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Abstract A proper definition of the yield domains

governing the frictional behaviour at contact inter-

faces is generally required to perform the limit

analysis of 3D dry-jointed masonry block structures.

However, the modelling of the actual behaviour of

frictional contact interfaces under simultaneous nor-

mal and shear forces, torsion and bending moments is

a topic still poorly studied, especially from the

experimental point of view. In this paper the single

contact interface of a system composed of two dry-

jointed tuff blocks under different loading conditions

is experimentally investigated. The programme

includes several sets of tests based on different

eccentricities of the vertical and horizontal loading

implying pure strengths and interactions among shear,

torsion and bending moments. The results of each set

are then compared with those obtained by a recently

proposed numerical model for 3D masonry block

assemblages, based on the assumptions of infinite

strength in compression, tension and shear for blocks

and no-tension and frictional behaviour at their

contact. The comparison is useful, on the one hand,

as a further validation the efficacy of the previously

proposed yield domains in order to be used in 3D limit

analysis formulations and, on the other, to highlight

which yield domains need to be better represented.

Keywords Experimental frictional behaviour �
Limit state analysis � 3D dry-jointed masonry block

structures � Torsion strength � Torsion–shear–bending
moment interaction effects � Non-linear yield criteria

1 Introduction

It is well known that limit state analysis simplifies and

gives enough relation into the load capacity and

collapse mechanism of engineering structures, with a

reduced number of material parameters necessary to

perform the analysis. This tool is particularly inter-

esting for seismic analysis of masonry buildings which

do not conform to box behaviour because of lack of

stiff floor slabs or because of weaker partial collapses

affecting the façade or inner walls.

Amodelling strategy, which has demonstrated to be

useful in the limit analysis of masonry structures, is the

combination of block elements, rigid or deformable,

with interface elements, especially when frictional

behaviour is considered.

The application of rigid block limit analysis to

masonry structures has received a growing attention

from researchers in the last decades [5–9, 22, 23, 30,

31]. Of particular interest are the formulations of the

problem in terms of mathematical programming
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[2, 3, 14, 15, 25, 27, 29]. Within these approaches the

blocks are treated as nodes and the interfaces as

elements of a conventional finite element discretiza-

tion (discrete element modelling). Failure modes are

defined as sets of relative displacements among blocks

at their contact interfaces and, when the blocks are

assumed to possess infinite compressive strength, they

generally involve separation, rocking, sliding and

twisting of the interfaces, and combinations of them.

Cracking, crushing or deformation of the elements are

generally ignored, unless different material models for

rigid-body elements are considered [28].

Crucial to the model formulation is a proper

description of the constitutive laws that govern the

contact behaviour. In direct analogy to plasticity, a set

of yield conditions delineating contact failure can be

defined in the space of the static variables, as the

failure modes behave in essentially a rigid perfectly-

plastic manner [12, 17, 19]. The contact forces are

normal and shear forces as well as bending and torsion

moments, corresponding in a virtual work sense to the

internal degrees of freedom of the contact interface.

However, the definition of the yield domains and

their interactions to properly describe potential three-

dimensional responses of dry assemblages of rigid

blocks still represents a hard task, as the modelling of

the actual behaviour of frictional contact interfaces

under simultaneous shear forces, torsion and bending

moments is a topic still poorly studied [7, 25, 32],

especially from the experimental point of view. In fact,

large attention has been paid in the past only to the

characterization of the shear behaviour of frictional

contacts. In the 1960s and 1970s of the last century, a

number of experimental investigations were carried

out on rock friction, mostly to simulate the earthquake

fault slips, e.g., those reported by Byerlee [4]. These

were particularly devoted to study the variables that

may affect the details of frictional response, i.e.,

surface roughness, magnitude of pressure, slip veloc-

ity and other. Also, the unstable frictional sliding was

experimentally represented by the stick-slip behav-

iour. An historical review on this topic was presented

by Feeny et al. [13]. However, these studies were only

interested in the definition of the initial shear strength

and thereafter the Coulomb’s law was considered the

most adequate in practice, also for rigid body

mechanics. Several test methods to determine the

strength parameters of masonry structures were

investigated [1, 11, 16, 21, 24, 33, 34] and the triplet

test was then adopted as the standard test in Europe,

CEN [10]. No standard tests are instead available for

torsion–shear–bending moment interactions.

