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Abstract
There is a paradigm shift towards data-centric AI, where model efficacy relies on quality, unified data. The common research analytics and data 
lifecycle environment (CRADLE™) is an infrastructure and framework that supports a data-centric paradigm and materials data science at scale 
through heterogeneous data management, elastic scaling, and accessible interfaces. We demonstrate CRADLE’s capabilities through five materials 
science studies: phase identification in X-ray diffraction, defect segmentation in X-ray computed tomography, polymer crystallization analysis in atomic 
force microscopy, feature extraction from additive manufacturing, and geospatial data fusion. CRADLE catalyzes scalable, reproducible insights to 
transform how data is captured, stored, and analyzed.

Introduction
Modern materials science contends with immense volumes of 
heterogeneous data from experiments and simulations. High 
powered characterization techniques, for example, can cap-
ture data at rates up to 30 GB/sec.[[1]] This necessitates para-
digm shift in the methodology of materials science and data 
pipelines that can handle information at scale.[[2,3]] Large-
scale high performance computing (HPC), artificial intelli-
gence (AI), and machine learning (ML) have each become 
integral tools to generate scientific insights from massive 
datasets. This follows a broader trend in the scientific com-
munity towards AI4Science, utilizing the power of AI/ML to 
enable scientific discovery.[[4,5]]

The integration of AI/ML in materials science, however, 
introduces several key challenges. First, the scale of mod-
ern datasets generated during experimentation requires now 
domain scientists to possess expertise in software and data 
engineering to generate insights. This demand has resulted 
in the generation of a new role: the materials data scientist. 
Second, the scale and heterogeneity of materials data requires 
a complex computational infrastructure to manage it. Exist-
ing Big Data infrastructures, however, are often designed by 
technology companies who have different needs from scien-
tific research. This misalignment means current systems and 

frameworks fail to support the domain needs of materials 
data science. Furthermore, modern research tends to focus 
on the improvement of models and algorithms over the data 
itself. The growing field of data-centric AI pushes against 
this trend, advocating for more systematic practices. In data-
centric AI, datasets are treated as fluid entities that evolve 
alongside models to avoid the “garbage in = garbage out” 
problem.[[6–8]]

The common research analytics and data lifecycle environ-
ment (CRADLE) was developed as a comprehensive frame-
work to address this gap and support data-centric AI.[[9–11]] 
CRADLE provides a computing infrastructure and framework 
that enables materials data science at scale. Key components 
includes multimodal data processing, accessible interfaces for 
complex computational engines, interactive visualization tools, 
and distributed computing storage. In this work, we demon-
strate how CRADLE enables novel materials science studies 
on large-scale datasets across different modalities. Examples 
include distributed data ingestion and accelerated deep learning 
for phase identification in X-ray diffraction (XRD), segmenta-
tion of defects in X-ray computed tomography (XCT), analy-
sis of crystallization kinetics in polymers from atomic force 
microscopy (AFM) imaging, feature extraction from additive 
manufacturing (AM), and integrating satellite imagery for 
monitoring crop health.

Thomas Ciardi and Arafath Nihar have contributed equally to this 
work.
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Background
Distributed and High‑Performance 
Computing
High performance computing (HPC) systems consist of tightly 
integrated clusters of servers that incorporate specialized hard-
ware to achieve exceptional computing power. These systems 
are composed of specialized hardware such as high-core 
count CPUs, accelerators like GPUs, and parallel storage sys-
tems.[[12]] This hardware and design enables them to run com-
plex simulations, train machine learning models, and perform 
advanced scientific calculations. These tasks benefit from the 
tightly coupled nature of HPC clusters, where high-speed net-
working interconnects ensure efficient communication and data 
exchange between nodes. HPC systems are designed for verti-
cal scaling, which involves augmenting existing nodes with 
more powerful resources like additional cores, higher memory 
capacities, and faster input/output (I/O) capabilities.

