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Abstract The safety evaluation of reinforced con-

crete (RC) bridges is of the outmost importance, both

for the early warning of critical states below a given

safety margin and owing to plan maintenance cycles of

the infrastructural network. Structural health monitor-

ing based on dynamic testing has become widespread

in the last 20 years, leading to very effective opera-

tional algorithms able to extract valuable structural

features from the recorded signals. However, although

in principle it is possible to identify position and

severity of the damage by using a finite element

model, still some identification issues are unresolved

due to the non-linear nature of the oscillations of a

cracked beam. In fact, the available experimental data

show, for a given damage pattern, a significant

underestimation of the natural frequencies given by

cracked beam numerical models. This paper presents

an approximate solution for the problem of a vibrating

damaged RC beam with opening–closing (breathing)

cracks. The solution is based on the static equivalence

of the kinetic energy and allows incorporating most of

the features of a beam loaded above the cracking limit

and oscillating under the self-weight with breathing

cracks. The comparison with a wide data set collected

in the literature points out the predictive capability of

the developed analytical formulas. An independent

test confirms the theoretical results.

Keywords RC beam � Breathing crack � Dynamic

test � Damage detection � Frequency shift

1 Introduction

The problem of ensuring bridge safety, either in terms

of early warning of critical conditions or of mainte-

nance scheduling, has a long history. A very simple

and direct insight can be gained by accessing the page

‘‘List of bridge failures’’ on Wikipedia [1], where a

large repository of news, photos and data is available.

Analysing the period 1950–2013, the average

number of collapses with casualties and injured is

two per year, with an average of 36 killed and 38

injured every year, and those numbers are steadily

increasing, mainly as a consequence of the increase in

number and age of bridges, but also due to the growth

of vehicle weight and passages (Fig. 1). Moreover, no

structural configuration is free from danger (Fig. 2).

The change in vibration frequency caused by

damages in structural elements has always attracted

the interest of researchers as a viable tool for the

serviceability assessment of structural parts. For

instance, this technique can be used for the detection
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of localized cracks in metallic mechanical parts and

the identification of damaged zones (in terms of

position, extent, severity) in reinforced concrete

bridges and buildings.

A very detailed state of the art report [2] lists more

than 500 papers dealing with the first topic; for the case

of bridge structures two literature reviews discuss

most of the dynamic identification methods used even

today [3, 4].

The recording of dynamic data on a structure

subjected to environmental disturbances is a non-

destructive testing method (NDT), since the response

is linked to the stiffness distribution inside the

structure. Thus, the health condition of a structure

can be checked either by detecting changes in records

kept at a given rate in time, or by extracting features of

the stiffness distribution from the recorded signal.

Structural health monitoring (SHM) systems based

on networks of few sensors (accelerometers, vibrom-

eters, etc.) can collect big data sets in a relatively

cheap way. Many other techniques exist for the local

detection of the onset of cracks [5], but this informa-

tion does not allow for a rating of the overall behavior.

However, concerning early detection of bridge

damage states, there is a long list of problems to be

addressed. Firstly, the structural weakening is a

combination of many factors, such as cracking, load

cycling and fatigue, environmental actions such as

carbonation and freeze-thaw, support malfunctioning

and foundation settlements. Secondly, temperature

and humidity can influence the dynamic properties of

the construction materials. Finally, the recorded

signals are biased by unknown vehicle masses, by

measurement errors, and by finite precision deconvo-

lution techniques.

In the past, many experimental investigations

pointed out that reinforced concrete structures in the

non-linear range, starting with crack formation and

ending at yielding of rebar, show a reduction of the

natural frequencies from 0 to 25% of the uncracked

values. This interval, however, is significantly less

than expected, due to the presence of opening and

closing cracks, the so called effect of ‘‘breathing

cracks’’.

Although the onset of cracking is characterized by a

first significant frequency drop, temperature changes,

chemical attacks and cyclic loading can modify the

recorded values, hiding or emphasizing in some way

the damage occurred in the structure.

In recent contributions, the problem of eliminating

the temperature effect on the recorded signals has been

solved effectively. On the one hand, the statistical

analysis of the initial long term characterization of the

bridge, can allow setting up a reference curve that

expresses the natural frequencies as a function of

temperature [6]. On the other hand, algorithms based

on the co-integration concept are able to eliminate the

temperature influence on the recorded signals [7]. This

key ingredient allows for an effective monitoring, at

least in order to plan bridge maintenance.