Furthermore, it should be noted that most 3D limit

analysis formulations developed to date have been

validated against results from in-plane loaded wall

panels [22], due to the scarcity of experimental data

covering other loading scenarios [26, 30, 36].

As a first attempt to fill such a gap of information,

this paper presents an experimental investigation on

3D yield domains and their interactions, with refer-

ence to the single contact interface of a system

composed of two dry-jointed tuff blocks. The exper-

imental programme includes several sets of tests based

on different eccentricities of the vertical and horizon-

tal loading implying interactions among shear, torsion

and bending moments. The results of each set are then

compared with those obtained by the numerical model

presented in [27], based on the assumptions of infinite

strength in compression, tension and shear for blocks

and no-tension and frictional behaviour at their

contact.

2 Experimental investigation

A series of experimental tests were carried out to

investigate the 3D frictional behaviour of dry masonry

joints. Specimens were made of stacks formed of two

dry-jointed tuff blocks with dimensions of

300 9 200 9 100 mm and weight of 75 N each.

The units were previously sawn in mechanical cutting.

Various yield conditions in 3D masonry assemblages

were considered adopting different combinations of

axial and shear forces as well as torsion and bending

moments. The testing device was designed and

realized ad hoc since no standard equipments and

procedures were found in the literature.

2.1 Test setup

The tests on the specimens of two overlapped tuff

blocks were carried out using a universal electrome-

chanical testing machine (Galdabini SUN 5), as

illustrated in Fig. 1a.

The loading system was conceived in order to

transfer both a constant vertical force with varying

eccentricity and variable horizontal forces on the

surface between the two blocks, so as to induce sliding
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failure under increasing shear forces and/or torsion

moments on the same surface.

To this aim, external vertical and horizontal loads

were only applied to the upper block, whereas the

block at the base was fixed with a timber frame at the

testing machine (Fig. 1b). The constant vertical load

was applied at different eccentricities using two steel

blocks with dimensions of 360 9 135 9 600 mm and

weight of 196 N each. The two steel blocks were

simply placed one over the other on the top of the

upper tuff block and no fixing devices were required as

the steel blocks were not subject to any other loading.

In fact, to activate the failure mechanism at the dry

joint interface between the tuff blocks, monotonically

increasing horizontal forces were only applied to the

side faces of the upper block, by means of eye bolts

fixed on specific points at half of the block’s height.

To apply the loads on the tuff block along the

horizontal plane, a steel cable supported by a system of

small pulleys and a steel frame was connected to the

Fig. 1 a The testing

machine. b Test setup
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actuator of the testing machine running in the vertical

direction. The load was applied under displacement

control at a constant rate of 10 mm/min.

The forces were measured using two load cells with

a maximum capacity of 500 N and an acquisition

frequency of 10 Hz, positioned between the cable and

the tuff block. The displacements were measured

using three linear variable displacement transducers

(LVDTs) with a displacement range of ±50 mm

supported by the steel frame. The LVDTs were

positioned at the edges of the blocks in order to detect

the activation of failure mechanism and measure three

independent components of displacements to obtain

the translation and rotation of the sliding block. As the

kinematics of the failure is beyond the scope of this

paper, only the results of the front and back LVDTs are

reported in the following sections.

The actual joint behaviour of two rough blocks

passing over each other is strongly dependent on

surface roughness, as already highlighted by Byerlee

[4]. In fact, the difficulty to define the exact friction

coefficient for rock materials at low normal stresses is

mainly due to a large scatter in the data which can be

reduced by increasing pressure on the contact surface.

Therefore, to limit the dispersion, an additional

vertical loading was added, the contact surface was

accurately dusted with compressed air before each test

and a limited number of five tests for each set were

carried out.

Despite a still low pressure level (of about 0.1 MPa),

coefficients of variation (CVs) smaller than 3 % for

shear tests and up to about 6 % for other tests were

registered, as detailed in Sect. 3. It is expected that

increasing the normal force the scatter in the data would

be further reduced and the pure shear force would

increase according to the Coulomb friction law [21].

2.2 Testing programme

The experimental programme was planned in order to

analyze the influence of the following parameters on

the bed joint response: the eccentricity of the vertical

and horizontal loading implying interactions among

shear, torsion and bending moments.

