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Abstract
Autocatalysis and its relevance to various polymeric systems are discussed by taking inspiration from biology. A number of research directions related 
to synthesis, characterization, and multi-scale modeling are discussed in order to harness autocatalytic reactions in a useful manner for different 
applications ranging from chemical upcycling of polymers (depolymerization and reconstruction after depolymerization), self-generating micelles and 
vesicles, and polymer membranes. Overall, a concerted effort involving in situ experiments, multi-scale modeling, and machine learning algorithms is 
proposed to understand the mechanisms of physical and chemical autocatalysis. It is argued that a control of the autocatalytic behavior in polymeric 
systems can revolutionize areas such as kinetic control of the self-assembly of polymeric materials, synthesis of self-healing and self-immolative 
polymers, as next generation of materials for a sustainable circular economy.

Introduction
Autocatalytic reactions play central roles in various physical 
phenomena and industrial processes such as self-replication 
of biological polymers[1,2] and polymerization with moving 
reaction zones (known as frontal polymerization),[3,4] respec-
tively. By definition, these reactions involve autoacceleration 
of their rates due to products (autocatalysts) of the reactions. 
Autocatalysis[5] requires acceleration of forward reaction rates 
due to the products (Fig. 1). Kinetics of autocatalytic reac-
tions can be quantified in terms of the time required for the 
onset of autoacceleration (induction period), time and non-
linear rate of the reaction after the onset of autoacceleration 
and before reaching a saturation period. Acceleration of the 
forward reaction rates can be realized by using physical pro-
cesses favoring the formation of products and autocatalysis 
may not require any explicit chemical catalyst in these reac-
tions. Roughly, autocatalysis can be categorized into physical 
and chemical autocatalysis based on whether autoacceleration 

is a result of either physical or chemical (chemistry related) 
processes, respectively. An example of physical autocatalysis 
involves polymerization-induced self-assembly[6] (PISA) of 
two monomers in a common solvent so that as the polymeriza-
tion proceeds, solubility of copolymers in the solvent drives 
self-assembly and the rate of polymerization can be accelerated 
in certain cases due to local increase in concentration of react-
ing monomers. Key challenges in controlling and designing 
autocatalytic reactions lie in developing a deep understanding 
of the mechanism of autoacceleration, designing autocatalytic 
sets and cycles, harnessing chemical instabilities[7] and pat-
tern formation. New characterization methods and approaches 
capable of understanding chemical kinetics, its autoaccelera-
tion, and other physical processes (such as pattern formation 
due to chemical transformations) can provide key advances for 
designing autocatalytic reactions relevant to polymerization, 
depolymerization, and related self-assembly of polymers.

Autocatalysis has deep connections to machine learning 
algorithms[8] built upon the notion of graphs and networks. 
Most of the algorithms are designed to learn non-linear rela-
tions among outputs and inputs using activation functions and 
weights. In fact, it can be shown[9] that various mathemati-
cal functions representing the activation and the weights can 
be written down by using autocatalysis as an underlying phe-
nomena, where a non-linear relation between the rate of for-
ward reaction and input variables exists. In order to develop 
better algorithms and understand instabilities in systems 
far-from-equilibrium,[7] it is imperative to develop a better 
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understanding of autocatalysis. With recent advances[10,11] in 
polymer informatics and developments in natural language 
processing tools, chemical kinetics databases dedicated to 
polymerization and depolymerization are expected to usher in 
near future. These databases and neural networks, trained on 
models capable of describing autocatalysis (e.g., by Lotka–Vol-
terra equations[12,13]), can be used to understand various aspects 
of autocatalysis in polymerizations.[14–16] Furthermore, many 
decomposition[17,18] reactions such as those involved in photo-
oxidation are autocatalytic in nature and in certain cases,[19] 
external forces such as fluid flow can be used to further accel-
erate various reactions. A detailed understanding of autoaccel-
eration in these reactions will be useful for designing the next 
generation of energy-efficient chemical upcycling protocols,[18] 
photo-initiated polymerizations[20] relevant to 3D printing pro-
cesses, and design of supramolecular polymeric materials such 
as self-generating micelles.[6]

In this prospective article, we discuss the most interesting 
directions of research relevant to polymers based on the con-
cepts of physical and chemical autocatalysis. Development of 
multi-scale models capable of treating chemical reactions and 
polymeric aspects is proposed in order to understand mecha-
nism of autocatalysis by simulating different reaction path-
ways. A rational design of the most efficient reaction pathway 
requires a merger of the proposed experimental efforts concern-
ing the rate of forward reactions and multi-scale models using 
neural networks. In the following, we present three areas of 
research focused on (1) autocatalysis in polymer synthesis and 
its relevance to depolymerization, (2) biphasic autocatalysis 
relevant to reactions near oil–water interfaces, and (3) under-
standing autocatalysis using multi-scale models, which can 
simulate chemical and physical processes at different lengths 
and time scales.

