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Abstract
Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density-functional theory has emerged as a promising 
first-principles framework to describe electron real-time dynamics. Here we discuss recent implementations around this approach, in particular in 
the context of complex, extended systems. Results include an analysis of the computational cost associated with numerical propagation and when 
using absorbing boundary conditions. We extensively explore the shortcomings for describing electron–electron scattering in real time and compare 
to many-body perturbation theory. Modern improvements of the description of exchange and correlation are reviewed. In this work, we specifically 
focus on the Qb@ll code, which we have mainly used for these types of simulations over the last years, and we conclude by pointing to further 
progress needed going forward.

Introduction
Real-time time-dependent density-functional theory (RT-
TDDFT) has attracted tremendous attention in the context 
of accurate theoretical characterization of materials recently 
and over the years. It is arguably one of the most promising 
approaches to simulate the real-time quantum dynamics of 
electrons as well as its coupling to ion dynamics. In particu-
lar, its promising balance between accuracy and computa-
tional cost make this technique increasingly applicable also 
for development, design, and discovery of materials, including 
for electronic, optical, and electrochemical applications, among 
others.[1] Recent applications include laser excitation of materi-
als,[2] interaction of materials with energetic ions,[3] and non-
linear excitation dynamics.[4] The framework is implemented in 
many software packages and readily usable on a large variety of 
computational resources, including use of graphics processing 
units (GPUs). This makes the technique applicable to many 
diverse materials from just a few atoms to complex extended 
structures consisting of hundreds of atoms.

In this work we provide examples for recent develop-
ments and applications that we accomplished and use these 

to illustrate the need for future improvements. This includes 
discussing the underlying approximations and the path toward 
a computationally more feasible and widely applicable imple-
mentation of this approach for complex and extended systems. 
Simulations of complex, extended materials can benefit from 
less mainstream approaches, such as orbital-free TDDFT,[5,6] 
subsystem TDDFT,[7] or time-dependent density-functional 
tight binding techniques.[8] However, in what follows, we focus 
on plane-wave RT-TDDFT and discuss our own work of using 
and extending the Qb@ll code.[9–12]

First, the time stepping that is used in RT-TDDFT criti-
cally determines the computational cost. Second, we also give 
a specific example for how absorbing boundary conditions 
can mitigate high computational cost when studying two-
dimensional materials. Next, the physics of charged projec-
tile ions or electrons interacting with the electronic system of 
the target is briefly discussed and the computational cost of 
using an electron wave packet instead of a classical Coulomb 
potential in a plane-wave framework is assessed. Subsequently, 
we analyze in detail the RT-TDDFT description of electron 
dynamics and find shortcomings in capturing the time scale 

© The Author(s), under exclusive licence to The Materials Research Society, 2022

http://orcid.org/0000-0002-6600-224X
http://orcid.org/0000-0002-8317-588X
http://orcid.org/0000-0001-8553-9934
http://orcid.org/0000-0003-0496-8214
http://crossmark.crossref.org/dialog/?doi=10.1557/s43579-022-00273-7&domain=pdf


Computational Approaches for Materials Discovery and Development Prospective

MRS COMMUNICATIONS · VOLUME 12 · ISSUE 6 · www.mrs.org/mrc                1003

of electron–electron scattering-mediated thermalization. These 
results are compared to the literature and discussed relative to 
GW simulations within many-body perturbation theory. Finally, 
we discuss recent progress in describing the electron–electron 
interaction via exchange and correlation in RT-TDDFT and 
the associated computational cost. All RT-TDDFT simulations 
presented here were performed with the Qb@ll code and exten-
sions thereof,[9–12] and we conclude our discussion with a brief 
outlook on future directions of this software, hoping to stimu-
late exciting developments in the field of RT-TDDFT for years 
to come, including for computational materials discovery and 
development, as is the goal of this focus issue.

Real‑time propagation 
of time‑dependent Kohn–Sham 
equations
Excited electron dynamics can be modeled from first princi-
ples with real-time time-dependent density-functional theory 
(TDDFT).[13,14] In this approach, the electron density n(r, t) 
evolves over time according to the time-dependent Kohn–Sham 
(TDKS) equations:

Here, ψj are single-particle Kohn–Sham orbitals with occupa-
tions fj . The single-particle Hamiltonian,

contains the kinetic energy operator T̂  , the external potential 
V̂ext(t) due to nuclei and any external fields, the Hartree elec-
tron–electron potential V̂Har[n] , and the exchange–correlation 
potential V̂XC[n] . The electronic system may be coupled to 
nuclear motion through Ehrenfest dynamics.[15]

Explicit time dependence may arise within V̂ext(t) from 
an external perturbation such as a moving projectile ion or a 
dynamic electromagnetic field. Depending on the gauge choice, 
an external vector potential Aext(r, t) may enter into the kinetic 
energy as T̂ = 1

2
(−i∇ + Aext(r, t))

2 . To apply a uniform exter-
nal electric field to an infinite periodic system, it is often con-
venient to work in the velocity gauge, where the electric field 
is generated by the vector  potential[16–19]

Alternatively, the length gauge, which instead involves the sca-
lar potential Eext(t) · r , can be appropriate for finite  systems[20] 
or with the use of maximally localized Wannier functions.[21] 
Both capabilities have been implemented in the plane-wave 
TDDFT code Qbox/Qb@ll,[9–11] with options for static fields, 
delta kicks, and dynamic laser pulses.[19,21]

(1)
i

∂

∂t
ψj(r, t) = Ĥ [n](t) ψj(r, t),

n(r, t) =
∑

j

fj

∣∣ψj(r, t)
∣∣2
.

(2)Ĥ [n](t) = T̂ + V̂ext(t)+ V̂Har[n] + V̂XC[n],

(3)Eext(t) = −
1

c

dAext(t)

dt

.