Figure 2 shows the two overlapped blocks and their

bed joint referred to axes X, Y and Z of the standard

Cartesian coordinate system in three dimensions. The

block dimensions a 9 b 9 h are 300 9 200 9

100 mm, the normal force on the bed joint is given

by the sum of the weight of the upper block

(Q = 75 N) and the overload (P = 392 N) applied

on the top at a variable eccentricity from the centre of

gravity G. The application point of this resultant force

(P ? Q) on the contact surface is the centre of

compression C. The horizontal loading is represented

either by the shear force V applied at variable

eccentricity and direction in the midplane of the upper

block or by a pair of shear forces in Y-direction applied

at symmetric points with respect to the YZ-plane

containing G and O.

Five different series were tested, which differ both

for vertical and horizontal loading conditions. Each

series included a number of 5 tests, with the exception

of the shear testing for which 10 tests were carried out.

A total of 125 tests were performed. Tables 1 and 2

gather all the experimental cases represented in the

XY-plane of the bed joint.

In the first series, the pure shear failure was

achieved in two sets (Sets 1a, b) implying the

condition that the resultant normal stress on the

contact interface and the applied horizontal force

belonged to the same vertical plane, so that no torsion

moment could arise on the contact interface.

In the second series, the pure torsion failure was

achieved by applying a centred overload and a pair of

horizontal forces to the weighting block in its

midplane and symmetrically to vertical midplane

(Sets 2a, b). Two different level arms of the couple

were considered.

In the third series the interaction between the

torsion failure and the bending moment was investi-

gated. In fact, a pair of horizontal forces was applied to

the upper block in its midplane, in combination with a

Fig. 2 Vertical and horizontal loading on the tested specimen

of two overlapped blocks
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Table 1 Experimental series for 3D yield domains of frictional bed joints

Sets 1a–4f
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vertical overload with some eccentricity from the

block centre of gravity. Three conditions of small,

medium and large eccentricity of the resultant vertical

load were considered (Sets 3a–c).

In the fourth series the torsion–shear interaction

was developed through the application of a centred

vertical loading and different horizontal load condi-

tions corresponding to various application points and

orientations of the force (Sets 4a–f).

The last series is referred to several combinations of

the previous loading conditions, so that interactions

among torsion, shear and bending moment could be

analyzed all together (Sets 5a–l).

3 Experimental results

3.1 Friction coefficient and pure shear strength

The friction coefficient for two overlapped tuff bricks

was measured through two sets of five tests implying

pure shear failure of the bed joint. Both sets involved

Table 2 Experimental series for 3D yield domains of frictional bed joints

Sets 5a–l
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the condition that the resultant normal stress on the

contact interface and the applied horizontal force lie

on the same vertical plane, so that no torsion moment

could arise (Fig. 3). In fact, for the first Set 1a the

centre of compression C coincides with the projection

of G on the contact interface in the XY-plane, say point

O (Fig. 2), and the shear stresses due to the horizontal

force centrally applied at the upper block is likely to be

uniformly distributed on the whole contact surface. It

should be mentioned that, whatever the loading

arrangements can be used for the testing setup, it is

not possible to provide fully uniform normal and shear

stresses along the joint so that failure occurs simul-

taneously at all points of the joint [18]. However, pure

displacement takes place if the alignment of the

resultant of shear stresses and the external shear force

is provided (C is also the shear centre).

In case of eccentric vertical loading (outside of

the central core of inertia of the contact surface),

i.e., for Set 1b, the resistant contact area tends to

reduce because of a sort of partialization of the

contact surface (no tensile strength). For this set, it

was observed that applying the horizontal force on

the Y–Z plane containing point C, only pure

displacement in Y-direction occurred (see the red

laser lines in Fig. 3a, b). This means that no torsion

moment takes place whatever the distribution of the

normal and shear stresses on the reduced area and

that, also in this case, the resultant of shear stresses

is aligned with the external shear force (here too, C

coincides with the shear centre). This experimental

evidence can be considered as a validation of the

assumption of a ‘‘reduced effective area’’ with

centroid in C, introduced by Casapulla and D’Ayala

[7] for the evaluation of torsion–bending moment

interaction, as also highlighted in Sect. 3.3 and

briefly recalled in Sect. 4.

The first set of five tests (Set 1a) was carried out by

putting the overload P = 392 N centred on the top

block and by applying the horizontal force at the

centre of gravity of the same block (point G in Fig. 2).

