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Abstract
This paper presents a groundbreaking strategy for optimizing composite laminate structures by integrating finite element modeling with a specialized 
multi-layer neural network. The neural network is trained on precise ground truth data obtained from rigorous finite element simulations, allowing it 
to discern intricate correlations among layer orientations, boundary conditions, and optimized designs. Tailored to the nuances of laminar composite 
optimization, the developed neural network emerges as a potent predictive tool, providing deep insights into the intricate interdependencies of design 
parameters. The study’s findings hold immense promise for advancing materials design and structural engineering, highlighting the transformative 
potential of combining computational intelligence with traditional modeling approaches.

Introduction
Engineered assemblages of composite laminates provide a flex-
ible foundation for customizing mechanical properties accord-
ing to specific requirements.[1,2] The design optimization of 
these laminates encompasses a multidimensional space involv-
ing considerations such as the number of layers, material selec-
tion for each layer, layer thickness, and stacking sequence.[3,4] 
While factors like the number of layers, material types, and 
thicknesses may be influenced by external constraints, the 
stacking sequence remains a critical parameter open to opti-
mization. This study focuses on the systematic optimization 
of stacking sequences in composite laminates, aiming to mini-
mize stresses within the structure under specified loading con-
ditions. Additionally, by addressing the intricacies of stacking 
sequences, the research aims to pave the way for enhanced 
structural performance and durability in composite laminate.

Prior research has extensively addressed the optimization 
of composite laminates, often employing traditional optimiza-
tion techniques like genetic algorithms and simulated anneal-
ing. These methodologies have been successful in exploring 
the design space, but their effectiveness can be limited when 
dealing with the intricate non-linearities inherent in compos-
ite materials.[5,6] Recent studies have begun incorporating 
computational intelligence, using metaheuristic algorithms 
and machine learning approaches to address these challenges. 
However, the specific application of generative deep-learning 
models for optimizing stacking sequences represents an inno-
vative and promising frontier.[7,8] This paper builds upon this 
foundation, leveraging deep-learning capabilities to unlock new 
possibilities in optimizing stacking sequences for composite 
laminates and, consequently, advancing the field of material 
design for enhanced structural performance.[9,10] By embracing 
the cutting-edge realm of generative deep learning, the research 

aims to transcend the limitations of traditional optimization 
methods, offering a novel and effective approach to optimize 
stacking sequences for superior structural outcomes in com-
posite laminates.

The presented example focuses on a laminate with a sym-
metric layup, using Carbon-Epoxy as the lamina material with 
orthotropic properties. The optimization analysis targets the 
determination of the optimal fiber orientation in each layer 
under specified loading conditions, with the primary objec-
tive of minimizing the maximum stress within the laminate. 
The optimization process employs the Bound Optimization 
BY Quadratic Approximations (BOBYQA) method, empha-
sizing the practicality and efficiency of the generative deep-
learning approach in finding the optimum stacking sequence 
for enhanced structural performance.[8,10]

Materials and methods
In this study, the ground truth data are generated through Finite 
Element Method (FEM) simulations, as depicted in Fig. 1. Fig-
ure 1(a) illustrates the model geometry of a composite lami-
nate with a side length of 1 m and a thickness of 0.02 m. The 
simulation input encompasses boundary conditions, material 
properties, the number of layers, and the orientation of each 
layer. The simulation output is the optimized orientation of 
each layer, determined using the BOBYQA method. For illus-
tration, Fig. 1(b), (c), and (d) presents von Mises stress, the 
initial orientation of fibers in each layer, and the optimized 
orientation in each layer, respectively. All boundary conditions 
are translated into a numerical vector using a preprocessor, 
achieved by representing them with digit numbers. The number 
of input nodes is fixed at 9. The input to the first node indicates 
the number of layers in the composite laminates (e.g., 6 for 
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a laminar with 6 layers). The second to fifth nodes represent 
inputs of boundary conditions for each edge. Boundary condi-
tions on the edge can be uniform distribution loads or bending 
moments, distinguished by adding an additional zero before the 
digits (e.g., 26 means 26N/m uniform load while 260 means 
26N · m bending moment). The sixth to ninth nodes denote the 
loads applied to the vertices. In this preliminary study, the value 
range of point loads or distribution loads is from − 50 to 50. 
The number of output nodes is adjusted based on the number 
of input layers which is a task easily accomplished in Python 3 
by incorporating a loop to change the number of output nodes. 
Each ply of composite panel is assumed to be made of carbon 
fibers in an epoxy resin. The material properties for the given 
composite material are as follows: Young’s moduli (E1, E2, 
E3) are {134, 9.2, 9.2} GPa, shear moduli (G12, G23, G13) 
are {4.8, 4.8, 4.8} GPa, and Poisson’s ratios (υ12, υ23, υ13) 
are {0.28, 0.28, 0.28}.