In the vector potential formulation, the vector potential is 
chosen such that its time derivative gives the proper electric 
field according to Eq. (3). For example, the delta kick is imple-
mented by a step function in the vector potential. In practice 
this means the propagation is done with a constant vector poten-
tial whose amplitude is given by a desired intensity of the kick 
(as the initial condition is the ground state calculated without a 
vector potential). A laser field is simply simulated by an oscil-
latory electric field with constant or time-dependent amplitude. 
Since the dipole is not properly defined for extended systems, 
the polarization is obtained from the macroscopic current.[16] 
We use the usual definition of the quantum mechanical current

which is not strictly correct when using non-local pseudopo-
tentials.[18] However, the correction term is small for electric 
perturbations.[22]

Both the computational cost and accuracy of real-time 
TDDFT simulations are in large part governed by the 
numerical algorithm used to integrate the TDKS equations, 
Eq. (1). While a simple explicit integration scheme such 
as fourth-order Runge–Kutta (RK4) is suitable for modest 
size systems,[9] very large supercells and long-time propa-
gation require higher  accuracy[23] offered by time-reversi-
ble schemes, such as the enforced time-reversal symmetry 
(ETRS) method.[11,24] We specifically showed this for sys-
tems containing vacuum.[25] More efficient algorithms which 
reduce time to solution without sacrificing accuracy would 
accelerate the study of excited electron dynamics in materi-
als and enable consideration of larger systems of practical 
interest over longer simulation time scales, including defect 
systems, material surfaces, and 2D heterostructures.

Below we briefly present our recent efforts toward a sys-
tematic assessment of numerous explicit time steppers and 
several variants of the ETRS approach. Interfacing Qbox/
Qb@ll[9,11] with the PETSc numerical  library[26] provided us 
with seamless access to a wide range of Runge–Kutta (RK)[27] 
and strong stability preserving (SSP)  RK[28] methods. Each 
algorithm’s performance was assessed for a sodium dimer 
test system over a range of time step sizes �t = 0.01 – 0.5 
atomic units (at. u.), and computational cost was measured 
as the average wall time per simulated time. After perturbing 
the initially ground-state system by slightly displacing the 
atoms away from their equilibrium positions, the electronic 
response was evolved for 100 time steps on a single proces-
sor. For the most promising methods, additional tests on a 
112-atom graphene supercell confirmed the qualitative trends 
observed for the smaller test system.

Since exact time evolution should conserve both energy 
and charge, we compute an error metric given by the prod-
uct of average errors in total energy E and net charge Q per 
simulation time:

(4)J (t) =

∫
dr

∑

j

fjψ
∗
j
(r, t)∇ψj(r, t)+ c.c.,
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where brackets denote time averages,

and tf  is the total time. This form was chosen to give a reason-
able error measure for both linear and oscillatory error accumu-
lation models. In particular, using this definition δQ has a rea-
sonable long-time limit both when Q(t)− Q(0) can be modeled 
as ∝ t and when Q(t)− Q(0) can be modeled as ∝ sin(ωt).[29] 
The tolerable error level for a particular application depends on 
the system studied and the observable of interest. For example, 
electronic stopping power calculations in bulk  materials[30–39] 
extract total energy differences typically about 5–50 Ha over 
the course of a ∼1-fs simulation, so δE ≪ 0.1 Ha/at. u. suffices 
and δQ is not important beyond its correlation with δE . In con-
trast, simulations of ion-irradiated 2D  materials[25,40–45] involve 
smaller energy transfers around 0.2–5 Ha and may additionally 
examine sensitive charge-transfer processes such as emission of 
0.1–10 electrons into vacuum. Thus, these calculations require 
δQ δE ≪ 10

−5 e Ha/at. u.2
From our data in Fig. 1 we find that ETRS generally 

outperforms all explicit time steppers tested: it achieves 
lower computational cost at an acceptable error level. The 
only competitive Runge–Kutta scheme is the fifth-order 
Bogacki–Shampine algorithm (RK5BS),[46] which is even 
more accurate than ETRS for small step sizes [see Fig. 1(a)]. 
However, while RK5BS becomes unstable for �t � 0.1 at. u. 
in our sodium dimer simulations, ETRS maintains tolerable 
error rates for step sizes twice as large, allowing lower com-
putational cost. Among the SSP methods tested, the 4th-order 
schemes are most successful but do not improve over ETRS’s 
accuracy, stability, or speed [see Fig. 1(b)]. Lower-order SSP 
schemes involving many ( ≥ 16 ) stages do allow larger step 
sizes than ETRS, but the expense associated with a large 
number of stages outweighs the increased stability. Overall, 
we find that ETRS achieves lowest time to solution. Recent 
 work[47] also tested the Adams–Bashforth and Adams–Bash-
forth–Moulton classes of explicit time steppers, finding that 
these methods can outperform RK under certain conditions, 
but their performance has not yet been compared to ETRS.

Several possible schemes exist to approximate the expo-
nentials of the Hamiltonian involved in ETRS.[24] Here, we 
use Taylor expansions for their simplicity and compare dif-
ferent orders in Fig. 1(c). Consistent with assertions made 
in Ref. 24 we find that 4th- or 5th-order Taylor expansions 
are optimal. A 6th-order expansion is less stable, while a 
3rd-order expansion sacrifices accuracy without significantly 
reducing computational cost.