For the second set of five tests (Set 1b) the horizontal

force was applied at the eccentricity of 0.25a and the

overload was placed at the eccentricity of about 0.3a,

so that the eccentricity of 0.25a resulted for the centre

of compression C on the contact surface, as well. The

overload was placed symmetrically with respect to the

XZ-midplane in both cases.

Fig. 3 Friction test (Set

1b). Sample under eccentric

vertical load: a before

testing, b after testing, and

c load–displacement curves

Materials and Structures (2016) 49:751–767 757



In Fig. 3c one of the five tests of Set 1b is plotted in

terms of load–displacement and in Table 3 the data are

reported in terms of the friction coefficient (mean,

minimum and maximum values) and the CV.

The horizontal force registered by the load cell was

combined with the displacements registered both by

the front LVDT (red continuous line) and by the back

LVDT (blue dotted line) in Y-direction, taking into

account that the former transducer works in compres-

sion while the latter in tension. As expected, the

signals registered by both LVDTs are almost coinci-

dent, with an almost vertical branch representing the

rigid behaviour of the block interface and their

maximum value occurring at the first noticeable

movement. The displacements registered after this

point show the aforementioned stick-slip behaviour

which is typical of frictional sliding. However, it is

worth noting that the enhancement of displacement

occurred without increasing of the loading force.

The maximum force is considered as the reference

pure shear strength and the friction coefficient is

obtained by means of the cohesion-less Coulomb’s

law, i.e.,

l ¼ V0

N
; ð1Þ

where V0 and N are the limit shear strength and the

normal force at the contact interface, respectively.

On the other hand, it is evident from the results

summarized in Table 3 that the mean friction coeffi-

cient is independent of the eccentricity of the applied

loads (Sets 1a, b), provided that a pure shear failure is

activated. The low variability between the minimum

and the maximum values and the small CVs obtained

imply that the correspondent mean values are reliable

enough to be used for the numerical analysis. The

value used in numerical investigation is therefore

l = 0.64 and the experimental pure shear strength

according to the cohesion-less Coulomb’s law is

V0 = 297.8 N, being N = 467 N.

In order to validate the innovative experimental

device, these results were compared with the results

from direct shear tests conducted on couplet speci-

mens available in the literature.

Firstly, the shape of the load–displacement curves

is in good agreement with the findings of Vasconcelos

and Lourenço [34]. In fact, the monotonic tests

conducted on dry granitic blocks showed a similar

non-linear branch in the presliding phase and a plateau

after peak stress, representing the considerable plastic

deformations associated to inelastic sliding. The stick-

slip phenomenon is less pronounced than that

observed in Fig. 3c, probably due to the larger normal

forces applied. Also, no shear softening/hardening was

recorded after peak stress. These results indicate the

rather rigid-plastic behaviour of the joints.

Secondly, although a unique value of the normal

force was considered in this paper, it is expectable that

the shear strength will vary with different normal

forces according to cohesion-less Coulomb friction

law. In fact, the validity of the Coulomb failure can be

lost at high normal force, while guaranteed for

moderate stress levels [21].

Lastly, the friction coefficient of dry tuff joints

presented in this paper (l = 0.64) is similar to the

values found by Vasconcelos and Lourenço [34] for

granitic units (l = 0.65), by Lourenço and Ramos

[21] for sandstone joints (l = 0.63), and by Lee et al.

[20] for granitic units (l = 0.69). The narrow range of

values found for the friction coefficient seems to

indicate that no significant differences are expected

among distinct types of natural stone under similar

roughness surface conditions (sawn-cut surfaces).

However, the experimental results presented by

Villemus et al. [35] also demonstrated that the friction

coefficient is independent of the roughness surface of

the blocks.

3.2 Pure torsion strength

In order to determine the pure torsion strength, the

experimental equipment described above was used

and a pair of horizontal forces in Y-direction was

applied at specific points of the weighting block,

symmetrically to YZ-midplane (Figs. 1a, 2). Two

different arms of the couple were considered, i.e.,

0.9a for Set 2a and 0.5a for Set 2b, while the overload

was placed centred on the top block (O:C).

Table 3 Experimental friction coefficient

l Mean CV (%) Min Max

Set 1a 0.64 2.09 0.62 0.65

Set 1b 0.65 2.98 0.63 0.68

Total set (10 tests) 0.64 2.57 0.62 0.68
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Figure 4 shows two load–displacement curves

plotted for one of the five tests of Set 2a. The one in

red continuous line is referred to the front point of

loading and the back point of displacement, while that

in blue dotted line represents the other symmetric

points of loading and displacement.