Distributed systems consist of a network of commodity 
hardware, that utilizes the collective power of many servers 
to process and store Big Data. These systems leverage frame-
works like Hadoop to process large datasets across many 
standard computers.[[13]] Tasks are split into smaller subtasks, 
distributed to nodes for processing, and then aggregated, 
enabling the system to analyze and process vast amounts of 
data efficiently.[[14]] These systems are designed to be highly 
fault-tolerant, automatically handling failures without disrupt-
ing the overall operation. Distributed computing systems are 
designed to scale horizontally, which involves the addition 
of more nodes to increase processing capability and storage 
capacity. This allows for cost-effective scaling, as it relies on 
standard, off-the-shelf hardware rather than specialized, high-
cost components.

Materials Data Science Infrastructure
Much of the development in large-scale data infrastructure 
has been pioneered by Internet companies. Companies such as 
Airbnb, LinkedIn and Uber receive massive data from millions 
of users, and have accordingly developed both scale-up and 
scale-out infrastructure to store, process and generate insights 
from this data.[[15,16]] These organizations, however, have fun-
damentally different design interests than research institutions 
and experimental scientists. As a result, numerous research 
groups have developed custom data infrastructures and com-
ponents for materials data.

Experimental data pipelines are designed to manage the flow 
of big data from the instruments that collect it to a storage loca-
tion. This requires tight integration with instruments and low-
latency networking. NREL’s research data infrastructure (RDI) 
gathers data from numerous instruments across the campus and 
writes information to a PostgreSQL database for analysis.[[17]] 
Kadi4Mat provides researchers with an electronic lab notebook 
(ELN) environment that lets users interact and program with 
data as it is collected from instruments.[[18]]

Designing data standards and databases is another key 
research area to catalog existing materials and discover new 
materials. Numerous efforts have been made to develop such 
these catalogs, such as the open quantum materials database 
(OQMD) and Automatic-FLOW for materials discovery 
(AFLOW).[[19,20]] There has been a particular emphasis on 
building data with FAIR principles; making it Findable, Acces-
sible, Interoperable, and Reusable.[[21,22]]

Machine learning pipelines have also been developed to 
generate robust predictive models from large datasets. Exam-
ples include data from tomography beamlines, as well as from 
X-ray ptychography.[[23,24]] Some of these experiments incorpo-
rate a control pipeline, allowing automated, real-time responses 
to failures in the experimental pipeline.[[25,26]]

Required Capabilities for Data‑Centric AI
Existing materials data science infrastructure fails to fully 
meet emerging needs. Current systems remain siloed by 
instrumentation types and data modalities, lacking integration 
to consolidate insights. Support for scalable and reproducible 
analytics using techniques like machine learning across large, 
multimodal datasets is limited. As a result, significant software 
and data engineering expertise is still required alongside scien-
tific domain knowledge. Several key challenges are described 
below.

Materials data is highly fragmented and heterogeneous, 
spanning structured tables, images, videos, spectra, and more. 
Managing and integrating these diverse modalities at scale is 
challenging. For example, a additive manufacturing experiment 
can contain multiple sensors that produce tabular, image, and 
acoustic data all at different time scales. Optimized storage 
and processing is needed for each data type (e.g. databases 
for tables, object stores for files), along with abstractions like 
graphs to connect insights across modalities.

Managing large datasets and leveraging HPC has a high 
barrier to entry for materials scientists due to the technical 
expertise required. Infrastructure should lower barriers for 
domain scientists without extensive coding expertise via intui-
tive interfaces, modular building blocks, and managed services. 
This allows researchers to focus insights rather than navigating 
complex distributed systems. Open source components also 
enable sharing of data, models, and algorithms.

Reproducibility of studies is challenging due to ever-chang-
ing data management practices. Metadata and identifiers are 
unique to each experiment making connecting historical stud-
ies and heterogenous data difficult. Enforcing FAIR principles 
across the data lifecycle pipelines enables reproducibility of 
results. This includes careful design of data schemas and cap-
turing raw data, analysis code, and trained models for published 
studies in accessible repositories.