The flow chart of this study is detailed in Fig. 2(a). The 
adjustable MLP networks are demonstrated in Fig. 2(b). For 
the MLP, we employed a single input layer with 9 nodes, rep-
resenting the number of layers and boundary conditions. The 
output of the MLP consists of orientation angle of layer in 
degrees. We adopted a straightforward architectural design, 

utilizing five layers with nine nodes in each layer. This simple 
architecture has proven effective in numerous studies and per-
formed well during initial testing. In the training, we carefully 
tuned key parameters to ensure optimal model performance. 
The choice of an appropriate learning rate, often a critical fac-
tor in training deep-learning models, was set to 0.02, balancing 
the need for fast convergence with stability. A batch size of 
500 was used, determining the number of data samples pro-
cessed in each iteration, which played a significant role in 
optimizing training efficiency. The models were trained for 
22 epochs, providing sufficient iterations to allow the model 
to learn the underlying patterns. Weight decay, set at 0.001, 
was employed to prevent overfitting. The rectified linear unit 
(ReLU) activation function was used in hidden layers, and 
the customized Mean-Squared Error (MSE) loss function was 
defined as follows:

where n represents the number of layers, θ
i
 indicates the pre-

dicted angle for each layer, and θ̂
i
 represent the optimized angle 

for each layer from FEM simulation.
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Figure 1.   FEM simulation setup. (a) Model geometry of a composite laminate. (b) von Mises stress, (c) Initial orientation of fiber in each 
layer. (d) Optimized orientation in each lay.
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Results and discussion
Figure 3 depicts the average mean-squared errors (MSEs) for 
both training and validation graphs. The training loss exhibits 
a decreasing trend over epochs, suggesting the model’s effec-
tive learning from the training data. Starting at approximately 
0.5, it steadily declines and stabilizes around 0.05 after 12 
training epochs. Similarly, the average validation loss initially 
decreases, reflecting the model’s successful generalization to 
unseen data. It is common for the validation loss to be slightly 
higher than the training loss, as observed in the plot. Error bars 
in the graph represent the range of MSE curves for the 20 trials.

In Fig. 4, we randomly selected three sets of data from 
the test pool and performed a comparative analysis between 
the actual best design within each dataset and the optimized 
designs predicted by our trained models. The models demon-
strate excellence in predicting orientation angles for each layer, 
with minimal differences between the ground truth data and 
predictions. The overall difference between the predicted and 
the angles form FEM is around 3%.

Figure 2.   (a) Flowchart of this study. (b) Adjustable Deep-learning Network.
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Figure 3.   MSE convergency curves of MLP models.
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Conclusion
This paper presents an innovative approach to optimize com-
posite laminate structures by integrating finite element mod-
eling with a customized multi-layer neural network. The neural 
network is trained on ground truth data obtained from rigorous 
finite element simulations, enabling it to discern intricate cor-
relations between layer orientations, boundary conditions, and 
resulting optimized designs. The study’s outcomes offer sig-
nificant promise for advancing materials design and structural 
engineering, highlighting the transformative potential of com-
bining computational intelligence with traditional modeling 
techniques.
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