The deterioration occurring inside cracks mainly

involves loss of tension stiffening of the concrete and

aggregate interlock across crack faces. Therefore the
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bond deterioration caused by cyclic loading or bar

corrosion can increase the crack opening, thus reduc-

ing the crack closure stiffening effect [8]. Although

these non-linear effects can be significant, the dynamic

stiffening due to breathing still remains dominant

when the crack opening is sufficiently small, as in the

elastic range of the steel reinforcement with negligible

rusting.

In this paper, the fundamental problem of express-

ing the stiffness deterioration in terms of frequency

shift is reconsidered. The initial step is the study of a

large set of experiments on simply supported ordinar-

ily reinforced concrete beams discussed in the liter-

ature. The collected data encompass a wide range of

material properties, beam geometries, loading pat-

terns, and frequency extraction methods. In these

investigations, the beam frequencies have been

extracted at each loading step, up to the ultimate state

of steel reinforcement yielding. By comparing the

normalized non-dimensional load–frequency curves, a

significant agreement can be observed among all the

experiments. This is a key aspect allowing a robust

comparison of the theoretical and numerical interpre-

tations with the existing experimental data.

Then, in the framework of damage mechanics, the

phenomenon of the ‘‘breathing cracks’’ is solved in an

approximate but energetically consistent format. In

this way, it is possible to build an analytical formula

which expresses the frequency shift in terms of the

maximum load experienced by the beam. It is to cite

that simulations based on even complex models, able

to predict the rigidity decay of cracked sections, fail in

predicting the natural frequency of cracked beams, if

they disregard the crack closure stiffening effect.

Finally it is to highlight that, since the proposed

approach is based on the static equivalence of the

kinetic energy, it can incorporate even progressive

degradation effects such as chemical attacks or fatigue

due to cyclic loading.

2 Analysis of the available experimental data

The selection of the comparison data set presents

several problems due to the difficulties of retrieving

missing values and as a consequence of the digital-

ization of data published in diagram form.

Table 1 presents the data extracted from references

[8–17]. The meaning of the data is as follows:

• b, h, fck section base, height, and concrete

compressive strength,

• As, fyk steel reinforcement area and yielding

strength,

• L, c beam length and distance between point loads,

• Vexp, fexp beam ultimate shear and initial natural

frequency,

• Mu, Mcr ultimate and cracking bending moments,

• LD,max length of the widest crack distribution.

In ‘‘Appendix’’, all the non-dimensional load–

frequency data are summarized in order to be used

by other researchers in future works.

Askegaard and Langsoe [8] examined the fre-

quency variation with respect to the load in beams

deteriorated by freeze-thaw cycles. Van den Abeele

and De Visscher [9] determined modal curvatures by

using resonant acoustic spectroscopy. Maeck et al.

[10] defined a parametric form of the length-wise

variation of beam rigidity and evaluated the parame-

ters by minimizing the error of the predicted modal

frequencies through the inversion of the sensitivity

matrix. Neild et al. [11] pointed out the strong

frequency variation in correspondence of the cracking

load. Tan [12] discussed the effect of ‘‘breathing

cracks’’ in terms of bilinear and non-linear models.

Koh et al. [13] used partitioned beam models for the

interpretation of their observation, but it is fair to

mention that their results do not match completely

with the trend shown by all the other investigations.

Massenzio et al. [14] examined the variation of five

natural frequencies, but some inconsistencies are

visible around the cracking point. Baghiee et al. [15]

considered ordinary and FRP reinforced beams and

used modal assurance criteria in order to detect the

damage. Musial [16] presented results for beams with

two reinforcement ratios but some inconsistency

appears by comparing the two sets. Hamad et al.

[17] presented very detailed experimental results,

although the obtained frequencies are biased by the

use of rubber supports for the beams. The interpreta-

tion is worked out by using fracture mechanics and

partitioned beam elements. The model however does

not incorporate breathing cracks, and therefore a

specific adjusting coefficient is introduced owing to

match the experimental results.

Figure 3 shows in graphical form the data con-

tained in ‘‘Appendix’’, in terms of the ratio of the

damaged beam frequency to the initial one fD/f0, and of
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Table 1 Data of the collected experimental tests

References Code b (mm) h (mm) fck

(MPa)

As

(mm)

fyk

(MPa)

L (m) c (m) Vexp

(kN)

fexp

(Hz)

Mcr/Mu

(–)

LD,max

(%)

Askegaard and

Langsoe [8]

VBF 150 100 50 2 D10 500 3.00 1.00 6.0 22.5 0.258 83

Askegaard and

Langsoe [8]

VXR 150 100 15 2 D10 500 3.00 1.00 5.0 19.1 0.130 91

Van den Abeele

and De Visscher

[9]