Designing a system that can handle high-throughput comput-
ing for complex simulations and machine learning model training 
paired with distributed frameworks to process huge datasets effi-
ciently is non-trivial. The system should leverage both vertical 
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(scale-up) and horizontal (scale-out) scaling to accelerate materi-
als data science. A small research group of five individuals to a 
large national laboratory of thousands should be able to use the 
same framework and scale it to their specific needs.

CRADLE provides a holistic solution to address each of 
these required capabilities and design challenges. Figure 1 
depicts the materials data science life cycle and workflow sup-
ported by the framework from raw data ingestion to predictive 
deep learning models. The following section deconstructs the 
framework’s components and technical details.

CRADLE Framework
Elastic Scaling Architecture
CRADLE utilizes a hybrid infrastructure encompassing a high-
performance computing cluster and additional Hadoop clusters to 
enable both vertical and horizontal scaling. The HPC nodes fea-
ture powerful CPUs, accelerators, and high-speed networking to 
efficiently run simulations, visualizations, and machine learning 
models. The Hadoop clusters provide a distributed framework 
over commodity hardware to process huge datasets in parallel.

This architecture supports allocating the right workload to 
the right system. Small, high-throughput batch jobs that require 
fast single node performance run on the HPC cluster. Massive 
jobs needing to process terabytes of data in a fault-tolerant 

fashion execute on the expandable Hadoop cluster. The systems 
interface to share data and results, with storage locality mini-
mizing transfer latencies. Proper workload allocation ensures 
that a user performing data transformations on a million rows of 
time series data will not monopolize the GPU nodes of a HPC 
cluster that other users might need for training deep learning 
models.

A key advantage of this design is cost-effective scalability. 
Expanding the HPC cluster necessitates purchasing expensive, 
cutting-edge hardware in a manual process. The Hadoop cluster 
leverages cheap, off-the-shelf servers and automated workflows 
to easily grow storage and processing capabilities. CRADLE’s 
hybrid architecture is composed of the Case Western Reserve 
University’s HPC cluster alongside a set of three separate 
Hadoop clusters. The most recent iteration Hadoop cluster 
contains two petabytes of distributed storage. Full hardware 
specifications are shown in Fig. 2.

Multimodal Data Storage and Processing
CRADLE’s storage layer leverages a hybrid of Hadoop Dis-
tributed File System (HDFS) and HPC Network Attached 
Storage (NAS) to support diverse data modalities at scale. 
HDFS provides petabyte-level storage across commodity 
servers with built-in data replication for fault tolerance. 
This acts as a long-term data lake. The HPC NAS offers 

Figure 1.  High level overview of the CRADLE framework and data life cycle. Interactions between data scientists, accessible interfaces to 
High Performance Computing (HPC), and the underlying distributed Hadoop cluster for data management.
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high-performance parallel filesystems for temporary storage 
and low-latency data access.

The storage ecosystem targets the unique needs of differ-
ent data types. Columnar data is stored in the HBase non-
relational database for efficient, low latency queries. Graph 
data resides in the JanusGraph network database to enable 
analytical traversals. The Ozone object store houses images 
and videos to circumvent the small files problem of HDFS 
and HBase. Underlying HDFS preserves the complete immu-
table raw dataset for reproducibility.[[13]]

The processing layer mirrors this heterogeneity sup-
port. Custom jobs run on either the Hadoop cluster leverag-
ing YARN resource management or the HPC cluster with 
SLURM job scheduling.[[27,28]] Distributed data pipelines rely 
on Spark and its Resilient Distributed Dataset (RDD) abstrac-
tion for large-scale batch and streaming tasks.[[29,30]] GraphX 
provides graph-optimized Spark algorithms.[[31]] Impala is 

used for SQL queries against tabular data partitioned across 
nodes.[[32]]

Access control across users utilizes integration with univer-
sity single sign-on (SSO), Kerberos authentication, and Apache 
Ranger policies.[[33]] The combination of storage, processing, 
and security layers enables diverse, large-scale datasets to be 
manipulated, explored, and shared while maintaining access 
controls.