Both curves highlight a ‘‘hardening’’ branch after

the rigid behaviour, instead of the constant loading

observed for the previous tests. This effect can be

explained by a kinematical point of view, at least

partially. In fact, it should be observed that the more

the displacement increases, the shorter the level arm of

the applied couple is provided. This means that the

forces should increase to achieve the same pure torsion

strength, though no longer perpendicularly to the face

of the block. It will be shown later in the text that also

the combinations of loading with torsion moment may

relatively be affected by the same effect. Instead,

slight differences between the two curves may be a

result of geometric imperfections in the experimental

specimens. However, the force corresponding to the

first displacement was considered as the reference

resistance.

The torsion strength MT0 was simply obtained as

the moment caused by the applied forces V about the

centroid of the contact interface O or the product of the

force and the corresponding lever-arm distance, as

well. The results for Sets 2a and b are reported in

Table 4.

It is evident in this table that the pure torsion

strength is almost the same for the two sets of test,

whilst the shear forces increase with decreasing lever-

arms, as expected. Also the low variability of the

results (CV up to 5.07 %), implies a good reliability of

the tests.

3.3 Torsion moment under eccentric normal

loading

The effect of the bending moment on the torsion

strength was experimentally investigated through the

application of the given vertical loading at some

eccentricity from the centre of gravity and of a pair of

horizontal forces in Y-direction at symmetric fixed

points of the weighting block (Fig. 5a). Three condi-

tions of small, medium and large eccentricity of the

resultant vertical load were considered, as reported in

Table 5.

Figure 5b shows the two load–displacement curves

plotted for one of the five tests of Set 3b. It is worth

noting that the trend of increasing shear forces after the

first movement was similar to that already observed in

Fig. 4, meaning that it may be affected by the same

effect described above. Also, the back LVDT reported

displacements smaller than those reported by the front

one because the centre of torsion is expected to be

coincident with the centre of compression and, hence,

closer to the back transducer, as well explained in

Portioli et al. [27].

On the other hand, the results in Table 5 show that

the mean shear force V and torsion moment MT0

decrease with increasing eccentricity of the centre of

compression. This is due to the fact that the eccentric

loading will reduce the resistant contact surface, so

that an effective reduced area can be considered for the

evaluation of torsion–bending moment interaction [7,

27]. The CVs are of the same order of magnitude as for

the previous tests.

3.4 Torsion–shear interaction

Different horizontal load conditions under centred

vertical loads (O:C) were applied to define the

torsion–shear interaction experimentally. A single

horizontal force was applied in the midplane of the

upper block and two groups of sets were investigated

(Fig. 6a). The first group includes the cases of the

shear force parallel to the Y-axis and applied at two

different points (Sets 4a, b), while the second group is

referred to the shear force inclined by an angle of±45�
to the same axis and applied at the same different

points (Sets 4c–f). The experimental results areFig. 4 Load–displacement curves for pure torsion test (Set 2a)
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gathered in Table 6, where V and MT are represented

by their absolute values.

Figure 6b shows the two load–displacement curves

plotted for one of the five tests of Set 4b. The trend of

increasing shear forces after the first movement was

again similar to that already observed in Figs. 4 and 5.

However, in this case, the displacements at the back

LVDT were greater than those at the front one because

the centre of torsion is expected to be on the opposite

side with respect to the YZ-midplane of the block and,

hence, closer to the front point. This is consistent with

the motion of the block which is characterized by a

rotation about a centre away from the centre of gravity.

According to this, the results in Table 6 show that

increasing the eccentricity, the torsion moment will

increase and the shear force decreases. The variability

of the results is still relatively low, with a CV ranging

from 2.67 % up to 5.96 %.

3.5 Torsion–shear interaction under eccentric

normal loading

The effects of the bending moments on the torsion–

shear interaction were experimentally investigated by

testing a number of load combinations (Fig. 7), as

reported in Table 7. V and MT are still represented as

their absolute values, taking into account that MT is

referred to the moment of V around point O.

The load–displacement curves for these sets have

trends similar to those already observed and also in

these cases the variability of the results is relatively

limited, ranging up to 6.8 %.

