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Abstract The combination of environmental actions

and mechanical load, which most structural concretes

are subjected to, has a synergetic effect on the

durability of concrete. The comparative test conducted

by RILEM TC 281-CCC WG4 demonstrated and

quantified the effect of an applied mechanical load on

carbonation performance of concrete with supplemen-

tary cementitious materials. Although the effect of

loading on the chemical durability of concrete should

be taken into consideration for the development of

realistic service life predictions, they have been

widely overlooked so far. This recommendation

proposed by RILEM TC 281-CCC WG4 proposes a

testing method for determining the effect of applied

load on the carbonation rate of concrete. It specifies a

detailed experimental procedure to determine the

carbonation development of concretes subjected to

compressive and tensile loads. Therefore this recom-

mendation will support the consideration of such

combined effects in design codes.
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1 Background

The majority of standardized testing methods for

determining the durability of reinforced concrete

structures, only evaluate the chemical durability of

these materials by subjecting concretes to chemical

deteriorating processes such as exposure to CO2

(leading to a chemical reaction referred to as carbon-

ation) or chlorides (simulating marine environments).

Experimental results and observations in practice

showed that this approach for evaluating durability is

not a realistic, as the majority of structural concrete

will be subjected to loading, and certainly not a

conservative approach. The combination of mechan-

ical loads and environmental actions may turn out to

be more severe than any single action applied

separately.

There are obvious synergetic effects between loads

and environmental actions, which have been widely

neglected so far, when developing testing methodolo-

gies for service life prediction of concrete. Consider-

ing that both loading and environmental stresses will

be present during service life of concrete, the RILEM

Technical Committee (RILEM TC) 246-TDC [1] was

set up in 2011 to develop test methods to evaluate the

durability of concrete under combined mechanical

load and chloride penetration. Based on the compar-

ative tests that was ran in five laboratories for six

years, TC 246-TDC published a recommendation [1]

and a final report [2] in 2017 on determining the

service life of concrete under the combined action of

chloride ingress and applied load.

After that, working group four (WG4) within

RILEM TC 281-CCC was set up in 2018 to continue

the work on evaluating the combined effect of

mechanical load and carbonation on concrete perfor-

mance. One major aim of WG4 was to develop a

guideline for testing that allows the determination of

the combined effect of mechanical load and carbon-

ation, so results from future studies can be compared

and a body of literature can be created to truly

understand the phenomena taking place when concrete

subjected to loading is carbonating. The proposed test

methodology was critically validated by comparative

tests run by members of WG4. Six laboratories in four

countries participated in these comparative tests.

To establish a solid basis for the following exper-

imental studies, an annotated bibliography containing

publications on the durability of reinforced concrete

structures under combined mechanical load and car-

bonation was compiled first [3]. It was proven that the

load type and load level will influence the develop-

ment of carbonation depth [4–11]. Based on the

annotated bibliography and the specific experience of

TC members, well-defined comparative tests have
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been carried out and evaluated. From the wide range of

possible combinations in practice, the combination of

uniaxial compressive or tensile load and carbonation

at CO2 concentrations of 2% and 20% were chosen in

the tests. This for considering the variation in CO2

concentrations recommended in different standardized

testing methods currently adopted when evaluating

performance in unloaded concrete [12]. The compar-

ative test conducted for two rounds investigated the

carbonation behaviour of concrete with or without

supplementary cementitious materials (SCMs) under

load [13]. The results of the interlaboratory investiga-

tion clearly indicate that the carbonation rate contin-

uously increases under tension while it first decreases

and then increases under compression, which forms

the basis of the current recommendation.

Within the comparative test, the test method for

concrete carbonation under mechanical loading has

been gradually developed. By means of the specified

test operations, fluctuations in the applied load are

reduced, the concentration of carbon dioxide is

controlled and the error in the carbonation depth

measurement is reduced. Considering the fact that

currently different setups and loading and carbonation

conditions are adopted by different researchers, it is

difficult to draw general conclusions. The need for a

standardized testing procedure for evaluating the

combined effect of loading and accelerated carbona-

tion of concretes was identified, which is addressed in

the present document. At the same time, TC 281-CCC

WG4 members prepared literature compilations [3],

reviews [4], research papers [5–7], theoretical analy-

ses [8], and numerical simulations [9, 10] to investi-

gate issues such as the effect of material composition,

service life prediction, and theoretical modelling [11],

which can be consulted for further background

information. Based on the comparative tests and the

mentioned achievements, this recommendation is

presented with the aim of promoting the application

of the TC research results.