Other implicit methods may yet prove more efficient 
than ETRS. One promising option is Crank–Nicolson (CN), 
which some other TDDFT implementations successfully 

(5)δQ δE =

〈
Q(t)− Q(0)

t

〉〈
E(t)− E(0)

t

〉
,

(6)
〈
Q(t)− Q(0)

t

〉
=

1

tf

∫
t
f

0

Q(t)− Q(0)

t

dt,

employ.[20,31,48–52] We find that CN is generally more accurate 
than ETRS [see Fig. 1(c)], perhaps thanks to the unitarity of 
the Padé form of the CN propagator in contrast to the truncated 
Taylor expansion used in the ETRS implementation. Although 
CN can maintain accuracy even for large time steps, i.e., stabil-
ity restrictions do not limit this method, it involves a costly non-
linear solve. The large number of Ĥφ evaluations performed by 
PETSc’s algorithm for this non-linear solve made CN prohibi-
tively expensive in this work [see Fig. 1(c)]. However, further 
optimization, efficient preconditioners, or the use of predic-
tor–corrector methods that obviate the non-linear  solve[48,53] 
could alleviate this issue. Implicit schemes such as CN could 
be particularly advantageous for ultrasoft pseudopotentials or 
the projector-augmented wave method, where the left-hand side 
of the TDKS equations involves an overlap matrix acting on 
the time derivative of the pseudized orbitals.[51] Since explicit 

(a)

(b)

(c)

Figure 1.  Performance of 4th-order ETRS (black stars) compared 
to (a) all Runge–Kutta time steppers available in PETSc, (b) various 
strong stability preserving Runge–Kutta time steppers available 
in PETSc, and (c) other variants of ETRS and a naive application 
of PETSc’s Crank–Nicolson (CN). RKN[X] denotes an Nth-order 
Runge–Kutta scheme, where X is an additional PETSc identifier, 
typically the initials of original developers. SSP(M, N) denotes an 
M-stage, Nth-order SSPRK method, and ETRSN denotes ETRS 
using Nth-order Taylor expansions to approximate exponentials.
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time-stepping schemes require the application of the inverse of 
this matrix at each time step, this complication narrows the pro-
spective efficiency gap between explicit and implicit schemes. 
However, this work used norm-conserving  pseudopotentials[54] 
and thus did not benefit from CN.

Explicit RK methods cannot conserve energy, and some of 
the least expensive implicit RK methods, such as CN, do not in 
general. In general, a direct way to alleviate errors in invariant 
quantities represented by inner product norms is to control the 
time step. One can reduce the time step adaptively if the energy 
loss exceeds a certain level. Moreover, a promising strategy that 
also applies to explicit methods is to use a time step adaptation 
that adjusts step length such that the energy is conserved exactly 
in finite precision. These methods are referred to as relaxation 
RK and rely on modifying the prescribed time step (typically 
reducing it by a small fraction) so that the solution at each of 
these modified steps preserves energy.[55,56] Explicit methods are 
conditionally stable; nevertheless, the stability regions can be 
optimized for a specific eigenvalue portrait, which is a promis-
ing strategy to improve their performance. Furthermore, new 
machine learning developments in neural ODE may provide 
new ways to accelerate the time-stepping process.[57]

Finally, the parallel transport gauge  approach[58] applies a 
unitary transformation to the Kohn–Sham orbitals to instead 
solve for slower varying orbitals that reproduce the same elec-
tron density but introduce an additional term in the TDKS equa-
tions. This promising method can be combined with an efficient 
time stepper to produce speedups of 5–50 over standard RK4 
for molecules,[58] solids containing up to 1024 atoms,[58] and 
mixed states in model systems.[59]

Complex absorbing potential 
for secondary electron emission
After examining the computational cost associated with real-
time propagation in the previous section, we also explored the 
need for a large vacuum region as part of the simulation cell 
when studying electron emission, e.g., from surfaces or two-
dimensional (2D) materials. When using periodic boundary 
conditions, vacuum lengths of 150 a0 or more are necessary to 
prevent the unphysical interaction of the electrons emitted from 
both sides of the 2D material across the boundary of the simu-
lation cell, resulting in a high computational demand.[43] To 
address this problem, absorbing  boundaries[60] are frequently 
employed to emulate open boundary conditions. Absorbing 
boundaries based on a complex absorbing potential (CAP)[61] 
alter the Hamiltonian, Eq. (2), by adding an artificial complex 
(imaginary) potential in a defined region of the simulation cell, 
resulting in a non-Hermitian Hamiltonian and non-unitary 
time evolution operator. This approach has been successfully 
used in simulating the real-time dynamics of wavefunctions 
of 2D materials, including secondary electron emission due 
to electron  irradiation[62] and angular resolved photo-emission 
spectra.[60]

We implemented an absorbing potential into the Qb@ll[9,11] 
code that follows the form

where W defines the maximum of the CAP and zs and dz are the 
position of the front boundary and the half width of the CAP.

Here, we compare to our previous work on secondary elec-
tron emission from graphene under proton  irradiation[43] and 
demonstrate that a CAP can significantly reduce finite size 
effects, leading to an acceleration of the simulation by reduc-
ing the vacuum size. We use the same simulation cell and 
computational parameters as described in Ref. 43. The target 
graphene is placed at the center of the simulation cell, at z = 0 
on the x−y plane. Emitted electrons in vacuum are determined 
by integrating the electron density over a region farther than 
10.5 a0 from the graphene. We assess finite size effects for dif-
ferent vacuum sizes along the direction of proton travel for a 
channeling proton with 1.79 at. u. of velocity. Following Ref. 
43 we treat the maximum of the emitted electron curves in 
Fig. 2 as the total number of emitted electrons.