1 250 60 33 2 D10 500 0.99 0.15 5.7 161.0 0.187 84

Maeck et al. [10] 1 250 200 25 3 D16 500 3.60 0.00 50.7 22.3 0.193 81

Maeck et al. [10] 2 250 200 25 3 D16 500 5.70 2.00 25.3 21.9 0.193 87

Neild et al. [11] A 200 105 38 3 D12 410 2.80 0.00 8.2 21.7 0.177 82

Neild et al. [11] B 200 105 38 3 D12 410 2.80 0.00 8.2 22.4 0.177 82

Tan [12] 1 135 210 35 3 D10 500 2.80 1.00 21.5 92.0 0.282 82

Koh et al. [13] 1 500 150 44 6 D13 560 2.70 0.90 48.8 29.5 0.219 85

Massenzio et al.

[14]

– 50 85 25 2 D4.5 500 0.67 0.23 5.0 530.0 0.195 87

Baghiee et al. [15] B1–B3 150 200 20 2 D12 494 2.20 0.60 15.0 114.5 0.218 84

Baghiee et al. [15] B4–B6 150 200 20 2 D16 483 2.20 0.60 30.0 108.8 0.177 87

Musial [16] B-I 150 250 52 2 D12 563 3.00 0.00 14.0 91.0 0.378 62

Musial [16] B-II 150 250 51 2 D12 563 3.00 0.00 14.0 90.0 0.376 62

Musial [16] B-III 150 250 45 3 D10 548 3.00 0.00 14.0 91.0 0.349 65

Musial [16] B-IV 150 250 41 3 D14 555 3.00 0.00 29.0 81.0 0.192 81

Hamad et al. [17] BS-I 130 210 37 3 D10 541 2.70 0.70 20.9 43.0 0.223 83

Hamad et al. [17] BS-II 130 210 37 3 D10 541 2.70 0.70 21.3 41.9 0.225 83

Hamad et al. [17] BS-III 130 210 35 3 D10 541 2.70 0.70 20.3 42.6 0.216 84
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Fig. 3 Load—frequency plot of the selected experimental tests
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the load amplification factor k, where the ultimate load

of the experiments is defined by ku = 1.0. The

statistical analysis of the results indicates that almost

all the data fall in a confidence interval of 99.9% of the

mean, while the coefficient of variation COV is less

than 5% over the whole range of data. Moreover, the

data highlight a sharp increase in variance at the onset

of cracking and near the failure.

As is apparent, Koh [13] data have a large deviation

from the overall trend and exit from the confidence

interval. Since the tested elements are very thin, this

mismatch is probably due to the lack of crack closure

effect.

In what follows, by using the principle of static

equivalence of the kinetic energy, the mechanics of the

damaged RC section will be used to set up the beam

natural frequency. Some experiments of beams with a

single crack will be reviewed with the aim of

validating a model for the breathing crack phe-

nomenon. The obtained interpretation will be used in

building a formula able to characterize the relationship

between load level increase and frequency decay.

3 Natural frequency of a damaged beam

The natural frequency of an Euler–Bernoulli beam

with distributed or concentrated mass can be obtained

through the equivalence of the kinetic energy of the

vibration mode, and the potential energy of one

equivalent deflected shape of the beam under a

concentrated force [18].

If the mass of a simply supported beam is concen-

trated at the mid span, the equivalent force to be

applied on the beam, leading to the equivalent

vibration frequency, corresponds to 17/35 of the beam

weight G.

Thus, the natural frequency of a simply supported

beam can be expressed as a function of the maximum

displacement occurring under this force. Considering

a beam of length L, the displacement is:

d0ðL=2Þ ¼ 17G

35
� L3

48 � EJ0

; ð1Þ

where E and J0 are respectively the elastic modulus

and the inertia moment of the beam section in

undamaged condition. The frequencies of the natural

modes are finally obtained as:

fn ¼
n2

2p
�

ffiffiffiffiffi

g

d0

r

ð2Þ

with g the gravity constant 9.81 m/s2, and n the

number of half sinusoids contained in the beam length

for a given mode.

If the beam presents a damaged part, the displace-

ment is increased by the concentrated curvature spike

resulting from the local loss of rigidity of the damaged

length [10] and a decrease of the natural frequency is

observed.

As an example, Fig. 4 shows the evolution of the

experimental curvature obtained in [9] for a beam

damaged with subsequent increasing load steps.

Figure 5 shows the reference geometry for the

damaged beam, used in the following analytical

elaboration. The beam displacement under the equiv-

alent force is computed as the sum of the undamaged

beam displacement d0 plus the incremental displace-

ment dD caused by the localized curvature spike.