Accessible Containerized Data Science 
Tooling
CRADLE provides containerized data science tooling that 
domain scientists can leverage to easily access HPC and 
Hadoop resources. HPC and Hadoop clusters alone involve 
complex developer tools to interface with for resources. Access 
to the SLURM scheduler through the shell and Hadoop through 
lower-level APIs creates a barrier to entry for non-developers. 
Furthermore, managing package versions and dependency con-
flicts in languages such as Python and R generate bottlenecks 
and inconsistent workflows.

Environment containerization solves these problems. CRA-
DLE leverages Singularity containers to create isolated and 
reproducible software environments that contain all the rel-
evant tools of a data scientist.[[34]] These containers contain 
data science programming languages, libraries, dependencies, 
interactive development environments (IDEs), and other rel-
evant tooling for ML.[[35,36]] Containers are securely run on 
HPC nodes and are configured to access the Hadoop clusters.

These containers are accessed through a simple, intuitive 
interface using Open OnDemand.[[37]] Open OnDemand pro-
vides browser based access to launch applications such as 
VSCodium and RStudio. A graphical user interface (GUI) 
allows a user to select the specific computational resources 
from HPC such as CPU cores, RAM, and GPUs. After select-
ing the desired options, a session is launched in broswer to an 
application that is directly hooked onto the HPC NAS file sys-
tem. This means that a scientist can leverage HPC and Hadoop 
resources from anywhere as long as they have Internet access. 
It enables the ability to scale analysis past the limitations of 
one’s notebook and work in a consistent, dependency resolved 
environment.

CRADLE Middleware
CRADLE provides a suite of software tools called “middle-
ware” to further simplify access and usage of the infrastruc-
ture. These packages abstract complexity and address common 
workflow bottlenecks that material scientists face. Middleware 
is designed so scientists can leverage the powerful tooling of 
HPC and Hadoop without knowledge past basic scripting in R 
and Python.

CRADLETools The CRADLETools Python/R package ena-
bles directly loading HDFS and HBase data into scripts via 
intuitive function calls. This avoids the need for users to write 
Java code or Impala SQL queries just to interface with stor-
age. Custom DataLoaders for PyTorch are also implemented, to 

Figure 2.  Hardware and software stack that composes CRADLE. 
The top portion depicts the HPC cluster. This includes contain-
erized environments with programming IDEs, OS systems, and 
resource management tools. The bottom portion depicts the 
Hadoop cluster. This includes the underlying data storage and 
processing stack. HDFS and Hbase are used to store tabular/
graph data storage and Ozone for image/videos. Respective clus-
ters are securely connected via Kerberos and SSL.
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enable the ability to stream big datasets from Ozone and HDFS 
for integrated model training. The DataLoader is able to stream 
data in real-time without loading the entire dataset locally, 
while also supporting prefetching and caching of batches of 
data on the GPU to optimize data throughput.

CRADLEFleets Executing large batches of HPC jobs typi-
cally requires intricate SLURM configuration. CRADLEFleets 
condenses this process down to easy Python/R function calls for 
allocation, submission, and monitoring. Users simply specify 
the script, arguments, and resources required while the package 
handles parallel executions and collating outputs. This enables 
scientists to perform transformations across thousands of files 
or train hundreds of deep learning models in parallel on HPC.

CRADLE Data Explorer Exploring available datasets 
can also pose challenges in navigating stores and learning 
query languages. Furthermore, historical domain knowledge 
is required to be aware of what experiments may have been 
previously conducted and where the results from those experi-
ments sit. CRADLE Data Explorer is a R Shiny application 
that offers rich visualizations cater to different modalities 
while simplifying access to materials data lakes. Data stored 
according to FAIR principles enables a complete historical 
overview of what exists inside of the multimodal data stores, 
eliminating the necessity to navigate through specific table 
names or queries.