Comparing the resulting number of total emitted electrons 
for periodic boundary conditions, the data in Fig. 2 show a 
difference of 3% when 150 a0 and 250 a0 of vacuum are used, 
whereas the difference is 8.22% between 100 a0 and 250 a0 
of vacuum. This shows that a large vacuum size is needed to 
obtain converged results. For comparison, a CAP of the form of 
Eq. (7) is placed at the boundary of the simulation cell. We set 
W = 15Ha , zs = 40 a0 , and dz = 10 a0 for 100 a0 of vacuum 
and W = 20Ha , zs = 63.75 a0 , and dz = 11.25 a0 for 150 a0 
of vacuum. With these parameters for the CAP, the difference 
between emitted electrons for 100 a0 and 150 a0 of vacuum is 
1.14%. The reduced finite size error with a CAP allows using 
smaller vacuum regions of 100 a0 or less, instead of 150 a0 , 
reducing the simulation time per iteration from 61.44 core 
hours to 40.96 core hours, a 33% speedup, when running on 

(7)

VCAP(z) =

{
−i ·W sin

2

(
(z−zs)·π
2·dz

)
, zs < z < zs + 2dz

0, otherwise

,

Figure 2.  Total emitted electrons in vacuum, after a channeling 
 proton[43] with a velocity of 1.79 at. u. impacts graphene. When 
using a CAP, smaller vacuum sizes suffice for convergence.
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ALCF Theta. In general, depending on the targeted problem, 
a careful convergence test of the vacuum size is required for 
2D systems.

Quantum mechanical projectile: 
electron wave packet
In the previous section and in most of the literature on elec-
tronic stopping, the excitation mechanism is described using 
a classical projectile, i.e., a time-dependent Coulomb poten-
tial moving at constant velocity. It is currently unclear to what 
extent this approximation becomes unreliable for light projec-
tiles, such as protons or electrons. Electrons are particularly 
small and lightweight compared to protons or heavy-ion projec-
tiles and the electronic wavelength can reach the scale of inter-
atomic distances. Hence, the approximation of using a classical 
Coulomb potential to describe electron projectiles is expected 
to be more severe. The explicit breakdown of this approxima-
tion is currently not studied thoroughly and systematically.

Treating the incident electron fully quantum mechanically 
is, hence, a promising alternative. Following the work by Tsub-
onoya et al.[63] the initial incident electron can be modeled as 
a Gaussian-shaped wave packet at the start of the simulation,

where d, b , and k are the parameters for defining the spread, 
the center location, and the wave vector of the wave packet, 
respectively. The wave vector k represents the group velocity 
of the incident electron and is the single parameter that controls 
the kinetic energy of the incident electron. The time evolu-
tion of this wave packet is described by the time-dependent 
Kohn–Sham equations, Eq. (1), on the same footing as the rest 
of the system. Thus, the time-dependent Kohn–Sham orbitals 
include all electrons in the target material and the incident elec-
tron of the wave packet. The electron density is then the sum 
of the electron density of the target material and the electron 
density of the wave packet,

In the following we characterize the convergence behavior 
of the Gaussian wave packet with respect to plane-wave cutoff 
energy (see Fig. 3). We simulate Gaussian wave packets with 
different velocities and find that high cutoff values are neces-
sary to converge fast wave packets, possibly leading to a limi-
tation of these simulations. We also note that the wave packet 
itself spreads over time, rendering comparison to the classical 
electron approximation challenging. Finally, the computation 
of electronic stopping power S is complicated by the fact that 
the projectile, if treated quantum mechanically, is part of the 

(8)ψWP(r, t0) ≡

(
1

πd2

) 3

4

exp

[
−
(r − b)2

2d
2

+ ik · r

]
,

(9)n(r, t) = 2

N/2∑

j=1

fj

∣∣ψj(r, t)
∣∣2 +

∣∣ψWP(r, t)
∣∣2
.

electronic system and the approach of computing the stopping 
power from the increase dE/dx of the electronic total energy 
is no longer applicable. Solving this problem remains an open 
question for future work.

Real‑time electron dynamics 
in aluminum
In the following, we explore using real-time TDDFT to sim-
ulate electronic thermalization in metals, which is generally 
assumed to be fast, on the order of 10–100 fs. Previous studies 
applying the GW method to compute the self-energy for Al 
support this assumption, where the lifetimes mediated by elec-
tron–electron scattering are found to be a few tens of fs at ener-
gies further away from the Fermi energy and on the order of 
100 fs when nearing the Fermi energy.[64,65] Given these short-
time scales, real-time TDDFT in principle can be used to per-
form statistical ensemble sampling of an electronic system in 
internal thermodynamic equilibrium and to calculate expecta-
tion values of an observable under different conditions.[66] This 
is similar to Mermin DFT,[67] but such a real-time approach can 
potentially capture additional dynamic effects using the same 
exchange–correlation functional.

To this end, Modine et al.[66] previously explored the idea 
of performing statistical mechanics on electronic systems, in 
analogy to simulations of statistical thermodynamics using 
classical molecular dynamics. As a first step toward this idea, 
they initiated a 100-fs RT-TDDFT simulation using adiabatic 
LDA for an excited electronic system of Al with fixed ions. 
They showed that although the distribution of the time-aver-
aged occupation numbers is Fermi like, it seems to decrease 
more sharply near the Fermi energy and takes longer to reach 
asymptotic values.[66] To further understand this behavior, 
we performed significantly longer RT-TDDFT simulations (> 
1 ps) for the same Al system. We used the same plane-wave 
cutoff energy of 20 Ry, Ŵ-only Brillouin zone sampling, and 

Figure 3.  Dependence of the total energy of electron wave packets 
with different kinetic energies moving through vacuum on the 
plane-wave cutoff used for the simulation.
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the same 32-atom cell. In our simulations, this 32-atom cell is 
either an ideal crystal or a snapshot of a molecular dynamics 
simulation with a temperature of 7900 K.

In Fig. 4(a) we show the resulting long-term electron 
dynamics in Al with fixed ions, simulated with real-time 
TDDFT up to ∼ 6 ps. Following the approach by Modine 
et al.[66] the initial wavefunction was prepared in such a way 
that the distribution of its occupation numbers is close to 
the Fermi distribution at a given temperature. For Fig. 4 we 
used 7900 K and at t = 0 , we can see that the dark blue dots 
loosely follow the Fermi distribution of the same tempera-
ture. This is, by construction, expected for initial states that 
are thermal states.[66] We would then expect the occupation 
numbers to fluctuate around an average that corresponds to 
this Fermi distribution.