Status quo and prospective directions
Autocatalysis in kinetics 
of polymerization: breakdown of equal 
reactivity hypothesis
Autoacceleration, a common signature of autocatalysis, in free-
radical polymerization is well documented in the literature and 
is referred to as either “Norrish-Smith”[14] or “Trommsdorff”[15] 
(gel) effect. The effect has been observed in the polymeriza-
tion of methyl methacrylate (MMA) (see Fig. 1), styrene, vinyl 
acetate, methyl acrylate, other acrylates and methacrylate-based 
monomers. Experimentally, autoacceleration in the kinetics of 
free-radical polymerization can be identified by plotting mon-
omer conversion as a function of time. Without any kind of 
autoacceleration, first-order reaction kinetics is expected for a 
free-radical polymerization. However, when autoacceleration 
occurs, deviation from first-order kinetics occurs and a signifi-
cant increase in the slope of monomer conversion versus time 
is observed.

An explanation for the autoacceleration was put forth by 
Tulig and Tirrell[21] based on theories for polymer diffusion in 
solutions. The explanation was based on an observation that 
autoacceleration results from an increase in solution viscosity 
rather than heat production[14] when monomer reaches a critical 
conversion value in bulk or concentrated free-radical polym-
erizations. As solution viscosity depends on molecular weight 
of the polymers being polymerized, the critical conversion of 
monomers can be approximated by the conversion, which leads 
to an onset of “entangled” polymers in polymerization. Such an 
explanation of the autoacceleration in free-radical polymeriza-
tion is based on the underlying assumption that these reactions 
are diffusion controlled. Using the Smoluchowski equation for 
rate of diffusion-controlled reactions and the reptation model 
for entangled polymers, Tulig and Tirrell[21] showed that the 

Figure 1.   Typical kinetic behavior observed in autocatalysis, where a deviation from first-order rate of reaction is observed. Two examples 
are shown here. Left panel shows the kinetics of methylmethacrylate polymerization with different initiator concentrations. Right panel 
shows the kinetics of hydrolytic degradation of bio-based epoxy resins, prepared through anhydride curing of epoxidized vanillic acid 
(EVA, a product of lignin depolymerization) and epoxidized soybean oil (ESO). In general, autocatalysis shows an induction period, fol-
lowed by autoaccelerated (non-linear) forward rates of reactions and a saturation period. Left and right panels are adapted from Refs. 16 
and 18, respectively, with permissions.
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termination rate constant ( kt  ) in free-radical polymerization 
should be dependent on the degree of polymerization (N) 
and concentration of polymers (c) in solution by the relation 
kt ∼ 1/N 2

c
1.75 . It should be noted that such a dependence of 

the termination rate implies that all of free radicals are not 
equally reactive and is in contrast to Flory’s equal reactivity 
hypothesis.[22] We should point out that the autoacceleration 
is a hallmark of free-radical polymerizations in concentrated 
solutions, where equal reactivity hypothesis is shown to be 
inapplicable. A number of other models[23] based on different 
dependencies of the diffusion constant on chain length and pol-
ymer concentration e.g., using free volume models, has been 
developed with additional parameters.

As free-radical polymerization leads to chains of different 
degrees of polymerizations, effects of chain distribution or dis-
persity on autoacceleration were considered by O’Shaughnessy 
et al.[24] These investigations showed that diffusion of long 
entangled polymers is slowed down so much that short-long 
chain recombination is the fastest termination step during the 
autoacceleration. As a direct consequence of this, polymer 
production rate during autoacceleration was predicted[24] to 
be independent of the free-radical production rate in contrast 
to square root dependence on the radical production rate in 
Flory–Schulz’s theory of free-radical polymerization based on 
the equal reactivity principle. A weak dependence of the poly-
mer production rate on chain transfer was conjectured during 
autoacceleration. However, Torkelson and coworkers looked[16] 
at bulk MMA and styrene polymerizations and added chain 
transfer agents and/or used higher initiator concentrations to 
delay or eliminate chain entanglements and the polymeriza-
tions still exhibited autoacceleration behavior. These works 
highlighted that the onset of the autoacceleration may be unre-
lated to the formation of entangled polymers and pointed out 
a need to understand the roles of translational self-diffusion of 
chains, segmental diffusion, and mutual diffusion of chains as 
well as reacting monomers in affecting kinetics of autoaccelera-
tion. More recently, Wöll and coworkers[25] used fluorescent 
probes and fluorescently labeled poly(MMA) chains of differ-
ent molecular weights to probe the role of chain diffusion on 
autoacceleration during bulk MMA polymerization reactions. 
The experimentally determined diffusion rate coefficients of 
the probes led the authors to conclude that the polymerization 
reaction was heterogeneous and it had a significant impact on 
the termination rate constants.[25] If not properly accounted for, 
the Trommsdorff effect can result in undesirable final material 
properties and/or reactor failure due to the exothermic nature 
of autoacceleration. Recently, Zhan and coworkers[26,27] have 
looked to take advantage of the Trommsdorff effect. They 
investigated the effect of shear rate on the Trommsdorff effect 
during the bulk polymerization of MMA and were able to use 
the results to produce PMMA with improved properties (com-
pared to commercial PMMA) by using reactive extrusion tech-
niques.[26] The authors expanded on their previous work[26] to 
prepare methylmethacrylate–styrene copolymers in an inverted 
two-stage extruder by continuously feeding the co monomers 

into the extruder at the onset of the Trommsdorff effect to pro-
duce a copolymer with the desired physical properties.[27]