Data is visualized according to their specific modality such 
as: interactive 3D intensity plots of XRD, surface maps of AFM 
polymer crystallization, and large-scale graphs of Photovoltaic 
power plants. The R base makes the application easily exten-
sible through the addition of new datasets or visualizations. A 
complete overview of existing datasets, models, and parameters 
is offered to accelerate the data wrangling process. Serving as a 
launchpad for data exploration, scientists can retrieve analysis-
ready data and models to focus on conducting research rather 
than engineering data.

CRADLE‑Enabled Materials Data 
Science
The purpose of CRADLE is to enable materials data science 
at scale. CRADLE provides a comprehensive computing and 
infrastructure framework to tackle a diverse set of materials 
challenges, irrespective of data modality and volume. Table I 
showcases several exemplar studies CRADLE has enabled.

Large‑Scale Ingestion and Phase 
Identification of 2D X‑ray Diffraction 
Patterns Using Deep Learning
Synchrotron X-ray diffraction (XRD) enables highly detailed 
characterization of crystalline structure changes. The beam-
line, however, captures high spatiotemporal resolution stud-
ies that produce terabtye-scale datasets with ease. Here, we 
demonstrate the ability of CRADLE to ingest immense data-
sets, query metadata, and parallelize training of deep neural 
networks.[[38,39]] Researchers conducted experiments at the 
CHESS beamline to produce 21 terabytes of XRD data. A 2D 
area detector (HEXD) captured 4.5 million 2D diffractograms 
for downstream analysis. Ingesting and working with the het-
erogenous data utilizing CRADLE presented solutions at scale. 
Metadata encoded in Apache Parquet partitioned across the 
HDFS cluster, enabling low-latency SQL analytics via Impala. 
2D diffraction patterns were ingested as TIFF files into Apache 
Ozone to circumvent small file HDFS issues.

After FAIRification and ingestion, developing machine 
learning pipelines and predictive models became trivial. A 
subset of data was selected to train a convolutional neural 
networks (CNNs) for phase identification. Specifically, CNNs 
were developed to take a 2D diffractogram as input and predict 
the corresponding β-phase volume fraction. Leveraging HPC 
and CRADLEFleets, parallelized hyperparameter tuning of 168 
CNN models was performed to achieve a mean squared error 
(MSE) of 0.0026. CRADLE reduced total training time of the 
pipeline from 89 h to 1 h compared to conducting analysis on 
a single HPC node.

Automated Pipelines for Corrosion 
Detection and Visualization using X‑ray 
Computed Tomography
X-ray computed tomography (XCT) enables structural reliabil-
ity studies through high resolution imaging of pitting corro-
sion in metal alloy wires. Quantification of corrosion, however, 
requires meticulous segmentation of microscopic defects across 
thousands of XCT slices which is highly time consuming. This 
barrier severely limits scientific analysis to understand corro-
sion kinetics. Here we demonstrate CRADLE’s capabilities to 
support automated pipelines for feature extraction, volumetric 
reconstruction, and topological transformations.[[40]]

A pitting corrosion study was conducted where Al wire was 
exposed to salt water droplets. During the experiment, 88 3D 
scans were taken to monitor material changes over time. These 

Table I.  Heterogenous data and 
deep learning tasks enabled 
at scale by the CRADLE 
infrastructure.

Characterization technique Data modality Data science task

X-ray diffraction Tabular, images Regression using convolutional neural networks
X-ray computed tomography Tabular, images Semantic segmentation of 3D volumes
Atomic force microscopy Tabular, images, graphs Link regression with graph neural networks
High-speed camera Video, tabular Feature extraction and multimodal integration
Satellite imagery Rasters, images Multi-scale integration and predictive modeling



 

606        MRS COMMUNICATIONS · VOLUME 14 · ISSUE 4 · www.mrs.org/mrc

88 3D scans translated to 87,648 2D cross sectional slices in 
the form of TIFF images. Images were ingested in CRADLE’s 
Ozone store for object storage.