In contrast to this expectation, Fig. 4(a) clearly shows that 
the distribution deviates more and more from the initial Fermi 

distribution as time propagates, indicated by semi-transpar-
ent gray arrows. If we focus on the dynamics near the Fermi 
energy, the drop in occupations at the Fermi surface becomes 
steeper and steeper, which is usually associated with lower 
electronic temperature. However, the total energy of the system 
is conserved. To analyze this further, we also investigate high-
energy eigenstates in Fig. 4(b), showing that their occupation 
numbers grow over time, indicating that electrons are promoted 
to higher energy states and providing a mechanism for energy 
conservation.

Since scattering of electrons into higher energy states dur-
ing electronic thermalization is counter-intuitive, we first thor-
oughly examine the effect of the initial wavefunction and sev-
eral numerical parameters. We ensured that over the simulation 
time of about 6.3 ps, the total energy of the system remains 
conserved within acceptable numerical error of < 0.1 meV/
atom, suggesting that the numerical time integrator remains 
stable for the whole simulation. We also tested that this behav-
ior is independent of the cell size by comparing the dynam-
ics of occupation numbers of high-energy eigenstates in the 
32-atom cell to a 108-atom cell, finding again a high-energy 
tail emerging over time. Furthermore, we excluded the sym-
metry of the lattice as a factor by comparing the dynamics for 
relaxed ( T = 0 K) atomic positions vs. a T = 7900 K molecular 
dynamics snapshot. In addition, we excluded an influence of 
the particular real-time TDDFT implementation by comparing 
the Qb@ll and  Socorro[68] codes.

The occupation number of eigenstate i at simulation time t, 
fi(t) , is defined as

where the reference states φi can be either the DFT ground state 
or instantaneous adiabatic eigenstates of the time-dependent KS 
Hamiltonian. An influence of the reference states used to com-
pute the occupation number was excluded by comparing the 
adiabatic ground state and the eigenstates of the instantaneous 
TDKS Hamiltonian for projection. Finally, we also compared 
different approaches of creating the initial electronic excitation 
(i) using the above-described thermal state,[66] (ii) promoting 
one electron from valence to conduction band by changing the 
Kohn–Sham occupation number, and (iii) imposing a vigorous 
time-dependent displacement of randomly selected atoms. In 
all cases we observed the same behavior shown in Fig. 4.

Next, we extract a characteristic relaxation time by fitting 
this data to an exponential decay. We randomly select a few 
eigenstates across the energy spectrum with initial occupations 
of about 0.0, 0.5, 1.0, 1.5, and 2.0 and show their dynamics 
in Fig. 5. For the following discussion, we refer to them by 
their band index (BI = 0, 39, 47, 48, 53, and 95, respectively). 
Figure 5 shows that BI = 48, which is above the Fermi energy, 
couples with BI = 47, which is below the Fermi energy, since 
their dynamics show the same oscillation frequency but are 
antiphase. The frequency of these oscillations is about 8–10 

(10)fi(t) =
∑

j=1

fj

∣∣〈φi|ψj(t)
〉∣∣2

,

(a)

(b)

Figure 4.  Electron dynamics computed for Al with fixed ions using 
real-time TDDFT. In (a) we show occupation numbers of the 
different Kohn–Sham states, averaged over 315 fs of simulation 
time, as a function of their Kohn–Sham energy. “000 fs” shows 
the average taken from t = 0 fs to t = 315 fs. In (b) we plot a single 
snapshot at shown simulation time for high-energy eigenstates. 
Semi-transparent gray arrows guide the eyes for how occupation 
numbers evolve over time.
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THz, which equals half the energy distance between these 
states. We conclude that the observed oscillations are associated 
with TDDFT electron–hole excitation energies. The expecta-
tion that temperature-induced excitations are most dominant 
near the Fermi energy is consistent with our observation of 
such oscillations only between electrons and holes near the 
Fermi energy.

Next, we notice that all states are evolving away from the 
occupation number expected based on a Fermi distribution of 
T = 7900 K (gray-dashed horizontal lines in Fig. 5). We also 
notice that the dynamics for the BI = 95 state is not monotonic 
and the occupation number changes in a completely different 
direction before and after the reflection at around 700 fs. In 
addition, fitting the data before 700 fs leads to a character-
istic time much shorter than the fit to the data after 700 fs. 

Such non-monotonic behavior is not limited to eigenstates with 
large BI but is commonly observed for other eigenstates. For 
these, we only extract the characteristic time for the second 
part of the dynamics (see the red-dashed curve for the BI = 95 
example in Fig. 5). From the extracted characteristic times we 
found that BI = 95, which is far from the Fermi energy, relaxes 
more slowly than BI = 48, which is near the Fermi energy. This 
behavior is different from Fermi liquid theory, which predicts 
that the lifetime of an eigenstate is longer when its energy is 
close to the Fermi energy.[69] For this reason and because the 
excited Al system evolves away from a Fermi distribution, 
applicability of this relation between Fermi level and lifetime 
remains unclear.

The result is an important, albeit negative, result that points 
to the inability of a theory such as TDDFT (at least in its cur-
rent form) to thermalize electrons. One potential shortcoming 
of this analysis may be that from a fundamental point of view, 
the Kohn–Sham occupation number is not an observable in 
TDDFT, although that would be an illuminating reason for this 
inability.