Moving forward, experiments such as small-angle neutron 
scattering (SANS) and neutron spin echo coupled with new 
molecular theories could provide for a more complete picture of 
autoacceleration so that it might be used to improve industrial 
polymerization processes and material properties. For exam-
ple,[28,29] SANS (in combination with 1H-NMR) has been used 
to study the kinetics of polymerization and detect aggregation 
in solution. As the scattering from the polymers depends on 
their concentration in solution, the scattering intensity (I) at 
a particular wave vector (q) and time (t) during polymeriza-
tion can be fitted by I(q, t) ∼ φ(t)nagg(t)Vw(t)Pagg(q, t) , where 
φ(t) is the time-dependent polymer concentration, nagg(t) is 
number of aggregates, Vw(t) is molecular volume of a growing 
chain, and Pagg(q, t) is the form factor of the aggregate. For 
small-scale aggregates, expected near the initiation step of the 
polymerization, Pagg(q, t) can be approximated by the Guini-
er’s formula and has to be approximated by other functions for 
intermediate and large-scale aggregates. Here, molecular mod-
els can help in predicting the scattering intensity resulting from 
polymerization-induced aggregation in solution. In the absence 
of detailed molecular models, ad hoc expressions of the form 
factor have been used to gain insights into the aggregation state 
during the initiation and propagation stages of polymerization. 
In this regard, work by Niu et al.[28,29] is noteworthy focus-
ing on the polymerization of butadiene and 1-octene. Studies 
using SANS and neutron spin echo can provide insights into 
the role of aggregation and resulting heterogeneous dynam-
ics of polymer chains for different percentages of conversion. 
However, macromolecular models similar to the tube model of 
entangled polymers (used in the work by Tulig and Tirrell[21]) 
are needed in order to understand the autoacceleration during 
the polymerization, viscoelastic changes, and heterogeneous 
dynamics in solution.

Prospective direction: autocatalysis 
in the kinetics of free‑radical depolymerization
Similar to polymerization, free radicals play central roles in 
degradation and depolymerization of polymers[17,18]. In a series 
of papers by Simha and coworkers[30–32], free-radical depo-
lymerization was described by assuming that it follows similar 
four steps as in polymerization: initiation/generation of radi-
cals, propagation along a chain, chain transfer (inter- and intra-
chain), and termination. Based on this, random chain scission 
and unzipping were considered to be two main mechanisms 
for free-radical depolymerization. Furthermore, effects of side 
groups in affecting chain transfer and termination were conjec-
tured to be significant by direct comparisons of kinetic equa-
tion-based models with experimental data for polyolefins, poly-
acrylates, and polystyrene. Following the lessons[25] learned 
about autoacceleration in the kinetics of polymerization, we can 
conjecture that heterogeneity in the diffusion of active radicals 
and the presence of high viscosity solvents such as ionic liquids 
can cause autoacceleration in the kinetics of depolymerization. 
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Photo-oxidation of isotactic polypropylene[33] films partially 
confirms this conjecture about the autoacceleration due to het-
erogeneity. However, detailed studies are needed to understand 
molecular mechanism of autocatalysis in photo-oxidation.

Prospective direction: understanding 
autoacceleration in reactions involving 
electrostatics
A majority of the works discussed above are based on diffusion-
controlled reactions, where diffusion of reacting species con-
trols the reaction rates. However, polymerization and depolym-
erization reactions may not be diffusion limited in the presence 
of explicit ionic charges present either on the solvents such as 
in ionic liquids[34,35] or on the monomers being polymerized 
(e.g., in polymerized ionic liquids[36] and polyzwitterions[37]). 
In these cases, effects of electrostatics must be taken into con-
sideration in affecting reaction rates as predicted by Marcus’s 
theory of electron transfer,[38] where solvent plays a decisive 
role in affecting reorganization energy and reaction rates dur-
ing the transfer. In addition, charge generation and recom-
bination due to ion-pair formation and dissociation need to 
be considered in controlling reaction rates, especially in the 
presence of applied electric fields.[39] Preliminary works[36] 
related to polymerizations of charged monomers show signifi-
cant effects of counterions and solvent on the reaction rates. 
Similarly, depolymerization of lignin[40] and polyamide[41] has 
been demonstrated to occur efficiently in the presence of ionic 
liquids. In the future, developing a fundamental understanding 
of the roles played by electrostatics on reactions relevant to 
polymerization and depolymerization is expected to be the foci 
of a number of studies. For polymerization and depolymeriza-
tion involving charged monomers, viscoelastic properties of 
solutions containing charged polymers are expected to play 
significant roles in affecting the onset of autoacceleration and 
total time for completion of these reactions. As viscoelastic 
properties[42] of charged polymers depend on salt concentra-
tion, temperature, and pH of solution, these additional variables 
can be used to study autoacceleration in reactions involving 
charged polymers. We expect precisely these studies focusing 
on the relations between salt concentration, temperature, pH 
(in addition to solvent and initiator concentration), and the time 
required for the onset of autoacceleration in reactions involving 
charged polymers to be a major research effort in future.