2 Scope and applications

This recommendation provides a test method for

evaluating performance of concrete subjected to

uniaxial compression or uniaxial tension and con-

trolled carbonation under natural or accelerated con-

ditions. It was developed based on a comparative

carbonation test with CO2 concentrations of 2% or

20%, but could be applied in case of other CO2

concentrations as well. This procedure was evaluated

in concrete with or without supplementary cementi-

tious materials such as fly ash and ground granulated

blast-furnace slag, with substitution volumes of up to

30 wt.% and 50 wt.%, respectively, but it is also

applicable to other concretes with SCMs.

This recommendation fulfills the need for practices

that allow accurate analysis and evaluation of the

durability of concrete, and it will be helpful for

research institutes and industries with an interest in the

service life prediction of concrete structures.

While this recommendation focuses on the combi-

nation of uniaxial compressive/tensile load and car-

bonation, it can be extended to more complex loading

schemes, for instance, carbonation under bending

loads.

3 Equipment, specimens, and test procedure

3.1 Test equipment

3.1.1 Loading device

The compressive load is recommended to be applied

on a prismatic concrete specimen using a test rig like

that used for creep loading and described in the

RILEM recommendation of TC 107-CSP [14]. A test

rig that provides an external load by a hydro-

pneumatic accumulator as demonstrated in Fig. 1a is

recommended, while other test rigs that have the same

principle and function and also fulfill the requirements

of the recommendation of RILEM TC 107-CSP can be

used to provide the uniaxial loading as well. The test
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rig for uniaxial tension maintains the applied load by

the ‘‘bolt & spring’’ method according to the recom-

mendation of TC TDC-246 [1, 2], as shown in Fig. 1b.

Load monitoring by a load cell is required to guarantee

the stability of the external load during the entire test

period.

3.1.2 Carbonation chamber

The carbonation chamber shall automatically adjust

the inner environment and meet the specified require-

ments. The recommended test conditions as detailed in

a specific standard for carbonation testing can be

followed, e.g., a temperature of 21 ± 2 �C, a relative
humidity of 60 ± 10%, and a CO2 concentration of

1% according to EN 13295 [15]. The carbonation

chamber should have sufficient internal space to

accommodate at least one series of specimens verti-

cally placed in the loaded rigs. For instance, a chamber

with internal dimension of 1500 9 860 9 900 mm3 is

recommended to accommodate 18 specimens with

compression or tension rigs, as shown in Fig. 1.

3.2 Specimens

Specimens need to be large enough to ensure a

uniform stress distribution in the middle when

subjected to uniaxial loads, and as the smallest

dimension should be more than 3 times the maximum

coarse aggregate size. In the meantime, the size of the

loading rigs and their positioning in the carbonation

chamber should be considered, which might limit

specimen dimensions. The recommended specimen

type is prismatic specimens with a cross-section area

of 100 9 100 mm2 and a height of 300 mm for the test

under uniaxial compression. Dumbbell specimens

with a smaller cross-section of 70 9 70 mm2 are

recommended for tension as well. The schematical

representation for both is illustrated in Fig. 2.

The tests at one specific CO2 concentration and

different designed load levels for one concrete mix are

grouped into one series. The design load levels,

expressed as a fraction of the average failure load are

shown in Table 1. For one series, at least five load

levels (- 0.6,- 0.3, 0, 0.3, and 0.6) are recommended

for determining the influence of load on carbonation

depth, where the negative values denote the compres-

sive load condition, 0 denotes the condition without

load which shall be also included as the reference and

the positive values refer to tensile loading. One may

also choose to only investigate the effect of either

tension or compression. It should also be noted that,

more load levels in compression would be needed to

determine the transition load level for compression at

which the effect of load changes from amicrostructure

densification which decreases the carbonation rate, to

a microcrack formation which increases the carbon-

ation rate. In contrast, the tensile load condition will

always lead to an increased carbonation rate [13].