To address this concern, we also analyze stress, which is a 
functional of the time-dependent electron charge density. In 
Fig. 6, we show the real-time dynamics of the stress on the 
simulation cell after excitation for the σxx component of the 
stress tensor. Fitting to this data yields a characteristic time 
of 268 fs. The σyy and σzz components have significantly dif-
ferent characteristic times of 889 and 691 fs, respectively, but 
their dynamics are also essentially monotonic. Since a set of 
independent complex numbers with random phases and mag-
nitudes are drawn from a distribution to construct the initial 
thermal state,[66] the stress and its dynamics are not expected 
to be isotropic for any given thermal state, but would average 
out over many thermal states for the same temperature. We 
note that these time scales are in the same range as those of 

Figure 5.  Occupation number as a function of simulation time for 
selected eigenstates. These, otherwise randomly chosen, eigen-
states have initial occupation numbers of roughly 0.0, 0.5, 1.0, 1.5, 
and 2.0. Red-dashed curves show the fit against the exponential 
a+ b · exp(−t/c) to extract the characteristic time scale. Gray-
dashed horizontal lines indicate the expected occupation number 
for a given eigenstate under the Fermi distribution. Text describes 
the band index (BI) and energy difference from the Fermi energy 
at T = 7900 K. We found no clear connection of the occupation 
number dynamics with the energy of the state.

Figure 6.  Time dynamics of the σxx component of the stress ten-
sor, after starting from a thermal state generated with a Fermi 
temperature of 7900 K. Stresses are sampled sparsely across 
the whole simulation and, at each sampled time point, the stress 
values of the subsequent 10 fs are collected to compute average 
(solid circles) and standard deviation (error bars). The red curve 
shows a fit against σxx = a+ b · exp(−t/c) to extract the charac-
teristic time scale.
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dynamics of the eigenstates with monotonic behavior. Hence, 
based on the dynamics of occupation numbers and stress, we 
conclude that equilibrium is reached over a time scale of 1 ps. 
At energies above the Fermi level, E − EF , of about 1.0 eV, 
experimental results report values around 15 fs.[70] Computa-
tional results include around 30 fs in Ref. 69, 20 fs from the 
GW + T   method[65], and 70 fs in Ref. 64. There is an unre-
solved discrepancy between Ref. 64 and 69, but the literature 
agrees that Al qualitatively follows Fermi liquid theory with 
band structure effects only giving rise to small quantitative 
differences. Not only is this electron–electron relaxation time 
significantly longer than these results, but we also find that 
the system evolves into an unknown distribution with a lower 
Fermi temperature near the Fermi level and with high-energy 
tails, compared to the initial Fermi distribution.

In order to address these discrepancies, it is necessary to incor-
porate electron–electron and electron–phonon decay channels 
into the RT-TDDFT Ehrenfest molecular dynamics framework. 
Electron–electron scattering mechanisms should be treated on the 
level of the exchange–correlation functional and we view hybrid 
functionals and overcoming the adiabatic approximation typically 
used in TDDFT as possible paths forward. In addition, efforts to 
better describe the energy decay channels from excited electrons 
into the system of ions are appearing in the literature.[71] We note 
that these difficulties in modeling relaxation times within RT-
TDDFT are exacerbated in strongly correlated systems, requiring 
adequate approximations to exchange and correlation.

Next, we pursue an alternative route to compute the elec-
tron–electron scattering lifetime from first principles, based on 
equating the scattering term to the imaginary part of the electronic 
self-energy, Ŵnk = −2Im{�(εnk)}/�.[72] Computing the imagi-
nary part of the self-energy within the GW framework provides 
lifetimes, using a procedure described by Ladstädter et al.[64] 
Here we use a computationally more efficient approach by fit-
ting −2Im{�(εnk)} to a scattering rate of the form α(εnk − EF)

2 , 
predicted by Landau’s theory of the Fermi liquid.[72] We com-
pute the imaginary part of the self-energy by performing a G0W0 
calculation where the complex shift η of the Kramers–Kronig 
transformation is set to a value much smaller than what is used in 
typical GW band structure calculations. This allows us to accu-
rately resolve the imaginary part of the self-energy near the Fermi 
energy (see inset of Fig. 7) and Fig. 7 also illustrates k-point grid 
convergence tests of our G0W0 calculations.

Next, we fit the −2Im{�(εnk)} values for the first conduction 
band at the Ŵ point, computed using a 10 × 10 × 10 k-point grid and 
the smallest value of η = 0.005 eV, over an energy range between 
0 and 18 eV to the form from Landau’s theory of the Fermi liquid. 
The value of α from this fit gives the hot electron lifetimes as

which are plotted in Fig. 8. We include standard deviation 
error bars at integer and half-integer energy values which 
compare the lifetimes of the 10 × 10 × 10 and η = 0.005 eV 

(11)τnk =
59 fs eV

2

(εnk − EF)2
,

case to the lifetimes computed from 8 × 8 × 8 k-point grids 
with η values of 0.005, 0.01, and 0.04 eV and lifetimes from 
10 × 10 × 10 k-point grids with η values of 0.01 and 0.04 eV. 
The average of the α values from this set of calculations was 
computed to be 0.0116 (eV)−1 . We are satisfied with the use 
of a 10 × 10 × 10 k-point grid and η = 0.005 eV due to the 
error bars being small and the relative error of α being 3.4% 
when compared to the average α value. Figure 8 shows that 
our calculated electron–electron lifetimes from the Fermi liq-
uid fit match the lifetimes from the full GW  method[64] well, 
justifying the future use of this method. In particular, we note 
that this approach reduces the computational cost compared to 
full GW simulations, possibly extending its range of applica-
bility into the high-excitation or warm dense matter regime. 

Figure 7.  Convergence of G0W0 calculations with increasing k- 
point sampling. The inset shows the results of the 10 × 10 × 10 k- 
point calculations with three different η values. The energy range 
of the inset is the same energy range used for the electron–elec-
tron lifetime fit (see text).

Figure 8.  Electron–electron lifetimes obtained from the fit to Lan-
dau’s theory of the Fermi liquid for the first conduction band at the 
Ŵ point, computed using a 10 × 10 × 10 k-point grid and η = 0.005 
eV. Data points were calculated by Ladstädter et al.[64] The error 
bars show the standard deviation for relaxation times from differ-
ent k-point grids and η values.



