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Abstract
Silk fibroin is a polymer of interest thanks to its ability to be transformed into different structures, such as fibers. The elec-
trospun technique can produce micro and nanofibers, presenting advantages like high superficial area and porosity. However, 
this polymer needs to be dissolved into a liquid solution using solvents. This study evaluates the effect of formic acid and 
water as solvents on the silk fibroin electrospun fibers morphology, chemical structure, and thermal properties. In this case, 
silk fibroin was obtained from silk fibrous wastes. The results suggest that the morphology obtained from both solutions has a 
similar fiber diameter. Electrospun silk fibers using formic acid solution present a relatively high porosity and recrystallization 
enthalpy. In contrast, the percentage of crystallinity and degradation temperature were higher in samples with aqueous solu-
tion. This indicates that the aqueous process allows higher structural ordering, improving the thermal stability for the fibers.

Introduction

Silk is a protein fiber produced by a variety of insects, 
including silkworms like Bombyx mori. Its silk is com-
posed of two proteins, silk fibroin (SF) (70–75%) and silk 
sericin (25–30%) [1]. SF is usually obtained from silkworm 
cocoons, which can be used for other purposes like silk 
textiles. Nevertheless, SF can also be obtained from silk 
fibrous wastes as raw material with relatively low-cost [2, 
3], namely silk fibroin from wastes (SFw). SF is versatile 
polymer due to the different forms it can be manufactured, 
such as powder, gels, films, foams, and nanofibers, making it 
useful on several applications [4]. This versatility combined 
with its outstanding properties such as biocompatibility, per-
meability, thermal stability, and degradation, makes the SF 
a promising material for different applications [5–7] such 
as textiles [8–10], food packaging [11], wound dressings 
[12], filtration media [13], and medical materials [4, 14, 
15]. Several techniques are used to transform the SF into 
different forms for its final application. The electrospinning 

technique, for instance, allows producing SF fibers with 
diameters in the range of micrometers down to tens nanom-
eters as a function of its processing conditions, giving high 
specific surface area and high porosity to the final material. 
These properties improve its capability to use it in these 
applications mentioned above [6].

It is possible to electrospun SF on an aqueous solution 
(AQ) or use organic solvents such as formic acid (FA). AQ 
solution systems with SF stands out due to their null toxicity 
compared to FA systems, but it has lower stability in solu-
tion. For this reason, external mechanical force or storage 
conditions could induce molecular aggregation, precipita-
tion, and SF gelation in AQ systems [16]. In contrast, FA and 
SF system produce transparent solutions, prevent aggrega-
tion formation, and allow longer storage time than AQ [17]. 
Also, FA as solvent helps to control the viscosity during the 
SF electrospinning processing [18]. SFw fibers’ properties, 
manufactured through the electrospun process using AQ and 
FA as solvents, is still been studied in order to establish 
the differences between both solvent systems. In this work, 
defect-free electrospun fibers of SFw, were manufactured 
and characterized. The samples morphology, chemical 
structure, and thermal behavior were evaluated. Scanning 
Electron Microscopy (SEM), Attenuated Total Reflectance 
Fourier Transform Infrared Spectroscopy (FTIR-ATR), and 
Temperature Modulated Differential Scanning Calorimetric 
(TM-DSC) were implemented, respectively, to compare the 
effect of the solvent system in the electrospun SFw fibers.
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Materials and methods

Extraction of silk fibroin

Silk fibrous wastes were provided by the Corporacion 
para el Desarrollo de la Sericultura del Cauca-Colombia 
(CORSEDA). These were used to obtain SFw following 
a procedure previously published in literature [3, 19–21]. 
Briefly, the silk fibrous wastes were degummed using 
Na2CO3 (EMSURE) at boiling conditions for 60 min. After 
this, the fibers were dried and subsequently dissolved using 
9.3 M LiBr (SIGMA ALDIRCH, > 99% purity) at 60 °C. 
Finally, a 5–6% w/w aqueous SFw solution was obtained 
after dialysis and micro-filtration.

Preparation of silk fibroin solutions

The obtained SFw was concentrated through reverse dialy-
sis against polyethylene glycol (PEG) (SIGMA ALDRICH) 
solution [22] until it reached 20% w/w of SFwAQ. On the 
other hand, SFw was put into casts to obtain films by sol-
vent casting, dried until a constant weight was reached. The 
SFw films were dissolved in formic acid (Honeywell, > 99% 
purity) at 15% w/w of SFwFA. Moreover, the FA solution 
presented spinnability at a lower SFw concentration than 
the AQ; this could be attributed to the higher viscosity and 
conductivity of the FA solution [18].

Electrospinning of silk fibroin solutions

The solutions prepared with both solvents were electro-
spun by in-house equipment following specific parameters 
for each one. The SFwAQ solution was electrospun with 
a volumetric speed of 0.2 ml/h, a voltage of 16 kV, and a 
distance between the needle tip and the collector of 10 cm. 
The SFwFA electrospun was obtained with a voltage applied 

at 19 kV, a volumetric rate of 0.4 ml/h, and a needle-to-
collector distance of 11 cm. Electrospun nonwovens were 
stored in a desiccator until its characterization.