The damage engenders a total rotation Dv�LD

between the two rigid beam arms connecting the

damaged zone to the supports. By enforcing the

continuity equation of the rotation at the connecting

sections, the displacement increase dD can be com-

puted in a straightforward way. If the average tilt of the

curved segment is indicated as x, the compatibility

equation is:

vLD

2
þ x

� �

� a� LD

2

� �

¼ vLD

2
� x

� �

� b� LD

2

� �

� x � LD:

ð3Þ

Fig. 4 Modal curvature spike obtained by the vibration mode

of a damaged beam [9]
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The solution is easily computed as:

x ¼ 1

2
DvDLD

b� a

L
; ð4Þ

and hence, the increase of displacement at the mid-

point of the damaged zone, due to the curvature spike

caused by the damage, holds:

dD ¼ DvDLD

L 2L� LDð Þ
8Lþ 4LD

: ð5Þ

By assuming that the bending moment is approx-

imately constant on LD, the curvature spike DvD can be

evaluated in terms of section rigidity variation:

DvDðaÞ ¼
MðaÞ
EJD

�MðaÞ
EJ0

¼ vðaÞ � EJ0

EJD

� 1

� �

; ð6Þ

where EJ0 is the section rigidity of the undamaged

zones, while EJD is the one of the damaged part.

In conclusion the shifted frequency due to the

localized damage can be evaluated from the total

displacement d0 ? dD of Eqs. (1) and (5), in which the

curvature spike is expressed as in Eq. (6); by factoring

out the original first frequency, the damaged one

holds:

f1;D ¼ f1 � 1 þ 12
LD

L
� 2L� LD

8Lþ 4LD

� EJ

EJD

� 1

� �� ��1=2

:

ð7Þ

A previous approximated version of this formula

considered the rotation DvD LD concentrated in a hinge

[19]. It has been extensively checked by the authors

through numerical simulations, showing very good

predictive behavior even in the case of circular arches

[19].

3.1 Calculation of the damaged length

The evaluation of the damaged length requires the

consideration of the bending moment distribution

across the beam. Actually, when a beam is loaded in

laboratory experiments, the positions of the forces are

fixed, so that the bending moment varies in a

proportional way among beam sections. However, in

a real bridge beam, the diagram varies in a domain

encompassing all cases from the dead weight distri-

bution, to the load pattern of maximum intensity and

extension in the serviceability conditions.

The damage in the beam cross sections occurs as an

irreversible phenomenon once the cracking moment is

exceeded under any of the possible loading patterns. If

the maximum bending moment experienced by the

beam is indicated as Mmax and the cracking one as Mcr,

the damaged length can be easily evaluated, if the

shape of the diagram is known.

In the two relevant cases of uniformly distributed

load and four point bending tests (4PBT) with a load

spacing c, the damaged lengths are computed as:

LD ¼ L
ffiffiffiffiffiffiffiffiffiffiffi

1 � a
p

uniform loadð Þ; ð8:aÞ

LD ¼ cþ L� cð Þ 1 � að Þ 4PBTð Þ: ð8:bÞ

where a is the ratio Mcr/Mmax. If we consider a

reference load distribution, with an amplification

factor k holding 1.0 when the yielding condition of

the beam mid span section is met, the link between a
and k is easily established:

k ¼ Mmax

My

¼ Mmax

Mcr

�Mcr

My

¼ kcr

a
: ð9Þ

The ratio kcr is expressing the fraction of the

maximum load causing the first cracking of the beam.

In [11, 17] the distributions of the beam section

rigidity at different load levels have been recon-

structed on the basis of complete dynamic investiga-

tions. It is clearly shown that the damaged length is

evolving up to 70–80% of the whole length approach-

ing yielding of the reinforcement. When Mmax attains

the yielding value, a decreases to kcr with values in the

range 0.20–0.30. As is indicated by Eq. (8.b), the

damaged length increases to L�(1 - a), i.e. more than

70% of the beam length.

a
L/22

L/2

LD

M(x)

Dχ

χ

Δ

0 ( )xδ

( )D

1

x

( )x

δ
φ 2φ

ω 

Fig. 5 Displacement components in a damaged beam
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3.2 Calculation of the damaged section rigidity

The calculation of the rigidity of the damaged sections

requires the consideration of the loading path in the

beam. Once the loading history pushes the bending

moment distribution above the boundary of the local

maxima experienced in the past, the size of the

damaged region increases and the rigidity decreases.

