[xs) the limit is assumed (e.g. ~TðxÞ ¼ xs) and

the cot h related to the flexural failure is computed

using (40), where ~rtw1 ¼ ~rtw2 ¼ 1.

The minimum amount of the bottom longitudinal

reinforcement that ensures the shear failure of the

beam can be calculated equating the external bending

moment associated to the shear resistance of the beam

(i.e. (37)) and the non-dimensional bending moment

resistance associated to the tensile chord failure. The

cot2 hþ 2a

z
cot hþ

~rtw1xtw1 sin2 a1 cot a1
2a
z
� cot a1

� �
þ ~rtw2xtw2 sin2 a2 cot a2

2a
z
� cot a2

� �
� 2~T xð Þ

~rtw1xtw1 sin2 a1 þ ~rtw2xtw2 sin2 a2

¼ 0

ð40Þ

cot2 h� 2a

z
cot h�

~rtw1xtw1 sin2 a1 cot a1
2a
z
� cot a1

� �
þ ~rtw2xtw2 sin2 a2 cot a2

2a
z
� cot a2

� �
þ 2 ~C xð Þ

~rtw1xtw1 sin2 a1 þ ~rtw2xtw2 sin2 a2

¼ 0

ð41Þ
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latter is computed by imposing the equality in (38) and

substituting it in (35), as follows:

~m xð Þ ¼xs � 0:5 xtw1 ~rtw1 cot2 h� cot2 a1

� �
sin2 a1

�

þxtw2 ~rtw2 cot2 h� cot2 a2

� �
sin2 a2

�

ð42Þ

By equating (37) and (42) the mechanical ratio of

the longitudinal reinforcement in the tensile chord that

ensures the concurrent shear and flexural failure can be

calculated as follows:

xs ¼ 0:5 xtw1 ~rtw1 cot2 h� cot2 a1

� �
sin2 a1

�

þxtw2 ~rtw2 cot2 h� cot2 a2

� �
sin2 a2

�
þ v

x

z

ð43Þ

The non-dimensional shear resistance is computed

using the procedures described in the previous para-

graphs, thus the only variable to be calculated in (43) is

xs. If the mechanical ratio calculated by means of the

above equation is greater than or equal to the

mechanical ratio of the longitudinal reinforcement in

the tensile chord of a generic beam, the RC member

experiences flexural failure, otherwise the beam is

shear critical. In order to elucidate the design impli-

cations related to the proposed model, in the following

section some numerical analyses are carried out.

4 Model validation and numerical analysis

The numerical model proposed in Colajanni et al. [17]

was validated there, and in subsequent papers [24, 25].

Here, in order to demonstrate the effectiveness of the

proposed procedure for evaluation of parameter opti-

mal values, prediction of some experimental results

available in the literature is performed. The test results

reported in [10, 13, 14, 26] are employed to carry out

the validation. Geometrical and mechanical charac-

teristics as well as loading conditions of these

specimens are reported in Table 1. In the beam

strength evaluation, the mean values of the material

resistances reported in the papers describing the

Table 2 Comparison between theoretical and experimental results

ID Vexp

[kN]

Model proposed

(cot hmax = 2.5)

Model proposed

(cot hmax = 3.0)

Failure ~rtw1 ~rtw2 cot h Reg.