One of the most interesting remarks is that the shear

force applied at a given point with little distance from

the centre of compression was for all cases much

greater than the force applied at the same point and

with the same direction but with larger distance from

Table 4 Experimental pure torsion strength

Mean V (N) Mean MT0 (Nm) CV (%) Min V (N) Max V (N)

Set 2a 108.2 29.2 4.11 102.8 114.2

Set 2b 205.4 30.8 5.07 196.2 221.5

Fig. 5 Torsion–bending

moment test (Set 3b).

a Sample under eccentric

vertical load and horizontal

coupled forces, and b load–

displacement curves

Table 5 Experimental torsion–bending moment interaction

Mean V (N) Mean MT0 (Nm) CV (%) Min V (N) Max V (N)

Set 3a 96.1 25.9 4.25 91.3 100.1

Set 3b 82.5 22.3 5.84 76.4 87.3

Set 3c 66.4 17.9 1.80 65.0 68.1
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C. This trend can be observed by comparing some sets

taken in pairs, i.e., Sets 5c versus 5d, 5e versus 5f, 5g

versus 5h, 5i versus 5j and 5k versus 5l.

Consider for example Sets 5e and f shown in Fig. 7,

where the sample is subjected to the eccentric

horizontal force inclined of 45� and to the eccentric

vertical load on the right and left side, respectively. In

the first case (Set 5e) the shear force, which is very

close to the centre of compression, is larger of about

80 % than the force required to move the block when

the vertical load is far from it (Set 5f).

Although the kinematics of the failure is beyond the

scope of this paper, it is interesting to note that also the

position of the centre of torsion is affected by this

distance. In fact, the load–displacement curves for Set

5e (Fig. 7) show that, while the shear force increases,

the displacements registered by the two LVDTs also

increases, one slightly less than the other. This means

that the centre of torsion is not far from the centroid of

the contact interface, though shifted to the left. Instead,

when the vertical loading is placed at the opposite side

of the shear force with respect to the YZ-midplane of the

block, i.e. for Set 5f, the displacement of the front

LVDT is practically zero, while the other increases. In

this case the centre of torsion is further away from the

centroid O on the left side, very close to the front point.

However, this remark also confirms the fact

discussed above that when the shear force is applied

in a vertical plane very close to the centre of

compression—coincident with the shear centre—the

failure tends to a pure shear type, e.g., Sets 5c, j, k for

which the force is close to the shear strength.

4 Experimental versus numerical results

The yield functions for each failure mode and their

combinations defined in Portioli et al. [27] are herein

applied to the single frictional contact interface

between two rigid blocks modelling the sample

experimentally analyzed above. The results of linear/

linearized and non-linear formulations are compared

with the experimental ones in terms of limiting shear

force, as reported in Table 8.

Fig. 6 Torsion–shear test (Set 4b). a Sample under centred vertical load and eccentric horizontal force, and b load–displacement

curves

Table 6 Experimental

torsion–shear interaction
Mean V (N) Mean MT (Nm) CV (%) Min V (N) Max V (N)

Set 4a 216.3 16.2 2.67 209.4 224.5

Set 4b 165.7 22.4 3.18 160.3 172.4

Set 4c 176.2 21.8 3.64 169.3 183.1

Set 4d 147.1 24.4 5.82 136.2 157.2

Set 4e 294.1 5.2 5.96 278.3 324.2

Set 4f 285.2 7.1 5.17 264.8 303.3
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According to the adopted model, failure is concen-

trated at the centre point of the block interface and

includes different types of collapse modes, namely

joint separation, rocking, sliding and twisting, and

combinations of them. The blocks are considered

infinitely strong in compression, tension and shear so

Fig. 7 Torsion–shear–bending moment test (Sets 5e, f, h, l). Sample under eccentric vertical load and eccentric horizontal force

(inclined of ±45�). Load–displacement curves for Sets 5e, f)
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that no crushing/cracking and no deformation can take

place. Also, no-tension behaviour and infinite com-

pressive strength are assumed for the frictional

contact.

The yield functions of contact static variables are

represented by the internal forces acting at interface

and referred to the centre of contact (Fig. 8a), i.e., the

two components of the shear force V (V1 and V2) and of

the bending momentM (M1 andM2), the normal force

N and the torsion moment MT. The contact forces

correspond in a virtual work sense to the internal

degrees of freedom of the contact interface.

As well described in the cited work, the pure shear

strength was represented by a piecewise linearized

cohesion-less Coulomb’s cone, while the pure torsion

moment strength was expressed by a linear yield

function of the shear strength or normal force. These

diagrams are represented in Fig. 8b, c in the positive

quadrant only.