Prospective direction: development of in situ 
characterization tools for understanding 
depolymerization
All of the reactions discussed so far involve solvents. However, 
there are a number of reactions, which involve polymers in 
the absence of any solvent. For example, degradation of semi-
crystalline polymers in the presence of ultra-violet (UV) or 
ionizing radiations[43,44] has been studied extensively and also 
involves free radicals. Simultaneous formation of free radicals 
at multiple locations along polymer chains can lead to either 

depolymerization or crosslinking. In semi-crystalline poly-
mers such as polyethylene, energy required for depolymeriza-
tion is smaller than the energy required for electronic structure 
changes as measured by electron energy loss spectra, but higher 
than that required for reduction in crystallinity. For example, in 
the case of polyethylene, the crystal unit cell has been shown 
to deform, swell irregularly, and explode under increased elec-
tron beam interactions, as evidenced by low-dose selected area 
electron diffraction studies.[45] From these observations, one 
would expect that the depolymerization process can happen 
from multiple locations simultaneously. In contrast to the semi-
crystalline polymers, the depolymerization of amorphous poly-
mers is relatively less studied by electron microscopes, likely 
due to the poor contrast and limited features in electron diffrac-
tion patterns obtained from amorphous polymers. Especially, 
in situ microscopic studies on kinetics of depolymerization, in 
general, are not well reported.

A current-generation high-speed camera offers capabil-
ity to capture nanoscale features with hundreds to thousands 
frames per second.[46,47] Imaging of nanoscale features in cath-
ode–electrolyte interface[46] as well as in protein complexes[47] 
has especially benefitted from such advances. For example, at 
a magnification of 105,000 and 0.83 Å  physical pixel size, a 
resolution of 1.65 Å  can be achieved after 9 h; and in some 
optimized scenarios, 2.5 Å  resolution is obtained in 5 min.[47] 
If the number of camera pixels (24 megapixels) is used to mul-
tiply the physical pixel resolution then this will convert to a 
sampling area of 0.45 square micron. Also, a fast, pulsed laser 
system using a pump-probe method is required to examine 
femtosecond dynamics of various materials and reactions in 
transmission electron microscopy (TEM).[48] These include but 
are not limited to the monitoring of atomic movement in soft 
materials such as during phase transitions or changes of biolog-
ical structures in aqueous environment. Instead of using laser 
pulses, one may use an electrical phase modulator to drastically 
enhance the temporal capturing capability of a traditional TEM 
to nano-second or even pico-second.[49] Recent advances in 
in situ TEM of gas cell and liquid cell catalytic reactions[50] 
may be transferred to study depolymerization kinetics if the 
electron-beam damage and intrinsic poor contrast of polymers 
can be properly addressed.

Prospective direction: depolymerization 
in the presence of fluid flow
In general, external forces can be used to tailor rates of reac-
tions. For example, rates of reactions can be changed by affect-
ing activation barriers for the reactions using external forces 
such as applied electric fields, thermal gradients, and fluid flow. 
We envision use of fluid flow in accelerating kinetics of depo-
lymerization as a practical and promising direction of research 
for future. A number of advances have been made in having 
a desirable control over kinetics of polymerization by using 
a continuous flow during polymerization. Examples include 
control over molecular weight (MW) and its distribution in 
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free-radical polymerization, living free-radical polymerization 
by reversible addition fragmentation chain transfer (RAFT) in 
ethanol and water[51] as well as diblock copolymerization on 
grafted polymers[52] (cf. Fig. 2), ring opening polymerization 
(ROP) to form polyesters, living anionic polymerization of 
vinyl polymers, and the metathesis ring opening polymeriza-
tions. Although a better control over MW and its distribution in 
a flow reactor (continuous and computer-controlled) has been 
demonstrated for polymerization, limited progress has been 
made in relation to understanding kinetics of depolymeriza-
tion and amplification of reaction rates. For example, controlled 
lignin depolymerization under continuous flow conditions has 
been demonstrated.[53] By controlling the flow reactor param-
eters (flow rate, pressure, temperature, and column design), it is 
possible to obtain optimized depolymerization and autonomic 
degradation reactions in the next generation of self-immolative 
polymers.[54] Optimizing fluid properties such as viscosity and 
overcoming thermal conductivity-driven limitations should be a 
primary focus while studying kinetics of depolymerization and 
the amplification of reaction rates. Using artificial intelligence 
(AI) and machine learning (ML) tools, it is possible to simu-
late, predict, and bias various systems to give specific preferred 
products including monomers, fragments, branching, such that 
these products can be separated or collected online.[55] For 
example, this can be done by using neural networks for molecu-
lar and polymerization design in order to obtain targeted poly-
meric properties after training them to recognize quantitative 