[10] WB6 317.5 0.92 0.92 TC 1 1 1.33 1

[13] A-1.2 288.87 1.15 1.15 TC 1 1 1.56 2

A-2.1 211.15 0.85 0.99 S 1 0.56 1.96 3

A-2.2 230.65 1.16 1.16 S 1 0.56 1.96 3

B-1 167.97 0.91 1.06 S 1 0.56 1.96 3

B-2 259.77 0.77 0.89 TC 1 1 1.75 2

[14] R0-B-B 538.88 1.15 1.15 TC 1 1 2.44 1

R0-B-S 541.38 0.85 0.99 S 1 1 Max 1

R0-S-B 535.75 1.16 1.16 TC 1 1 2.44 1

R3-B-B 674.69 0.91 1.06 S 1 1 Max 1

R3-B-S 581.44 0.77 0.89 S 1 1 Max 1

R3-S-B 582.69 1.06 1.23 S 1 1 Max 1

R5-B-B 655.92 0.92 1.07 S 1 1 Max 1

R5-B-S 610.23 0.72 0.84 S 1 1 Max 1

R5-S-B 642.77 0.95 1.10 S 1 1 Max 1

[26] 284.1 118.84 0.94 0.94 TC 1 1 2.28 1

284.5 122.62 1.11 1.11 TC 1 1 1.3 1

290.3 96.16 1.15 1.15 TC 1 0.69 1 2

290.5 87.48 1.03 1.03 TC 1 1 1.7 1

Avg. 0.97 1.03

CoV 0.15 0.13
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experimental results were considered, without the use

of partial safety factors. The results shown in Table 2

highlight that the model reproduces the experimental

data well, with an acceptable underestimation in the

case of a concrete stress field inclination limited to

21.8� (cot hmax ¼ 2:5), while a slight overestimation is

registered when cot hmax is equal to 3.0 instead of 2.5,

as required by Eurocode 2. This result is consistent

with those reported in [17]. In general, the model

predictions are accurate both when shear or chord

failure occurs. In the case of shear failure, when the

beams are in region 1, two different shear capacities

are computed depending on the maximum value of

cot h that is assumed. Conversely, when chord failure

occurs, the shear strength provided by the model does

not change whatever cot hmax is employed, because the

shear resistance is limited by the chord capacity.

Moreover, it has to be noticed that specimen 290.3

from [26], having high transverse mechanical ratios

xtw1 and xtw2 belonging to region 2, achieves tensile

chord failure, while the second order of transverse

reinforcement is in the elastic range.

Below some numerical analyses are carried out

with the aim of illustrating the effect of different

Fig. 2 Regions for

evaluation of shear strength

versus xtw1 and xtw2: a Case

1: a1 = 45� and a2 = 90�;
b Case 2: a1 = 90� and

a2 = 120�

18 Page 12 of 16 Materials and Structures (2020) 53:18



amounts of transverse reinforcement with two differ-

ent inclinations in common RC beams of framed

structures. A beam having a cross-section with

dimensions b 9 h = 300 9 500 mm is considered,

with the reduced design compressive strength of the

concrete f 0cd = 7.93 MPa and the tensile yield strength

of the steel fy = 391 MPa. In a first case, two

transverse stirrup orders with inclinations a1 = 45�
and a2 = 90� are considered, while in the second one

the inclinations are a1 = 90� and a2 = 120�. In Fig. 2,

in the Cartesian plane of the mechanical transverse

reinforcement ratios xtw1 and xtw2 the boundaries of

the four/five regions are represented. The values of the

coordinates of the characteristic points are reported in

Table 3. In Figs. 3a and 3b, for the first case, the

values of cot h and non-dimensional shear strength

versus the amount of transverse reinforcement ratios

xtw1 and xtw2 are represented in the range 0 B xtwi-

B 0.6 (i = 1, 2), showing the greater efficiency of the

first order of stirrups placed with a slope of a1 = 45�
with respect to the vertical one a2 = 90�. In Figs. 4a

and 4b, the non-dimensional stresses for the two orders

of stirrups varying the amount of the transverse

reinforcement ratios xtw1 and xtw2 respectively are

shown. It can be observed that the first order of shear

Table 3 Values of the coordinates of the characteristic points

highlighted in Fig. 2

Points xtw1 xtw2

A ð2 sin2 a1Þ�1 0

B 0 ð2 sin2 a2Þ�1

C = E ð7:25 sin2 a1Þ�1 0

D = F 0 ð7:25 sin2 a2Þ�1

G ð1 þ cos a2Þ=ð2 sin2 a1Þ 0

H 0 ½2ð1 � cos a2Þ��1

I ð2 sin2 a1Þ�1 0

Fig. 3 Case 1: inclination of web concrete stress field (cot h) (a)

and non-dimensional shear strength (b) versus xtw1 and xtw2

Fig. 4 Case 1: non-dimensional stress (first order (a), second

order (b)) of transverse reinforcement versus xtw1 and xtw2
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reinforcement always yields in tension, except for

xtw1 C 1, corresponding to region 4, in which the bars

are in the elastic range. Conversely, the second order

of stirrups yields in tension only when a small amount

of reinforcement is employed, i.e. regions 1 and 2.