An automated pipeline was then developed to perform seg-
mentation on 2D images, reconstruct pits in 3D, and provide a 
complete statistical characterization of all corrosion as shown 
in Fig. 3. For segmentation, a U-Net was trained on a small sub-
set of images to identify pits in 2D cross sectional slices.[[41]] 
The model achieved a precision of 0.88 and recall of 0.90 for 
the binary segmentation task. The trained model was then used 
for inference on the entire 87,648 TIFF image dataset, parallel-
izing predictions across HPC using CRADLEFleets. Volumet-
ric reconstructions, statistical quantification, and topological 
transforms were also parallelized, reducing complete charac-
terization pipeline from hours to under 30 min. Results and 
reconstructed volumes represented as sparse matrices were 
ingested into HBase for future analysis. The machine learning 
and image processing toolbox offered by CRADLE with inte-
gration into modality specific storage, enabled an automated 
pipleline to quickly be developed and deployed.

Graph Neural Networks to Study 
Crystallization Kinetics and Similarity 
in AFM Image Sequences
Atomic force microscopy (AFM) enables nanoscale imaging of 
phase transitions in materials over time. The characterization 
technique enables studies on crystallite formation in fluoroelas-
tomer films, producing videos comprising thousands of frames. 
Manually analyzing each image with a traditional software such 

as Gwyddion proves prohibitive, requiring months of effort 
without direct insights. Here, we demonstrate CRADLE’s abil-
ity to enable distributed data preprocessing, multimodal stor-
age, and acceleration of deep learning.[[42]]

Thirty-six AFM videos were taken of polymer crystalliza-
tion under different experimental conditions, generating over 
21,317 image frames (comprising roughly 90 GB of data). 
Experimental data was saved in a machine specific format: 
IGOR Pro binary wave files (IBW). Spark enabled distributed 
preprocessing of image frames and experimental metadata from 
the IBW. Leveraging distributed preprocessing and ingestion, 
provided a 18x speedup over traditional processing in HPC. 
Similar to other use cases described, tabular metadata was 
ingested into HBase and TIFF images into Ozone. Compre-
hensive preprocessing and storage enabled two downstream 
deep learning pipelines to be developed.

The first pipeline involved training CNNs to segment crys-
tallites from image frames and to quantify their metrics.[[42,43]] 
A U-Net was trained to segment crystallite from amorphous 
region and after hyperparameter tuning, achieved a intersec-
tion over union (IoU) score of 0.95. Segmented crystallites 
were then constructed into graph representations using nearest 
neighbor calculations. Crystallites were represented as nodes in 
the graph and edges based on nearest neighbor distances. These 
graphs provided a lightweight representation of images where 
graph mining techniques could then be applied. The pipeline 
is depicted on the left in Fig. 4. Leveraging GPU accelerated 
tooling from CRADLE such as RAPIDS’ CuPy library cut post-
processing in half. Quantified feature vectors and images were 
persisted to HBase and Ozone.

The second pipeline involved training graph neural networks 
(GNNs) to predict similarity between crystallites. To generate 
similarity values between 409,371 crystallites involved 167 bil-
lion calculations. Working memory of HPC was overflooded, 
but distributed Spark workloads partitioned comparisons to fit 
in memory. Figure 4 plots the relationship between number 
of crystallites used for pairwise calcuations and the total time 
taken. A graph was assembled from the output and ingested into 
JanusGraph. This enabled efficient training 216 graph neural 
network variants using subgraph querying. CRADLE reduced 
end-to-end efforts from days to hours by solving obstacles at 
each phase of both pipelines.