3.3 Test procedure

The test procedure can be divided into four parts and

the outline is shown in Fig. 3.

Fig. 1 Schematic

representation (left) and the

picture (right) of test rig for

loaded concrete specimen
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3.3.1 Casting

The specimen is recommended to be cast according to

EN 12390-2 [16] or another standard valid in the place

of use, and all specimens are cast horizontally and

compacted on a vibrating table. A layer of Teflon

(Polytetrafluoroethylene, PTFE) (foil or thin sheet) is

recommended to be put into the mold before casting to

avoid the disturbing effect of demolding oil. If not

otherwise specified, the slump of concrete is recom-

mended to be controlled at around 110 ± 10 mm for

easy casting.

3.3.2 Curing

The following three-step curing procedure is recom-

mended, and the details not addressed here can be

referred to EN 12390 [16]:

(i) The cast fresh specimen is recommended to

be covered with a plastic sheet and placed in

the curing room maintained at 20 ± 2 �C for

24 ± 0.5 h.

(ii) The demolded specimen is recommended to

be soaked in a saturated calcium hydroxide

solution or in a climate chamber at[ 95%

RH at 20 ± 2 �C for 28 days.

(iii) The specimen is then recommended to be

preconditioned in a climatized room main-

tained at the same temperature and RH that

will be applied during the carbonation test for

14 days [12]. Alternatively, a longer curing

time can be chosen to allow the SCM reaction

to occur to a larger extent and realize a

microstructure that is more representative of

the actual microstructure during the lifetime

Fig. 2 Schematic representation of the top view (left) and side view (right) of the specimens used in compression and tension tests

Table 1 The recommended arrangement for one series of tests

Load level Specimen shape Specimen numbers

- 0.6 Prism 3

- 0.3 Prism 3

0 Prism 3

0.3 Dumbbell 6

0.6 Dumbbell 6

The load level is expressed relative to the strength as described

in Sect. 3.3
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of the concrete elements. Furthermore, longer

preconditioning contributes to a uniform

humidity throughout the concrete matrix.

In the end, the remaining lime solution on the

specimen surfaces (if any) is recommended to be

removed with a dry tissue.

3.3.3 Compressive strength & tensile strength

The compressive and tensile strength shall be deter-

mined on specimens with the same dimensions as

those used for the carbonation test under sustained

loads, i.e., prismatic specimens for the compressive

strength and dumbbell-shaped specimens for the

tensile strength. The strength of the specimens shall

be measured on at least three samples for compression

and six samples for tension, all at an age of 91 days

after curing as described above. The procedure is

recommended to be in accordance with the EN 12390

[16]. A servo-hydraulic test machine with an accuracy

of 0.1 kN and a loading rate of 0.6 ± 0.2 MPa/s is

recommended to be used. The obtained ultimate

strength is used as the reference to determine the

design load value at different load levels for the

carbonation test under sustained loads.

3.3.4 Sealing specimens

The specimens for the carbonation test need further

preparation to ensure a one-dimensional carbonation.

After the curing procedure, two opposite side surfaces

(troweled surface and bottom surface during casting)

and the two end surfaces should be immediately sealed

with a layer of self-adhesive aluminium foil, leaving

only the other two opposite side surfaces to be

carbonated. An illustration is shown in Fig. 4. In this

way, two-dimensional carbonation in the corners and

any effects of the casting direction as discussed below

could be avoided.

3.3.5 Loading

The sealed specimen should be properly centered in

the loading rig and loaded to the designed load level.

Vertical placement of the test rig is recommended to

avoid uneven distribution of stress caused by hori-

zontal placement. Then the test rig with the installed

specimen shall be mechanically loaded under uniaxial

compression/tension up to the design load value by a

universal testing machine or a loading jack. The

design load value is determined by the ultimate

strength and the chosen load level. Load monitoring

and regular load compensation is recommended with a

frequency depending on the design value of the

applied load level based on the experimental results.

Experimental results have indicated that the load

should be adjusted at least every 5 days, 9 days, and

15 days, respectively, for a C30 prismatic concrete

with compressive strength of 34.4 ± 0.8 MPa with

design load levels of 30%, 45%, and 60%, to avoid

more than 10% load deviation.