structure–property relationships. As a predictive tool, it is pos-
sible to identify promising hypothetical polymer candidates, 
where selection can be made for monomer synthesis, polym-
erization, and reaction conditions under flow behavior. It is 
possible to use neural networks to start from a substantially 
limited amount of data for polymeric properties and expand or 
narrow the scope of explored constructs by real-time feedback 
from actual laboratory synthesis and thermophysical property 
measurements. While this has been applied in forward polym-
erization reactions, there is a significant interest in applying 
similar neural networks for designing faster depolymerization 
reactions on the basis of autocatalysis. For example, using pro-
grammed protocols, the molecular weight distribution (MWD) 
profile can be biased towards monotonic, bimodal, square, tri-
angle, and complex MWD profiles in depolymerization reac-
tions. In such configurations, feedback obtained about specific 
reaction mechanisms in depolymerization of vinyl polymers,[56] 
hydrolysis of polyesters,[57] metathesis reactions,[58] etc. will 
be unique, especially when optimized in the context of a con-
tinuous flow chemistry set-up. Such feedback about reaction 
mechanisms can be incredibly helpful for designing recycling 
and upcycling protocols for polymers.[59] Furthermore, prin-
ciples learned during such studies can be a basis for starting 
pilot reactor and plant engineering design after scale-up. In the 
future, as the interest for controlled degradation of polymers 
becomes commercially of high interest, flow reactors will play 
a very important role in advancing manufacturing.

Figure 2.   Continuous flow chemistry polymerization by grafting polymers (block) on a solid support media by controlling the flow rate, 
temperature, and pressure on grafted initiators using the RAFT mechanism. Here, CTA, NIPAM, BTPAPC, PEGMEMA, PPEGMEMA, and 
PNIPAM are acronyms for chain transfer agent, N-isopropylacrylamide, butyl (1-oxo-1-((3-(trimethoxysilyl)propyl)amino)prop-an-2-yl) 
carbonotrithioate, poly(ethylene glycol) methyl ether methacrylate, poly(poly(ethylene glycol) methyl ether methacrylate), and poly(N-iso-
propylacrylamide), respectively. Adapted from Ref. 52 with permissions.
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Biphasic autocatalysis and relevance 
to micelles, vesicles, polymer 
membranes
Autocatalysis has been proposed as the key step in the natu-
ral selection, replication, and reproduction. It has even been 
posed as being responsible for the origin of life.[1,2] Similar 
ideas have been exercised in material sciences to develop 
self-generating (autopoietic) systems. For example, in the 
early 1990s, Luisi and collaborators first showed evidence 
of self-replicating micelles and vesicles starting from simple 
molecules.[60] This led to an extensive research in establishing 
autopoietic supramolecular aggregates (including micelles, 
reverse micelles, vesicles, and other structures). In these stud-
ies, the underlying mechanism of self-replication is bipha-
sic physical autocatalysis, which is the focus of this section. 
Biphasic physical autocatalysis refers to a reactive system 
having three characteristics (cf. Fig. 3): (1) the reaction occurs 
at an interface between two immiscible liquid phases (typi-
cally an oil/water interface); (2) at least one of the products 
from the interfacial reaction has the capability to accelerate 
the reaction rate, i.e., reaction is autocatalytic; and (3) reaction 
rate is affected by the change(s) of physical properties (typi-
cally, emergence of supramolecular aggregates) rather than 
by the changes in the activation energy of the reaction. In the 
following, we discuss a general biphasic autocatalytic reac-
tion and the accompanied phenomena such as self-generation, 
introduce techniques to characterize this dynamic process, and 
report on some potential reactive systems.