Incrementingxtw2 over the upper boundary of region 2

leads the second order to have a stress in the elastic

range. Lastly, if xtw1 is also increased, the second

order will yield in compression. In Fig. 5a the curves

of the non-dimensional shear strength versus xtw2

(amount of vertical stirrups) for the three characteristic

values of xtw1 (inclined stirrups), represented in

Fig. 2a with a dashed line of the same colour as used

in Fig. 5a, are shown. The green curve represents the

case in which the amount of inclined stirrups is equal

to the minimum value of stirrups required by the

Italian code, xtwi;min ¼ 1:5 fyd=ð1000 sin aiÞ
¼ f0:1 ði ¼ 1Þ; 0:07ði ¼ 2Þg. The red curve refers to

the case in which the inclined stirrups alone are able to

provide the condition of failure of two stirrup orders

and web concrete at the same time, while the blue one

corresponds to the maximum shear strength that can be

obtained with a single order of stirrups. The curves

show that vertical stirrups are only effective when a

small amount of inclined stirrups are placed in the

beam (xtw1;min ¼ 0:1). In Fig. 5b the corresponding

curves of the non-dimensional shear strength versus

xtw1 for a fixed value of xtw2 are reported. They show

that increasing the amount of inclined stirrups, the

shear strength increases unless the mechanical ratio

xtw1 is more than 1. Above the latter value, the shear

resistance remains constant, because the failure in

compression of both the vertical stirrups and the web

concrete, i.e. ~rtw2 = - 1 and cot h = 1. Only an

increment of vertical stirrups, which in this over-

reinforced configuration are compressed, is able to

increase the shear strength, allowing the concrete strut

to withstand the compressive forces of the truss

mechanism. Figures 6 and 7 refer to the second case,

where the first order of reinforcement represents the

traditional vertical stirrups (a1 = 90�), while the

second order has a2 = 120�. The stress behaviour of

Fig. 5 Case 1: non-dimensional shear strength versus: xtw2 for

characteristic values ofxtw1 (a),xtw1 for characteristic values of

xtw2 (b)

Fig. 6 Case 2: inclination of web concrete stress field (cot h) (a)

and non-dimensional shear strength (b) versus xtw1 and xtw2
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the two orders of transverse reinforcement is compa-

rable to that described for case 1; thus it is not reported

here. It can be noticed that inclined reinforcements

with slope a2[ 90� are only effective in small

amounts for beam with a very small amount of

vertical stirrups (green line in Fig. 7a) or for over-

reinforced beams (Fig. 7b, xtw1 [ 0.5).

5 Conclusions

A design-oriented model able to predict the shear

capacity of RC beams having transverse reinforce-

ment arranged in two different inclinations has been

presented. The analytical procedure depends on

whether both the orders of stirrups have angles of

inclination, with respect to the beam axis, in the range

45� B ai B 90� (i = 1, 2), or only the first-order

inclination is in the range 45� B a1 B 90� while the

second-order inclination is in the range

90�\ a2 B 135�. For each of the two aforementioned

cases, and for any amount of reinforcement, equations

for evaluation of the parameters influencing the shear

resistance, namely slope of the web concrete stress

field and the non-dimensional stresses of the two

orders of transverse reinforcement, have been pro-

posed. In the Cartesian plane of transverse reinforce-

ment ratios xtw1–xtw2 regions characterized by

homogeneous behaviour of the three abovementioned

parameters were detected, and equations for evaluat-

ing the boundaries of these regions were determined.

The comparison carried out between the analytical

predictions provided by the model and experimental

results of shear critical beams shows the model’s

reliability. The main equations constituting the model

[e.g. (1) and (8)] prove that the proposed model

represents a direct extension of the Eurocode 2 model

for shear assessment of beams with two order of

transverse reinforcement, in which the effect of the

two transverse reinforcements can be added. Major

issues deserving further research include investigation

of design effectiveness of different transverse rein-

forcement amounts and inclinations, and the use of a

larger database covering all the regions identified by

the model in order to prove its reliability thoroughly.
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