However, the load at which the beam frequency is

measured, is normally near to the case of dead load

only. Consequently, the damaged rigidity depends on

the maximum moment occurred on the beam section,

and this rigidity is larger than the tangent one given by

the fully cracked section (see for instance [20]).

A detailed descriptions of the rigidity evolution can

be found in [21, 22] as a function of the initial rigidity

EJ0 and the fully cracked section rigidity EJT. It is

evident that bridges subjected to self-weight, with

cracks formed by the previous loading history, will

show beam stiffness values related with the section

rigidity of the unloading branch (Fig. 6).

The secant rigidity is easily calculated from geo-

metrical considerations:

EJD ¼ Mmax

Mcr

EJ0
þ Mmax�Mcr

EJT

¼ EJT

1 � a 1 � EJT

EJ0

� � : ð10Þ

The smooth variation of the section rigidity after

the first crack is pointed out in experiments described

in [10, 20], where the evolution of the dynamic

modulus is obtained from experimental data. This can

be related to the progressive reduction of the concrete

tension stiffening when the bending moment increases

up to the yielding limit.

3.3 Frequency shift in a damaged beam

Consider a beam progressively damaged by increasing

the load on it, but its natural frequency is measured in a

reference situation with only the dead load present on

the beam. Then the previous analyses can be linked

together in order to derive a general formula for the

natural frequency of a cracked beam, based on the load

level experienced in the past by the beam. This is

easily worked out by introducing in Eq. (7) LD and

EJD defined by Eqs. (8) and (10) in terms of a and k.

As a particularization, a localized damaged zone is

considered at the mid-span of the beam, caused by a

concentrated load, such that LD = L�(1 - a). By

introducing in Eq. (7) the cited expressions, the

shifted frequency is obtained as a function of a:

f1;D ¼ f1 � 1 þ 12
ð1 � aÞ � ð1 þ aÞ

12 � 4a
� 1 � að Þ EJ0

EJT

� 1

� �� ��1=2

:

ð11Þ

This damaged frequency is valid only when the

cracks do not close during the vibration. This is the

case for example of a running truck over a bridge such

that the dynamic motion occurs without any upward

displacement.

In most experimental tests in which the frequencies

are recorded with the bare structure under the dead

loads, the dynamic motion occurs with opening and

closing of cracks, and therefore the non-linear effect of

the crack face changing contact has to be considered.

4 The effect of breathing cracks

In literature, the phenomenon of crack opening and

closure during the dynamic motion is named as

‘‘breathing crack’’. The very first studies were moti-

vated by some fatigue crashes of rotors used in the

energy production plants [1]. Chondros [23] presented

a detailed analysis of the simply supported beam with

a crack, showing the difference of response when the

crack is open or breathing.

An interesting comment of Tan [12] is based on

Bendat’ well-known book [24]. It states that the

interpretation of breathing cracks by using bilinear

0
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Fig. 6 Calculation of the damaged rigidity in the moment—

curvature diagram
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crack constitutive laws, will not produce a non-linear

behaviour. It can be concluded that the non-linear

content of a breathing crack is concentrated only in the

contact and release phases. This is evident from the

steady vibration (Fig. 7) and phase diagrams (Fig. 8)

reported from [25], in which the average harmonic

behaviour is added.

In terms of the effect of a single crack, a

suitable interpretation is possible based on the eval-

uation through the static equivalence. In a damaged

vibrating element, the kinetic energy is constant

during the oscillation inside the open or closed cracks

phases, apart from the dissipation occurring during the

locking—releasing phases. Then it exits an average

frequency with which the energy is transferred

between the two configurations.

A very simple interpretation is based on the

assumption that the maximum displacement experi-

enced by the beam during the oscillation is given by

the cracked section rigidity when the motion releases

the cracks, and by the original solid section rigidity,

when the motion evolves with locked cracks.

Since these two deformed states are produced by

the same energy, the breathing crack response is

obtained by averaging the two displacements

(b = breathing, o = open, c = closed):

fb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g

dc þ do

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f 2
c f

2
o

f 2
c þ f 2

o

s

: ð12Þ

As a matter of example, some investigations

reported by Chondros and Dimarogonas [23] are

considered. In the following Table 2 the frequency

ratios are listed for the three considered cases as a

function of the non-dimensional crack size w/h; the

error resulting from Eq. (12) appears very small.

The extension of the proposed formula to a beam

with several cracks affecting the central part of the

structure is based on a very simple deduction. Since

Eq. (7) evaluates the increase of displacement for any

extension of the damaged length, it holds even for the

case of multiple adjacent cracks, and provides the

vibrating frequency of a beam with several always

open cracks of Eq. (11).