There are three main events during the course of a bipha-
sic physical autocatalytic reaction near an oil–water interface: 
(i) production of molecules containing both hydrophobic and 
hydrophilic components (i.e., hydrotropes, surfactants, lipids, 
etc.), (ii) emergence of aggregates, and (iii) acceleration of the 
forward reaction rate. These molecules preferentially distribute 
at the oil–water interface, reducing the surface tension. When 
their concentration reaches a critical aggregation concentra-
tion (CAC), they undergo self-assembly to form supramolecu-
lar aggregates. This stage, the time between the distributing 
at the interface and reaching the CAC, is denoted as the lag 
phase. As the aggregates form, insoluble reactive species are 
bonded and/or trapped within the aggregates and is followed 
by “phase transfer.” The increase in both the local concentra-
tion of reactants and the reactive interface area accounts for 
the greatly enhanced reaction rate. In short, the formation of 
aggregates causes a considerable enhancement in solubiliza-
tion of otherwise insoluble reactive species and leads to an 
increased reaction rate, i.e., autocatalysis. Direct consequences 
of an enhanced reaction rate near an oil–water interface are (1) 
an increase in the size of molecules and aggregates over time, 
(2) morphology transition, and (3) new aggregates emerge via 
division process (also referred to as self-reproduction, self-
replication, self-propagation, and autopoiesis).[62–64]

Although biphasic physical autocatalytic reactions near 
immiscible oil–water interfaces have been studied exten-
sively for small-molecular systems like surfactants and lipids, 
similar studies for polymerizations have not been attempted 

Figure 3.   (a) Schematic of a typical biphasic physical autocatalysis. (b) A copper-catalyzed physical autocatalytic system, where an 
organic alkyne reacts first with a Cu-catalyst, then with an aqueous azide to form a surfactant. Formed micelles accelerate the reaction. 
(c) Using a hydrophobic Cu-ligand promotes retention of the Cu-catalyst in the organic phase and faster reaction was observed. (d) Using 
a hydrophilic Cu-ligand in the system favors keeping the Cu-catalyst in the aqueous phase and slower reaction rates were observed. (e) 
Summary of effect of tuning the catalyst hydrophilicity to alter reaction kinetics. (1) A hydrophobic ligand leads to shorter lag periods and 
higher rates while (2) a hydrophilic ligand retards the reaction. Adapted from Ref. 61 with permissions.
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so far. However, a number of polymerization-induced self-
assembly (PISA) studies have reported self-generating poly-
meric vesicles[6] in miscible solvent mixtures. These include 
nano-objects containing monomethoxy poly(ethylene glycol)-
poly(glycidyl methacrylate) (mPEG-PGMA) diblock copoly-
mer synthesized by photo-initiated RAFT-mediated PISA con-
ducted in ethanol/water mixture. In this case, a fivefold increase 
in the rate of polymerization was observed following the lag 
phase.[20] In the case of miscible solvents, competing inter-
actions among polymers and solvent pairs play an important 
role in affecting the CAC and the lag phase via the concept 
of co-non-solvency.[65] Autocatalysis was speculated to be a 
result of the solvation of the GMA monomers by the formed 
PGMA chains, leading to high monomer concentration in the 
cores of micelles. Similar results were obtained for RAFT-
mediated PISA with monomer, 2-hydroxypropyl methacrylate 
(HPMA), and the poly(ethylene glycol) (PEG) macromolecu-
lar chain transfer agent (macro-CTA).[66] In these studies,[20] 
water content in ethanol–water mixtures was found to affect 
polymerization kinetics significantly. The underlying cause of 
this effect was found to be an altered GMA monomer partition 
within micelles. In another study, the concentration of macro-
molecular RAFT agent was found to affect the lag phase in the 
autocatalytic behavior.[67] Taking poly(2-ethylhexyl acrylate)-
trithiocarbonate (P2EHA-TTC) as a macro-CTA, an amphi-
philic block copolymer with poly(methyl acrylate) (PMA) was 
synthesized via free-radical dispersion polymerization in isodo-
decane, which could form PMA particles. Furthermore, P2EHA 
segments acted as a steric stabilizer in the final particle. There-
fore, the concentration of P2EHA could alter the time length 
of the lag phase in the plot of monomer conversion against 
time. Specifically, higher macromolecular RAFT agent’s con-
centration corresponded to a more extended lag phase. Along 
with concentration, reaction temperature has also been used to 
influence the polymerization progress.[68] A large focus in the 
field of PISA[6] has been the use of different reaction systems to 
synthesize amphiphilic di- or tri-block polymers as a means of 

obtaining polymer aggregates at high solid content, monitoring 
the aggregates’ morphological changes, and detecting their cor-
responding properties. Less effort has been devoted to studying 
kinetics, due in large part to the complexity of the measure-
ments required. Recently, kinetics of RAFT-mediated PISA 
was studied by producing spherical micelles assembled from 
poly(N-acryloylmorpholine)-b-poly(N-acryloylthiomorpho-
line) (P(NAM-b-NAT)).[69] Remarkably different from other 
reported PISA, which showed accelerated polymerization in the 
mid-course when micellar aggregates emerged, unnoticeable 
acceleration of polymerization was reported.