Characterization of the electrospun fibers

The electrospun nonwovens’ images were recorded by SEM 
(JEOL JSM-6490 LV, United States), with 15 kV of acceler-
ation voltage, and processed using ImageJ software together 
with DiameterJ plugin. Whichs allows determining the aver-
age diameter, the standard deviation, and the apparent poros-
ity from the samples’ SEM images. The fibers’ chemical 
structures were evaluated by FTIR-ATR (Nicolet FTIR IS50 
Thermo Scientific, United States). A total of 64 scans with 
a resolution of 4 cm−1 were recorded in the range between 
4000 and 400 cm−1 of the absorption spectrum. OMNIC 
software was used to deconvolute the spectra in the region 
of amide I (1700–1600 cm−1) [2]. Finally, the fibers’ thermal 
behavior was studied using a TM-DSC (Q2000 TA Instru-
ments, United States) with a 50 ml/min of N2 inhert gas flow 
and a heating ramp of 3 °C/min from 30 to 350 °C.

Results and discussion

Morphology

Figure 1 shows the SEM micrographs obtained from elec-
trospun SFwAQ and SFwFA fibers. Uniform and beadless 
nanofibers can be observed in both cases, indicating the 
spinnability of both solutions. According to ImajeJ analy-
sis of similar mean diameter, presented in Table 1, indicate 
no significant changes in the average fiber diameter for the 
nanofibers obtained from both solutions, additionally, the 
histograms show a symmetric trend and a range ranging 
from 187 to 2623 nm. Nevertheless, the sample SFwFA 
presented 12% less porosity than the sample SFwAQ. This 

Fig. 1   SEM micrograph and diameter distribution histogram of electrospun nanofibers. (a) SFwFA (b) SFwAQ
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could be attributed to the differences in the rate flow use 
in each system combined with each solvent’s specific rate 
of evaporation. The higher flow and rate of evaporation 
on SFwFA samples allows a greater deposition of fibers 
to enhance the adhesion of the fibers and result in lower 
porosity than SFwAQ samples [23].  

Chemical structure

The percentage of the relative secondary structures of SFw 
nanofibers obtained from both solutions is summarized in 
Fig. 2. The β sheet structure dominates the SFwAQ sam-
ples, and the main structures for SFwFA were turns and 
bends followed by β sheet. The analysis of these results 
indicates that the nanofibers from SFwAQ present a higher 
percentage of crystallinity (51.81%) than the nanofibers 
from SFwFA (39.84%). Even though FA is attributed to 
improving the SF’s crystallization [24], water also plays 
a relevant role in the SF crystallization process. Water 
acts as a plasticizer, promoting higher crystalline struc-
tures content [25], especially when electrospinning SF in 
aqueous media. This might occur because the water is not 
fully removed during the fiber formation promoting the 
formation of ordered structures of SF during the fibers 
dried process.

Thermal behavior

Figure 3 presents the TM-DSC thermograms for SFwAQ 
and SFwFA fibers. Both samples exhibit an endothermic 
peak before 100 °C, attributed to water evaporation [26]. 
On the other hand, the recrystallization enthalpy value 
was lower, while the degradation temperature (Td) was 
relatively higher for the SFwAQ compared to SFwFA [27, 
28]. This indicates that the nanofibers from SFwFA con-
tain a higher percentage of amorphous structures than the 
more crystalline SFwAQ sample, corroborating the data 
obtained with FTIR in the previous section. This leads to 
faster degradation of the SFwFA sample and limits the 
molecular mobility of SFwAQ during the heated recrystal-
lization process (Table 2).

Table 1   Average diameter of SFw nanofibers and apparent porosity 
percentage form both solutions

Average fiber diameter (nm) Apparent 
porosity 
(%)

SFwAQ 715.2 ± 0.10 48
SFwFA 716.3 ± 0.20 36

Table 2   Summary of TM-DSC data obtained from SFwAQ and 
SFwFA

Tg (°C) Td (°C) Recrystalliza-
tion enthalpy 
(J/g)

SFwAQ 173 267 7.1
SFwFA 172 260 11.4

Fig. 2   Relative content of secondary structures of SFwAQ and 
SFwFA

Fig. 3   TM-DSC curve (a) SFwFA and (b) SFwAQ. Non-Rev-heat 
flow is show in blue and the Rev-heat is presented in black
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Conclusions

In the present work, electrospun fibers from silk fibrous 
waste were produced using aqueous and formic acid solu-
tions. Beadless fibers with similar morphology and diameter 
were found for both solvents. However, the porosity, second-
ary chemical structure, and thermal behavior were affected 
by the solvents. The aqueous solution system enhances the 
crystallinity, thermal stability and increases the porosity of 
the sample. In contrast, the silk fibers obtained with the for-
mic acid resulted in relatively more amorphous and conse-
quently less thermal stable nonwoven material. According 
to the effect of solvents on the morphological, chemical and 
thermal properties of silk fibroin electrospun, it is concluded 
that the choice of solvent can be used as a strategy to con-
trol and obtain adequate properties in a silk-based material 
depending on the application of interest.
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