Therefore the averaging of the two displacements

generated by the same kinetic energies is correctly

carried out by Eq. (12), irrespective of the extension of

the cracked length.

The static equivalent displacement is easily com-

puted even by considering complex mechanical mod-

els of the cracked RC beam that take into account

different degradation phenomena such as corrosion or

cyclic loading (Table 3).

By example, the proposed combination formula

(12) can easily deal with the stiffness degradation due

to fatigue of the cracked beam caused by a large

number of load repetitions. As a matter of fact, Kim

[26] reported experimental values of frequency vari-

ation with the number of loading cycles, obtaining a

significant decay:

It is easy to compare the frequency decay Df of the

measured frequency f(n) at n cycles, with the reduction

of the stiffness k(n) extracted from the experimental

displacements after n loading cycles. By computing

the frequency variation as the square root of the

stiffness variation, the comparison of Table 4 is

obtained.

It is to cite that the effect of breathing cracks can be

inferred even indirectly from literature results. For
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Fig. 7 The steady vibration of cracked sections (from [25]).

The breathing crack response has a period near the average of

the open and closed ones
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Fig. 8 The phase plot of the previous signals (from [25]). The

average harmonic oscillation of an equivalent linear system is

obtained by an equivalent area
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example consider the data of Xu and Castel [22]; they

introduce a crack stiffening factor Dcc that is in the

range {0, 1} with increasing values corresponding to

an increase of beam deformability. The presented

static loading cycles show the best fit with Dcc = 1

while the vibration frequencies are in agreement with

Dcc = 0. The discrepancy can be easily explained by

the stiffening effect of the breathing cracks, that let

appear the beam deformability in dynamic motion

lower than expected from static loading tests.

In what follows the formula (12) will be extensively

used in the comparison of a wide the set of data

previously discussed, with a very good general

agreement. Concerning the interpretation of the

frequency evolution in RC beams with the cracking

stages, very few numerical models that consider

breathing cracks are present in the literature. The

comparison of the proposed analytical interpretation

is, in any case, in very good agreement even with

existing numerical solutions. A precise evaluation of

the breathing crack phenomenon in terms of FEM

models will be presented in what follows.

5 Comparison of the theory with experimental

literature results

The data presented in chapter 2 have been organized

by performing the average of the results of each

experimental investigation [8–17]. The experimental

curves are compared with the solution of Eq. (11) (no

crack closure), and with the solution with crack

breathing included, as in Eq. (12). In particular, by

merging the two formulas, the following opening—

closing crack formula is obtained:

kD ¼ f1;D

f1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2 þ 12 g ð1�aÞ2�ð1þaÞ
12�4a

s

ð13Þ

where g is the factor EJ0

EJT
� 1

� �

, normally in the range

{0.7, 1.5}, and a is obtained as kcr/k by Eq. (9).

Figure 9 shows the comparison.

The collected data can be approximated by using a

logistic curve. By performing a best fit analysis, the

following form is obtained:

kDðkÞ ¼
fD

f0
¼ 1:025 � 0:25

1 þ 9 � e� 6:6k
: ð14Þ

The error of the suggested interpolation form with

respect to the whole data set is, on average, less than

0.33%.

Table 2 Comparison of

experimental data from

Chondros [23] and Eq. (12)

w/h Closed crack Open crack Breathing crack Theory Error (%)

0.00 1 1.000 1.000 1.000 0.00

0.12 1 0.975 0.990 0.987 0.28

0.20 1 0.941 0.980 0.969 1.09

0.28 1 0.919 0.979 0.957 2.20

0.32 1 0.860 0.937 0.922 1.56

0.42 1 0.818 0.911 0.895 1.70

0.56 1 0.693 0.855 0.805 5.81

Table 3 Data of the fatigue frequency decay given by Kim

[26]

Load cycles (n) Frequency (Hz) Decay (%)

0.00 45.35 0.00

0.20 9 106 39.29 13.36

0.35 9 106 35.28 22.21

2.00 9 106 32.13 29.15

Table 4 Comparison of static and dynamic experimental data

from [26]

n/106 k(n)/k(0) f(n)/f(0) Df (%) Exper. Error (%)

0.00 1.000 1.000 0.0 –

0.10 0.763 0.874 12.6 –

0.20 0.691 0.831 16.9 13.4% 26.0

0.35 0.571 0.756 24.4 22.2% 10.1

0.60 0.459 0.678 32.2 –

1.00 0.460 0.679 32.1 29.2% 10.3

2.00 0.460 0.681 31.9 29.2% 9.4
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A numerical evaluation of the breathing crack

phenomenon has been proposed by Gao et al. [27], by

using an Expanded Distinct Element Method

(EDEM). The software UDEC is used in forming a

particle swarm mesh with connecting non-linear

springs.