 

1010        MRS COMMUNICATIONS · VOLUME 12 · ISSUE 6 · www.mrs.org/mrc

Our calculation of the electron–electron lifetimes predicts that 
electrons located close to the Fermi energy have lifetimes that 
are on the order of a few hundred femtoseconds and larger. For 
electrons at energies further away from the Fermi energy, our 
calculation predicts smaller lifetimes on the order of tens of 
femtoseconds and smaller.

The relaxation times from the GW electronic self-energy 
are about one order of magnitude smaller than our results 
from TDDFT. Since we have excluded numerical conver-
gence parameters and finite size effects as possible reasons, 
we tentatively attribute the unexpected behavior observed in 
our TDDFT simulations to the limitations of ALDA, which 
is local in time and space. The limitations of ALDA for elec-
tron–electron scattering were studied before for 1-D model 
 systems[73] and ALDA is expected to underestimate the scat-
tering probability. In addition, even the “exact” adiabatic func-
tional lacks the “peak and valley” features observed in truly 
exact exchange–correlation potentials and gives rise to spurious 
oscillations in charge density.[73] More generally an explanation 
for the lack of electron–electron thermalization could be related 
to the lack of explicit static correlation in the theory, similarly 
to the problem of electron–ion thermalization.[74] One could 
imagine that the promotion of electrons into higher energy 
states in a 3D metal might be analogous to the charge oscilla-
tions observed in the 1-D model. However, the actual limit of 
adiabatic semi-local functionals like ALDA remains unclear for 
condensed systems. Future investigation using XC functionals 
that address self-interaction errors (see e.g., Sec. “Exchange 
and correlation”) or non-adiabatic memory effects (e.g., the 
Vignale–Kohn  functional[75,76]) are needed. However, such 
computationally intensive simulations remain impractical at 
the point of writing. We also note that other considerations 
such as choice of pseudopotentials or convergence with respect 
to Brillouin zone sampling could potentially affect the results 
to a minor extent.

Exchange and correlation
Local or semi-local approximations of exchange and correla-
tion (XC) are most prevalent in applications of TDDFT to study 
the dynamics of interacting electrons. This typically means 
using the adiabatic local-density approximation (ALDA) or its 
generalized gradient approximation (GGA) extension, but in 
more recent  works[77,78] also modern meta-GGA approxima-
tions such as the strongly constrained and appropriately nor-
med (SCAN)  functional[79,80] are employed within RT-TDDFT. 
More accurate and computationally tractable functionals are 
always desirable and specifically the influence of long-range 
corrections, self-interaction errors, and the adiabatic approxi-
mation remain unexplored, e.g., for electron capture and emis-
sion processes. First-principles simulations are particularly 
likely to provide most urgently needed insight when applied to 
complex or heterogeneous systems such as molecules adsorbed 
at semiconductor surfaces. For these, it becomes important to 
examine and advance the extent to which XC functionals can 

correctly model long-range charge transfer and exciton forma-
tion/dissociation in RT-TDDFT.

As a practical approach to move forward, recent progress 
includes using hybrid XC functionals within RT-TDDFT.[81] 
However, the plane-wave implementation would carry a com-
putational cost typically about two orders of magnitude higher 
than that of semi-local functionals,[77] rendering applications 
to complex, extended systems challenging. The dominant cost 
of these calculations is the evaluation of exchange integrals. 
To alleviate this problem, some of us pursued the propagation 
of maximally localized Wannier  functions[82] in RT-TDDFT, 
significantly reducing the computational cost of evaluating 
exact exchange integrals.[77] Maximally localized Wannier 
functions (MLWF) are propagated  by[21]

where the maximal localization operator ÂML is an exponential 
of a unitary matrix that minimizes the spread of the propagating 
Wannier functions, min
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insulating systems with a finite energy gap, the near-sighted-
ness principle of  electrons[83] allows high spatial localization 
of time-dependent MLWF orbitals. This can then be exploited 
for efficiently implementing hybrid exchange–correlation func-
tionals. In particular, the spatially localized nature allows to 
reduce the number of exchange integrals

that needs to be evaluated. While time-dependent Kohn–Sham 
states are generally itinerant, only minimal spatial overlap is 
expected for distant time-dependent MLWFs and neglecting 
exchange integrals based on the geometric centers and spreads 
of the time-dependent MLWFs in the integrand significantly 
reduces computational cost.[77] Table I illustrates this reduc-
tion of computational cost for a system of 512 crystalline sili-
con atoms (2048 electrons), when using a cutoff distance for 
evaluating the exchange integrals needed for the PBE0 hybrid 
XC approximation.[77] For this test system the computational 
cost is reduced by an order of magnitude, using a cutoff dis-
tance of 25 a0 . We note that due to the near-sightedness prin-
ciple, this required cutoff distance does not scale with system 
size. Consequently, the MLWF approach becomes increas-
ingly appealing for simulations of large systems, because 
a larger fraction of the exchange integrals can be removed 
while preserving accuracy. For ground-state calculations, such 
efforts  exist[84,85] and we expect the MLWF approach to be 
crucial to making hybrid XC functionals applicable also in 
the context of RT-TDDFT for studying complex systems in 
the near future.

As an alternative hardware-based paradigm, the high compu-
tational cost of hybrid XC functionals for plane-wave (RT-TD)

(12)i

∂

∂t
wl(r, t) =

[
Â
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DFT codes can be alleviated by adopting GPU architectures. 
This is also driven by the growing prevalence of hybrid CPU/
GPU architectures for high-performance computing, aiming 
to achieve exascale supercomputers. Such an approach has 
been successful for ground-state DFT  calculations[86,87] and 
RT-TDDFT simulations using the parallel transport gauge.[88] 
Andrade et al. developed a new plane-wave (TD)DFT code, 
INQ,[89] based on GPU architectures. Computationally inten-
sive methods like hybrid XC functionals are supported in INQ 
but the speedup remains to be explored in the future.