Fig. 3 Outline of the test procedure
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3.3.6 Accelerated carbonation

The loaded specimen together with the test rig is

recommended to be moved into a carbonation cham-

ber with a temperature, a relative humidity and a

constant CO2 concentration as specified in the stan-

dard used. The temperature, relative humidity, and

CO2 concentration should be monitored during the

whole period of the experiment.

Regarding the test procedure, it should also be

noted that the raw materials, mix composition of

concrete, curing procedure and the carbonation test

condition can be adjusted to simulate the situation on-

site better. Load levels in addition to 0%, 30%, and

60% can be also added according to the practical

specifications.

4 Measurement and calculation

4.1 Measurement of carbonation depth

The measurement method is based on the EN 14630

[14]. The carbonated prism or dumbbell specimens are

to be split in the middle with a universal testing

machine creating a fresh surface, where dust and lose

particles are recommended to be cleaned by any non-

destructive method, such as slowly wiping with soft

brushes or gently blowing with low-velocity blow gun.

Then a colour indicator solution with a colour switch

around a pH value of 10 (e.g. 1 g phenolphthalein in

70/30 vol.% ethanol/water) should be sprayed on the

split surface to determine the carbonation depth after

one hour or longer to avoid the leaching of the alkaline

pore solution and get a better distinguishable colour

change boundary.

The measuring points should be evenly distributed

along the edges of the split surface. It is recommended

to divide the edges of the two opposite carbonated side

surfaces into ten equal parts and take measurements at

the nine dividing points. The thickness of the colour-

less zone at each measuring point (in the case of a

phenolphthalein colour indicator) is taken as the local

carbonation depth, d. It is recommended to measure

d perpendicular to the surface of the prism or dumbbell

specimen using a ruler or a sliding gauge and a

magnifier.

4.2 Calculation of the average carbonation depth

of a single specimen

The average carbonation depth for each specimen,Dcs,

is thus determined based on the results at all 18

measuring points, as shown in Eq. 1.

DCS ¼
1

n

Xn

i¼1
di ð1Þ

DCS: the average carbonation depth; n: the number of

measuring points; di: the carbonation depth of the

measuring point i;

It should be noted that since the aggregate particles

will not be coloured by indicators, a theoretical

carbonation front at the intersection of the location

point and a straight line connecting the limits on each

side of the particle shall be used when measurement

points coincide with dense aggregates. The extreme

carbonation depth when encountering air voids or

porous aggregates shall be treated depending on its

local increment in accordance with EN 14630 [17] as

well.

Fig. 4 An illustration of aluminium-foil-sealed tension specimen

Materials and Structures (2023) 56:121 Page 7 of 9 121



4.3 Calculation of the average carbonation depth

of one series of specimens

After DCS is determined for each specimen, the

carbonation depth for each series shall be determined

by averaging the DCS of replicate specimens (at least

three for compression and six for tension), denoted as

DCLoad. The standard deviation (SDDCLoad) and the

standard error (SEDCLoad) on the average, DCLoad, can

be calculated by Eqs. 2 and 3, respectively, and

reported for showing the variability in the test dataset.

The test report for one series of concrete is

demonstrated in Table A2. The effect of load on the

carbonation depth can be subsequently determined by

fitting method based on the values of DCLoad from one

series of specimens.

Standard deviation:

SDDCLoad ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 DCSj � DCLoad

� �2

m� 1

s

ð2Þ

Standard error:

SEDCLoad ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 DCSj � DCLoad

� �2

m � ðm� 1Þ

s

ð3Þ

DCS
j
: the carbonation depth of replicate sample j;

DCLoad: the average carbonation depth of all the

replicate samples at one single load level; m: the

number of replicate samples.

The result can also be presented as the average

value with its 95% confidence interval:DCLoad ± 1.96

SDDCLoad.

5 Test report

The test report shall contain at least the following

information:

(1) Properties of concrete specimens (mix design

and compressive strength).

(2) Curing conditions (temperature, RH, time).

(3) Information on the loading device and the

carbonation chamber.

(4) Number and size of specimens.

(5) Load levels.

(6) Carbonation environment (temperature, RH,

CO2 concentration; with their variability).

(7) Test records and results filled in forms as

Appendix A. One example is shown in Appen-

dix B.

(8) Any deviation from the procedure described in

this method.
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