The best fit interpolation, the EDEM solution [27]

and the analytical representation are compared in

Fig. 10.

As is evident, the agreement among the three

solutions is noticeable.

A simple approximated formula can be obtained by

developing in series the function of a present in Eq. 13

around the value 1.0, i.e. when k is near kcr:

k ¼ kcr

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3g �

1�k2
D

k2
D

r : ð15Þ

By assuming by definition that k holds 1.0 when the

reinforcement is at the limit stress, this formula allows

evaluating kD,min, in terms of kcr and g only:

kD;min ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 1:5 � g � 1 � kcrð Þ2
q : ð16Þ

The formula (16) gives an approximated bound of

the frequency shift that is to be expected when the

beam enters in the collapse phase.

6 Verification by a new test

The previous theory has been verified with some

experimental tests and numerical simulations com-

pleted by the authors. In particular some concrete

beam with dimensions 150 9 200 9 2200 mm3 were

tested and simulated with different models in order to

verify the proposed analytical results.

The laboratory tests concerned beams loaded in a

4PBT set up at different load levels up to yielding of

the reinforcement. The loads corresponding to the

cracking moment (Mcr) and the yielding moment (My),

resulted in a maximum shear of 20 and 70 kN,

respectively (Fig. 11).

Before and after the loading test, a set of signals

given by ambient vibration were acquired and pro-

cessed in order to extract the frequency content.

The vibration tests have been validated with three

non-linear finite element models, namely: the solid

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 Massenzio

 Abeele

 Hamad

 Baghiee

 Maeck

 Musial

Neild

 Askegaard

 Cracked

 Breathing

0/Df f

λ

Fig. 9 Load—frequency plot of the proposed theory compared with the experimental tests
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Fig. 10 Comparison of the proposed model with the best fir of

data and a numerical model
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beam, the beam with cracks steadily open and the one

with breathing cracks.

The three FE models shown in the Fig. 12 have

been created by considering the crack pattern of the

real beam as a reference in order to place the cracks at

a realistic distance along the beam. The behaviour of

the breathing cracks has been modelled by using

compression cut-off elements filling the slots simulat-

ing the cracks. The steel rebars have been included in

the model by introducing truss elements at the distance

from the beam bottom equal to the cover.

The bar debonding in the cracked zones has been

simulated by considering a total length of 70 mm of

the bars, bridging over the slots included in the

numerical models. The data of the beam and the

parameters that characterize the numerical models are

listed in the Table 5.

In Fig. 13 are presented the FFT spectra of the non-

linear calculations. Table 6 compares the experimen-

tal values with the numerical values and the predic-

tions given by proposed formulas. A very good

agreement can be observed among the three different

analyses.

As is evident, the breathing crack hypothesis is

supported not only by analytical theory, but also by the

non-linear numerical models. Furthermore, the pro-

posed model mock-up can be easily extended to more

complex situations in order to study non-linear

vibration problems.

7 Conclusions

The evaluation of the main frequencies for simply

supported RC beams with a cracked region is a

challenging problem. In general, non-linear formula-

tions based on the reduced rigidity of the cracked

sections underestimate the frequency values due to the

cyclic opening—locking of the cracks usually termed

as ‘‘breathing cracks’’. On the contrary, other factors

such as freeze-thaw degradation or fatigue cycles can

reduce consistently the natural frequency of cracked

0
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Fig. 11 Load cycle of the 4PBT performed on the experimental

beam up to reinforcement yielding

Fig. 12 Sketch of the

loaded beam (a) and the

three numerical models:

solid beam (b), beam with

compression only contact

elements (c), beam with

steadily open cracks (d)
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beams due to weakening of the concrete surrounding

the tensile reinforcement.

The use of the static equivalence principle of the

kinetic energy can help in building up a model in

which all the influences are factored in the equivalent

displacement evaluation, leading so to a general

analytical formulation of the phenomenon. Since

energy is a scalar quantity, a very simple hypothesis

can be introduced for the evaluation of the alternate

opening and locking of the cracks, based on the energy

averaging of the two different phases. It is to cite that

this hypothesis complies with the displacement aver-

aging of the two configurations.

The formula of eq. (13), even if in an approximate

form, is highly predictive of the observed behaviour as

in Fig. 9, and allows explaining the contribution of the

crack cyclic closure on the final result.

A very large data base of experimental tests of

simply supported damaged beams has been collected.