Feature Extraction and Multimodal Data 
Integration from High‑Speed Camera 
Video of Additive Manufacturing
Laser powder bed fusion shows promise as a more efficient 
additive manufacturing technique but runs risks of defects like 
keyhole pores harming end products. Coupled sensor streams, 
however, enable monitoring melt pools to identify anomalies 
and build accurate predictive models. Examples of sensors 
inclue high-speed cameras (HSC) capture video of the fusion 
process and pyrometers to obtain spectral data from the radia-
tion. Integration of these sensors introduces a complex multi-
modal data management problem at scale.[[44,45]]

Figure 3.  Upper left: section of raw 2D TIFF image. Upper right: 
reconstructed 3D volume. Lower left: prediction of pit region from 
U-Net overlaid on 2D TIFF image. Lower right: 3D reconstruction 
of a segmented pit where the red slice corresponds to where the 
2D TIFF is taken from.
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A dataset of 750 tracks was collected where both in-situ and 
ex-situ monitoring was performed. Data from four modalities 
was collected: process parameters of the machine, high-speed 
camera video, pyrometry measurements, and radiography of 
samples post build. The 750 high-speed camera videos con-
tained 1000 frames each. For each high-speed camera frame, 
there are 100 correlated pyrometry measurements. High-speed 
camera videos were ingested into HDFS for long term storage. 
Frames from when the laser was powered and features were 
present, were extracted and stored in Ozone object storage in 

addition to radiography images. Pyrometry and process meas-
urements were stored in HBase. A design schema was gener-
ated to link all four unique datasets at different spatiotemporal 
resolutions to enable efficient queries for desired results. Fig-
ure 5 depicts a general schema and set of data modalities.

After ingestion, subsets of high-speed camera frames with 
appropriate features were queried to train object detection 
and segmentation models such as U-Net and You Only Look 
Once (YOLO).[[41,46]] The best models used to perform infer-
ence across all high-speed camera frames, and results written 

Figure 4.  Left: crystallite segmentation and spatiotemporal graph construction pipeline. Segmentation masks are generated from raw TIFF 
images. The segmented crystallites are then represented as nodes in a graph and edges formed based on nearest neighbors. Right: scal-
ing pairwise similarity calculations between crystallites. The x-axis depicts the number of crystallites being used for pairwise calculations 
and the y-axis the total time taken for all calculations.

Figure 5.  Schema diagram of heterogrenous data modalities for analysis of laser powder bed fusion studies. This study used both high 
speed camera frames of the melt pool, in-situ pyrometry measurements, and ex-situ radiography measurements.



 

608        MRS COMMUNICATIONS · VOLUME 14 · ISSUE 4 · www.mrs.org/mrc

back into CRADLE’s HBase storage. Since the schema was 
previously designed, extracted features such as melt pool 
geometry could immediately be linked to other data modali-
ties for downstream analysis. This enabled researchers to tie 
together information from disparate sensors such as high-
speed camera spatter size and radiography defect presence 
for a holistic study across the entire build plate. Multimodal 
analysis to this scale requires a infrastructure and framework 
that handle high volumes of heterogeneous data.

Monitoring Crop Growth Through 
a Multiscale Geospatial Satellite Imagery 
Analysis
Remote sensing technology provides a comprehensive means 
of monitoring crop growth, soil conditions, and hydrological 
dynamics crucial for promoting sustainable agricultural prac-
tices and mitigating environmental impact. Integrating datasets 
from different time and spatial scales, however, is challenging 
spatiotemporal problem that requires well-designed frame-
works and tooling. CRADLE serves as a perfect infrastructure 
to support these integrations through its elastic scaling.[[47]]

In this study, datasets such as MODIS Aqua satellite 
imagery, USDA historical crop planting data, the Aster Global 
Digital Elevation Model (GDEM), and USGS stream gauge 
readings were downloaded. Datasets contained different spatial 
resolutions such as MODIS at 250 ms and USDA historical 
crop planting data at 30 ms. Additionally, different datasets 
contained varying temporal resolutions such as stream gauge 
readings from USGS at 15 min intervals and MODIS at a 24 h 
interval for spectral bands. Sensor readings were written into 
Parquet files and ingested into HDFS for partitioned storage. 
GeoTIFFs were ingested into Ozone as objects with each Geo-
TIFF containing close to 13 million points.

A multimodal workflow was developed to combine these 
disparate datasets across spatiotemporal resolutions to study 
complex interplay between different monitoring techniques 
within Ohio. Crop health was be monitored through spectral 
band information and correlated to soil nitrogren content to cap-
ture the relationship between soli nitrogen availability and crop 
yields. CRADLE provided a flexible interface to store, query, 
and transform billions of geospatial data points for this study.