These yield functions, simplified to be applied to

the sample, are, respectively:

ys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
1 þ V2

2

q

� V0 � 0; ð2Þ

yt ¼ MTj j �MT0 � 0; ð3Þ

where:

MT0 ¼ V0cT V0 ¼ lN; ð4Þ

being cT the torsion constant and l = 0.64 the value of

the friction coefficient.

In case of torsion–shear interaction, a non-linear

formulation can be derived according to Casapulla [5],

as represented in Fig. 8d. However, the conservative

linear approximation sketched in the same figure was

considered in Portioli et al. [27] in order to reduce the

3D limit analysis problem to a linear program. It can

be expressed by the relation:

yts ¼ MTj j �MT0 1� V

V0

� �

� 0: ð5Þ

Instead, the torsion–bending moment interaction

was based on the assumption of a reduced effective

contact interface [7]. The yield function associated

with this failure criterion is:

ytb ¼ MTj j �MT0;eff � 0; ð6Þ

where:

MT0;eff ¼ V0cT;eff ; ð7Þ

being cT,eff the torsion constant calculated with

reference to the reduced contact interface. The torsion

strength MT0,eff decreases as the bending moments

increase through a slightly non-linear relationship, as

shown in Fig. 8e considering M1 = 0. In particular,

point A represents the condition M2/M2.0 = 1 for

which the torsion strength is not equal to zero but it

assumes the value [27]:

MA
T0;eff ¼

1

4
V0b: ð8Þ

The yield domain derived by this assumption, also

used by Orduña and Lourenço [25], implies an ad hoc

iterative procedure because in 3D block assemblages

the eccentricities of the normal forces at contact

Table 7 Experimental

torsion–shear–bending

moment interaction

Mean V (N) Mean MT (Nm) CV (%) Min V (N) Max V (N)

Set 5a 190.5 0.0 4.08 180.1 208.2

Set 5b 122.4 9.2 2.78 116.5 127.7

Set 5c 207.7 28.0 6.80 191.8 241.5

Set 5d 91.4 12.3 2.69 85.2 94.3

Set 5e 188.6 23.3 2.24 183.0 199.1

Set 5f 105.6 13.1 1.42 103.5 108.5

Set 5g 151.9 25.2 2.58 145.1 158.3

Set 5h 85.4 14.2 3.67 80.5 91.2

Set 5i 189.6 3.3 5.87 166.8 211.7

Set 5j 241.2 4.3 1.68 233.5 248.8

Set 5k 253.3 6.3 4.34 242.4 282.5

Set 5l 186.0 4.6 3.48 179.2 201.4
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interfaces are not generally known a priori [27].

However, when the eccentricity is a given parameter,

as in the cases analyzed in this paper, the non-linear

expressions can be solved in one-step.

Lastly, the torsion–shear–bending moment interac-

tion resulted as a combination of the previous linear/

linearized and non-linear formulations.

In order to be compared, experimental data are

reported in absolute value on the relative yield

domains (Fig. 8), while all the results are collected

in Table 8.

The comparisons of the results obtained by the

numerical model against experimental evidence show

that the predicted yield domains agree well with the

observed experimental results, to a small extent for the

torsion–shear interaction. In fact, the experimental

results were slightly greater than the numerical values

for the pure shear and torsion moment represented by

‘‘Linear/Linearized’’ models (Fig. 8b, c), relatively

greater than those for the torsion–bending moment

interaction expressed by ‘‘Non-Linear’’ model

(Fig. 8e) and significantly for the torsion–shear inter-

actions (Fig. 8d) and their combination with the

bending moment.

Concerning the torsion–shear interaction, the tests

results were in perfect agreement with the non-linear

domain, which, therefore, can be considered experi-

mentally validated. However, the results for the ‘‘Non-

Linear’’ model were not reported in Table 8 (Sets 4a–

f) since the comparison is mainly aimed at experi-

mental validating the proposed linearized yield crite-

ria. Thus, the expectable discrepancy between

experimental and numerical results is due to the fact

that the proposed linear approximation is too conser-

vative with respect to the non-linear strength, as also

evident in Fig. 8d. A piecewise linearization of the

Table 8 Comparison of experimental and numerical results

Yield Sets Exp V (N) Non-linear V (N) Linear/linearized V (N) Diff. linear/non-linear

versus exp. (%)