Characterization of reaction kinetics near an oil–water inter-
face has been made possible due to advances in optical micros-
copy and other interface-sensitive techniques. For example, 
autocatalytic growth-to-deformation/division of supramolecu-
lar aggregates has been extensively investigated[6,60,70] using 
microscopy. In particular, Veronese and Luisi[71] counted the 
giant vesicles (1–6 microns in size verified using a freeze-frac-
ture electron microscope) with an optical microscope. Differen-
tial interference contrast microscopy and fluorescence micros-
copy (especially confocal microscopy) are also employed for 
the same purpose.[62,70] However, reactions such as hydrolysis 
of esters and thiol-ene reaction normally lead to the formation 
of nano-sized micellar self-assemblies, which are challenging 
to be directly visualized through conventional optical micro-
scopes. For nanoscale systems, cryogenic electron microscopy 
has been used. Recently, an alternative optical microscopic 
technique—interferometric scattering microscopy (iSCAT)—
was extensively reported by Fletcher and collaborators for stud-
ying biphasic physical autocatalysis.[63,72] iSCAT allows direct 
visualization of nano-sized micelles as well as vesicles. As 
compared to the thiol in the first reported autocatalytic thiol-ene 
reaction[73] (Fig. 4), a thiol with the longer chain was selected 
for forming larger micelles (RH ∼ 3 nm), which could reliably 
be detected by iSCAT.[63] Biphasic thiol-X reactions either on 
the microscope coverslip or under traditional batch conditions 
were observed in situ by this label-free microscopic technique, 

Figure 4.   Visualizing physical autocatalysis by an optical microscopy technique, called interferometric scattering microscopy (iSCAT). (a) 
Schematic of a biphasic reaction between a water-soluble molecule (2) with neat water-insoluble molecule (1) carried out on a microscope 
coverslip. iSCAT relies on illuminating the sample with a coherent light source and imaging the reflected and backscattered light from the 
sample. (b) Representative differential iSCAT image of single micelles of molecule (3) bound to microscope cover glass after subtraction 
of the static scattering background. (Scale bar: 2 microns.) (c) iSCAT contrast histogram of a sample of (3) in water. Inset shows dynamic 
light scattering number distribution of (3) (1 mM). Adapted from Ref. 63 with permissions.
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which relies on the induced scattering properties changing as 
the result of the non-specific binding of aggregates to the glass 
surface. iSCAT observations were corroborated with measure-
ments acquired from fluorescence spectrometry[72] as well as 
ultra-performance liquid chromatography (UPLC).[74] More 
importantly, iSCAT exhibited decisive advantages (due to 
its high sensitivity) over dynamic light scattering (DLS) for 
allowing verification of the nucleation stage as the reaction 
proceeded. During iSCAT, multiple binding events may cause 
undercounting when the concentration of aggregate particles is 
high, and iSCAT is not able to visualize the growth of formed 
vesicles. Nevertheless, given the amenability to elucidate the 
mechanism of self-assembly reaction, focused attention to the 
development of iSCAT as a means of understanding of PISA 
is warranted. In addition to characterization of morphologies, 
measurements probing kinetics of autocatalysis have been also 
executed. To this end, sophisticated methods like an ensemble 
of spectrophotometric techniques (UV−Vis, FTIR), NMR spec-
troscopy, and others have been extensively used. For example, 
in Ref. 73, the authors confirmed the autocatalytic thiol-ene 
reaction occurred via micellar autocatalysis by using NMR-
based diffusion ordered spectroscopy (DOSY). With recent 
advances in instrumentation, we envision in situ interface-
sensitive characterization tools such as advanced vibrational 
spectroscopies (i.e., sum-frequency generation spectroscopy 
(SFG), infrared reflection absorption spectroscopy (IRRAS), 
two-dimensional infrared spectroscopy) to play important roles 
in monitoring biphasic systems.

Prospective direction: self‑generating polymeric 
micelles, vesicles from reactions near oil–water 
interfaces
In contrast to self-generating micelles and vesicles based on 
surfactants and lipids, autopoietic polymer-based systems are 
not that well researched despite several advantages of using 
polymers. These advantages include robust polymer-membrane 
properties and an abundant material selection. One primary 
significance for the autopoietic polymer-based system is to 
give insights into the origin of life. In addition, polymerization 
and depolymerization proceeding via biphasic physical auto-
catalysis will bring new vigor to explore fascinating interfacial 
phenomena and develop novel applications. A wide range of 
well-established techniques, especially time-resolved in situ 
techniques, opens the door to more in-depth characterization. 
Based on studies probing autocatalysis in lipids and surfactants, 
a variety of factors can impact similar reactions in the presence 
of polymers. For example, salting-in and salting-out effect in 
charged reactive species can affect kinetics of these reactions 
and remain largely unexplored in the context of polymers. 
Self-generating polymeric micelles and vesicles have various 
applications in addition to mimicking functional artificial cells. 
These applications include drug delivery in an autonomous 
fashion, model systems for studying membrane rearrange-
ment, morphology dynamics, and other subjects in membrane 

physics. For these applications, various factors[61] such as 
reaction parameters, medium properties, and chemical proper-
ties of reactive components are expected to influence the self-
generation progress. As the integration of information carriers 
(i.e., proteins, DNA) and functionalities (i.e., enzymatic reac-
tion) into self-generating vesicles for establishing functional 
artificial cells is still a very active area of research, similar 
works using polymers can provide some insights into designing 
artificial protocells. In addition, we expect frequent usage of 
in situ and surface-sensitive characterization techniques such 
as SFG for probing biphasic physical autocatalytic systems. 
Furthermore, direct visualization of the nucleation-to-structure 
transition, and identifying reaction pathways in the interfacial 
regime are interesting directions for future studies.