Although the configurations show a wide range of the

main parameters, the detected frequencies point out a

well-defined trend as a function of the damage level.

The comparison of the proposed formula with the

statistical best fit of the population, and with a

numerical solution based on the distinct element

method, highlights the effectiveness of the adopted

hypotheses.

The use of FEM models with non-linear elements

reproducing the crack closure did allow explaining the

observed experimental behaviour in quantitative

terms.

In conclusion, the inversion of the series approx-

imation of the analytical formula Eq. (13), allows

evaluating the damage level of a bridge deck in terms

of frequency shift with high reliability. The maximum

frequency shift realistically shown by a bridge beam

near the failure is predicted by Eq. (15).

The detection of dangerous conditions in real

structures requires a good sensitivity of the monitored

parameters. It is evident from the presented data that

frequency drops can appear only at the onset of

cracking or yielding. In this last condition however,

the structure is too near to the collapse and therefore it

is extremely risky to wait for this second borderline

drop. The onset of a stable 10–15% frequency

Table 5 Materials of the beam and parameters assigned to the models

Material Class fk (MPa) E (MPa) q (kg/m3) As (mm2) Ac (mm2)

Concrete C 20/25 20 20,000a 2400 – 30,000

Steel B450C 450 210,000 7850 226 –

Link Compr. only 20 20,000 2400 – 1500

aValue determined from ultrasonic tests
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Fig. 13 Comparison between the fundamental frequencies of

the three numerical models

Table 6 Comparison among the experimental frequencies and the numerical model results

Crack Dyn. test FE model Err Equations (2, 12) Err (%)

Solid 75.60 76.00 0.53 79.00 4.49

Breathing 59.96 60.00 0.06 60.80 1.40

Open 51.21a 51.00 0.41 51.90 1.34

aValue obtained through the Eq. (12)
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reduction (which probably is even steadily slightly

increasing due to progressive bond deterioration), is

the key response to look for. At this event, an

immediate inspection and maintenance activity must

be planned and carried out.
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Appendix

Tables 7, 8, and 9 contain the non dimensional data of

the points and curves shown in Figs. 3 and 9.

Table 7 Non dimensional load–frequency curves of the references [8, 12, 14]

Askegaard and Langsoe [8] Massenzio et al. [14] Tan [12]

VBF-1 VBF-3 VXR-1 F1 F2 F3 1

k kD k kD k kD k kD k kD k kD k kD

0.0565 1.0000 0.0568 1.0003 0.0557 1.0005 0.0000 1.0000 0.0000 1.0000 0.0000 0.9988 0.0000 1.0000

0.1230 0.9841 0.1395 0.9987 0.1390 0.9923 0.0606 0.9943 0.0585 0.9960 0.0691 0.9945 0.1338 0.9739

0.1725 0.9748 0.1819 0.9969 0.1743 0.9850 0.1191 0.8881 0.1188 0.8971 0.1296 0.9522 0.1438 0.9638

0.2161 0.9375 0.2115 0.9935 0.2114 0.9780 0.2005 0.8468 0.1997 0.8859 0.2188 0.9449 0.2003 0.9355

0.2322 0.9357 0.2457 0.9853 0.2400 0.9600 0.2524 0.8387 0.2478 0.8770 0.2734 0.9388 0.2220 0.8955

0.2931 0.9318 0.3089 0.9636 0.2847 0.9426 0.2974 0.8211 0.2960 0.8682 0.3280 0.9290 0.3083 0.8992

0.3138 0.8341 0.3312 0.9080 0.3590 0.9284 0.3476 0.7938 0.3442 0.8143 0.3777 0.8762 0.3315 0.8892

0.3734 0.8159 0.3924 0.8860 0.3800 0.8600 0.3978 0.7881 0.3941 0.8127 0.4414 0.8713 0.4429 0.8556

0.4955 0.8072 0.4376 0.8711 0.4323 0.8564 0.4567 0.7833 0.4527 0.8071 0.5051 0.8658 0.4877 0.8611

0.5000 0.8060 0.5000 0.8600 0.5063 0.8418 0.5070 0.7784 0.5026 0.8031 0.5560 0.8610 0.5558 0.8511

0.6144 0.8068 0.6442 0.8574 0.6526 0.8058 0.6560 0.7767 0.6506 0.8006 0.7234 0.8520 0.6671 0.8411

0.8710 0.7929 0.7946 0.7742 0.7866 0.8006 0.8743 0.8552 0.7784 0.8292

0.9905 0.7676 0.9862 0.7982 1.0425 0.8487 0.9347 0.6914
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