Pure shear 1a 297.8 – 298.9 -0.36

1b 302.6 – 298.9 -1.22

Pure torsion 2a 108.2 – 107.2 -0.96

2b 205.4 – 192.9 -6.08

Torsion–bending moment 3a 96.1 86.8 – -9.62

3b 82.5 74.6 – -9.61

3c 66.4 64.1 – -3.45

Torsion–shear 4a 216.3 – 168.4 -22.13

4b 165.7 – 124.8 -24.67

4c 176.2 – 131.2 -25.53

4d 147.1 – 110.0 -25.21

4e 294.1 – 252.7 -14.08

4f 285.2 – 238.0 -16.53

Torsion–shear–bending moment 5a 190.5 141.4 – -25.75

5b 122.4 92.63 – -24.30

5c 207.7 158.1 – -23.90

5d 91.4 72.6 – -20.59

5e 188.6 145.8 – -22.68

5f 105.6 82.5 – -21.90

5g 151.9 111.6 – -26.54

5h 85.4 70.3 – -17.74

5i 189.6 145.8 – -23.09

5j 241.2 196.0 – -18.75

5k 253.3 210.5 – -16.89

5l 186.0 138.7 – -25.44
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non-linear curve is therefore necessary to reduce the

differences observed.

On the other hand, the significant underestimation

of the numerical results for the cases of torsion–shear–

bending moments (Sets 5a–l) is mostly due to the

linear approximation of the torsion–shear interaction

described above. For a more general case, also con-

sidering bending moments in both directions, the non-

linearity of the torsion–bending moment interaction is

expected to play an important role, too. Further

Fig. 8 Numerical model and yielding domains including

experimental results (positive quadrants). a Static variables at

the contact interface. b Yield domain for pure shear. c Yield

domain for pure torsion. d Non-dimensional torsion–shear

interaction domains. e Non-dimensional torsion–bending

moment interaction domain for M1 = 0
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investigation is therefore required to improve the

proposed models both to consider a piecewise linear-

ization for torsion–shear interaction and to develop a

reliable criterion for the linearization of the torsion–

bending moment other than the iterative numerical

procedure. However, the average percentage differ-

ence between all experimental and predicted shear

forces was found to be about 17 %, and, overall, in

favour of safety.

This comparison is useful, on the one hand, as a

further validation the efficacy of the previously

proposed yield domains in order to be used in 3D

limit analysis formulations and, on the other, to

highlight which yield domains need to be better

represented.

5 Conclusions

Crucial to the limit analysis of 2D and 3D dry-jointed

masonry block structures is a proper description of the

constitutive laws that govern the frictional behaviour

at contact interfaces. This topic is still poorly inves-

tigated in the literature.

The experimental programme carried out in this

paper is focused on the definition of the yield domains

for normal and shear forces, torsion and bending

moments and their interactions, with reference to the

single contact interface of a system composed of two

dry-jointed tuff block. The testing device was

designed and realized ad hoc since no standard

equipments and procedures were found in the litera-

ture. The load was applied under displacement control

at constant rate in order to make the results of several

testing sets comparable each other.

The rather rigid-plastic behaviour of the frictional

contact was captured by the load–displacement curves

for all the tests and the forces corresponding to the first

noticeable displacement were considered as the refer-

ence resistances.

The results of each set were then compared with

those obtained by a recently proposed numerical

model for 3D rigid block assemblages, under the

assumptions of infinite compressive, shear and tensile

strengths for blocks and no-tension and frictional

behaviour at their contact. The comparisons show that

the predicted yield domains agree well with the

observed experimental results, to a small extent for

the torsion–shear interaction and, as a partial

consequence, for the torsion–shear–bending moment

interaction. However, the average percentage differ-

ence between all experimental and predicted shear

forces was found to be about 17 %, and, overall, in

favour of safety.

This comparison is useful, on the one hand, as a

further validation of the efficacy of the previously

proposed yield domains in order to be used in 3D limit

analysis formulations and, on the other hand, to

highlight which yield domains need to be better

represented.

Besides, the testing device and the experimental

campaign presented in this paper could be further

validated by considering different pre-compression

levels on the contact surface and other types of natural

stones, considered representative of ancient masonry

constructions. An interesting perspective may also be

the development of the experimental equipment for

the characterization of other masonry bonds, e.g.,

mortared joints, under the same loading combinations.
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