In terms of how hybrid XC approximations can advance 
(RT-TD)DFT methodologies, screened range-separated[90] and 
dielectric-dependent hybrid  approximations[91] have emerged 
as interesting paradigms in recent years. Such advanced hybrid 
XC approximations could provide an alternative to the com-
putationally expensive many-body perturbation theory frame-
work and potentially enable an accurate description of exciton 
dynamics in large and complex systems within RT-TDDFT. 
Screened range-separated hybrid functionals have been used 
in linear response TDDFT to successfully model excitonic fea-
tures in the absorption spectrum. These effects, as well as an 
accurate description of long-range charge-transfer excitations, 
typically go beyond standard semi-local approximations for 
exchange and correlation. Range-separated hybrid XC approxi-
mations are expected to enable a description of charge-transfer 
dynamics in heterogeneous  systems[92] such as molecule-sem-
iconductor interfaces within RT-TDDFT in combination with 
the MLWF approach.

While the above-discussed approaches render hybrid XC 
functionals more attractive, the computational cost still remains 
significantly higher than for local and semi-local approxima-
tions. Alternatively, we recently  demonstrated[19] the use of a 
long-range corrected (LRC) kernel in the context of RT-TDDFT. 
The resulting vector potential accounts for the long-range 
screened electron-hole interaction and is capable of describ-
ing excitonic effects in optical spectra. At the same time, this 
RT-TDDFT implementation exhibits computational benefits 
using massively parallel computing and retains a description 
of non-linear effects that are not accessible within the linear 
response approximation. We also note that this enables more 
general future developments around real-time TD current DFT.

Finally, we note that recent work on the temperature depend-
ence of exchange–correlation models is instructive to consider 
in working toward a dynamical treatment of thermalization 
based on TDDFT. Numerous results have established formal 
foundations for incorporating electronic temperature in  DFT[93] 
and  TDDFT[94,95] beyond the standard Mermin approach.[67] 
Building on these foundations, high-quality reference calcula-
tions for the uniform electron gas at non-zero  temperature[96,97] 
have been used to create exchange–correlation  functionals[98] 
and applied to materials in extreme but equilibrated condi-
tions.[99] However, these results concern electrons that are 
equilibrated at a fixed temperature, not electrons that are in 
the process of equilibrating. Because the thermal contribu-
tion to exchange–correlation is typically relatively small, it is 
reasonable to assume that thermalization through electron–ion 
scattering can be captured by existing adiabatic functionals. 
However, thermalization through electron–electron scatter-
ing will require accounting for physics beyond the adiabatic 
approximation, which is notoriously challenging. We note one 
potentially promising direction from plasma physics, in which a 
correction accounting for electron–electron scattering beyond a 
mean-field treatment was proposed as a mechanism to improve 
agreement with quantum kinetic  theory[100] for the thermal con-
ductivity of non-degenerate hydrogen plasmas. Investigations 
of discrepancies in TDDFT or GW for comparably simple sys-
tems might yield insights into deficiencies in these approaches, 
although extrapolating to degenerate systems would likely be 
a challenge.

Summary and future directions
We discussed various interesting lines of recent development 
in the context of using real-time time-dependent density-func-
tional theory for simulations of electron dynamics on femto- to 
pico-second time scales. While our efforts have not yet revealed 
an integrator that outperforms the enforced time-reversal sym-
metry method, optimization of the stability region of explicit 
methods or incorporation of machine learning techniques may 
turn out promising. Complex absorbing boundary conditions 
straightforwardly reduce computational cost in particular 
for finite systems. Treating the projectile particle quantum 

Table I.  The wall-clock time per iteration for modeling crystalline silicon using a 512-atom simulation cell with periodic boundary conditions.

The plane-wave cutoff energy of 25 Ry was used with PBE norm-conserving pseudopotentials. The ETRS integrator was used with the integra-
tion time step of 0.05 at. u. The calculations were performed on 704 processors on 16 Broadwell nodes (Intel Xeon E5-2699A v4 − 2.4 GHz) of 
the Dogwood cluster at the University of North Carolina at Chapel Hill. Only MPI (no open-MP/SIMD) was used for this assessment.

Cutoff distance
(a0)

EXX integrals evaluated 
(%)

Energy drift per iteration 
( Ha)

Timer per iteration (s) Relative itera-
tion time

PBE N/A N/A ≤ 1.0 × 10−10 19.9 0.009
PBE0 N/A 100 ≤ 1.0 × 10−10 2227.8 1
PBE0 25 7.4 4.1 × 10−7 271.3 0.12
PBE0 30 9.0 3.6 × 10−7 278.4 0.13
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mechanically is within reach, albeit expensive, but difficulties 
around the vanishing distinction of projectile electrons and 
those of the host material require further development efforts. 
Based on our detailed simulation results, we conclude that rec-
onciling electron–electron scattering from real-time propaga-
tion with many-body perturbation theory will require advances 
in the description of exchange and correlation. Finally, such 
advances seem possible, involving maximally localized Wan-
nier functions or a long-range corrected approach to exchange 
and correlation.

All of these future developments will undoubtedly be impact-
ful for materials discovery and development and can facilitate 
the tight integration of electronic excitations and ion dynamics. 
Efforts in such directions, including those involving machine 
learning, are currently underway in many groups worldwide. 
Going beyond the scope of the present work are interesting and 
necessary developments that couple electrons and ions, e.g., 
within Ehrenfest dynamics, or even treat ions quantum mechani-
cally. At the same time, such developments in most cases will 
lead to moderately or significantly increased computational cost. 
Taking ongoing developments of modern supercomputing archi-
tectures into account, this will require simulation codes which 
can efficiently benefit from graphics processing units, such as 
the INQ code,[89] the successor to Qb@ll.
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