Discussion
Data‑Centric AI Infrastructure
The paradigm shift towards data-centric AI is essential in 
unlocking the full potential of machine learning models.[[6,7]] 
Traditionally, the focus has been predominantly on refining 
algorithms and model architectures. However, the efficacy of 
these models is fundamentally reliant on the quality and avail-
ability of data. CRADLE exemplifies this shift by establishing 
an integrated infrastructure that prioritizes data management 
and accessibility, thus enabling AI and ML applications to oper-
ate at unprecedented scales.

This infrastructure not only supports the integration of dis-
parate datasets through multimodal data ingestion but also 
employs optimized storage formats to improve data acces-
sibility. Embedded data exploration tools within CRADLE 
provide deep insights into existing datasets, promoting a pro-
active approach to computational analysis that integrates the 
data lifecycle from the very beginning of the research process. 
Lowering the barrier to entry for domain scientists to leverage 
HPC and distributed computing democratizes the use of these 
resources and accelerates scientific research.

Advancing Scalable and Reproducible 
Research
Building upon the data-centric foundation, CRADLE’s infra-
structure also serves as a catalyst for scalable and reproduc-
ible research. It ensures thorough documentation of data and 
ML models to expand research efforts beyond the limitations 
imposed by dataset scale. The system eliminates the redun-
dancy inherent in isolated studies by offering a platform that 
fosters the adoption of standardized data schemas, contributing 
to the development of models with greater generalizability.

A tangible demonstration of CRADLE’s impact is observed 
in the capabilities to analyze heterogeneous collections of XRD 
patterns, XCT scans, and AFM images. The five demonstrations 
were each built as an extension of a pre-existing work, where 
the previous study opted to only examine a subset of data due 
to volume constraints. Through CRADLE, we were able to 
extend analysis for the entire dataset to unlock new insights 
and workflows that scale. For instance, the computational effi-
ciency achieved through the use of distributed computing pro-
cessing 167 billion data points in about 4 h with Apache Spark 
and CRADLE’s Hadoop cluster highlights is illustrated in our 
benchmark analysis (see Fig. 4). This efficiency not only dem-
onstrates CRADLE’s capacity to handle large-scale data analy-
ses but also its role in facilitating more in-depth and expansive 
research in the field of materials science.

CRADLE’s adherence to FAIR principles in data transfor-
mation processes, coupled with the metadata storage alongside 
the transformed data, exemplifies the commitment to data and 
model provenance.[[48,49]] Leveraging open-source tooling, gen-
erating accessible repositories, and operating in collaborative 
scientific workflows highlight infrastructure’s role in advancing 
open science.

Conclusion
The paradigm shift towards data-centric AI is essential to fully 
utilize the potential of machine learning. Rather than refined 
algorithms, model efficacy fundamentally relies on quality and 
available data. CRADLE exemplifies this shift by prioritizing 
unified data management and accessibility first. This enables 
integrating fragmented stores and utilizing techniques like dis-
tributed computing and machine learning that otherwise fail 
with poor data systems. The focus moves beyond models to 
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transform how data is captured, stored, and accessed across 
its lifecycle.

In this work, we demonstrate how the data-centric foun-
dation provided by CRADLE enables analysis at new scales. 
Presented use cases highlighted techniques across modalities 
including large-scale inference for segmentation and char-
acterization, accelerated deep learning with optimized data 
pipelines, multimodal integration across sensor streams, and 
distributed graph querying. From polymer crystallization stud-
ied with AFMs to satellite imagery monitoring, CRADLE cata-
lyzes insights across domains. Future directions for CRADLE 
involve expanding its capabilities to support additional materi-
als-specific software and making key middleware components 
portable and open source. CRADLE enables a data-centric AI 
paradigm that can help solve not only materials science chal-
lenges but other fields like biology, physics, and chemistry to 
push scientific discovery forward.
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