Prospective direction: biphasic autocatalysis 
for polymeric membranes
Biphasic autocatalysis is quite similar to an interfacial polym-
erization based on a polycondensation reaction between nucleo-
philes and electrophiles, in which electrophiles are dissolved in 
an organic phase. The polycondensation reaction is confined to 
the organic/aqueous interface due to the reactants’ limited diffu-
sion in one of the phases. However, as the reaction progresses, 
low permeability of synthesized polymers near the interface 
impedes the reaction due to its effects on the concentration of 
reactants near the organic/aqueous interface. In other words, 
in contrast to biphasic physical autocatalysis, neither reactive 
species solubility in reverse phase nor reactive surface area are 
able to accelerate the forward reaction rate as the interfacial 
reaction proceeds. These effects are reflected by a sharp decel-
eration in the growth of the polymer film (or membrane) thick-
ness over time. Here, we will not review interfacial polymeriza-
tion, but we refer interested readers to several comprehensive 
reviews[75,76] on this topic. Here, we discuss the relevance of 
biphasic autocatalysis for polymeric membranes.

It is noteworthy to recall that the main types of polymers 
synthesized from interfacial polymerization are polyamides, 
polyurethanes, polyesters, and polyimides, to list a few.[75] 
In order to autoaccelerate synthesis of membranes based on 
copolymers, parameters appearing in a reaction–diffusion pro-
cess (such as in RAFT-mediated PISA) needs to be considered. 
These parameters include solubility, diffusivity, and reactiv-
ity of reactive species. An example is shown in Fig. 5, which 
is based on an interfacial polymerization between piperazine 
(activator) and trimesoyl chloride (inhibitor) occurring on top 
of polysulfone support, where inhibitor could poorly solubilize 
in the aqueous phase.[77] This led to the diffusion-controlled 
polyamide membrane formation proceeding on the organic 
side. Intriguingly, membranes with Turing structures were pro-
duced using porous supports when poly(vinyl alcohol) (PVA) 
was added into the aqueous phase. This was interpreted by a 
created appropriate difference between the diffusion coefficient 
of the separated activator and inhibitor in a system far from 
thermodynamic equilibrium. If an interfacial polymerization 
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were to be executed in the presence of surfactants,[78] which can 
undergo biphasic autocatalysis (i.e., hydrolysis of surfactant 
precursors, imine condensation, thiol-X reactions) then the 
structure of polymeric membranes can be altered significantly 
by controlling autocatalytic behavior. Therefore, coupling auto-
catalytic reactions and interfacial polymerization can be used as 
an alternative route to alter materials’ structure and functional 
properties. As a result, we envisage highly porous membranes, 
three-dimensional objects, and other interesting structures pro-
duced using biphasic autocatalysis.

Modeling of autocatalysis
Transition state theory (TST) developed by Eyring,[79] Evans, 
Polanyi[80], and Wigner[81] has become a cornerstone in deter-
mining reaction rates from first principles. However, local equi-
librium condition with activated complex in TST only allows 
justification to near-equilibrium processes in a description of 
reaction rates. Furthermore, application of TST to polymers 
has been hindered by the enormous computational cost of mod-
eling long chains and the large number of degrees of freedom 

required to sample various activated complexes. Alternative 
approaches based on reactive force fields[82] have been devel-
oped to simulate polymeric systems at larger length and longer 
time scales. For the most of the autocatalytic reactions dis-
cussed in the previous two sections, which are either diffu-
sion or electrostatic limited, these simulation approaches can 
only provide activation barriers for known reaction pathways. 
In order to simulate the effects of diffusion and electrostatics 
in solutions and melts, continuum reaction–diffusion models 
based on kinetic equations have been developed. For simulat-
ing chemical reactions in polymers, multi-scale models based 
on classical molecular dynamics have also been developed. 
These models have the potential to be made more accurate at 
the expense of computational cost by incorporating informa-
tion about the reactions using quantum mechanical methods. 
Recently, models for reaction kinetics in a batch and flow reac-
tor have been developed by using neural networks. In this sec-
tion, we discuss these methods in terms of their applications in 
modeling reactions in polymeric systems and their extensions 
for modeling different aspects of autocatalysis.

Figure 5.   Turing-type structures in interfacial polymerization. (a) Schematic diagram of activator–inhibitor interaction in a reaction–diffu-
sion process. Reactions leading to Turing structures rely on competing activation (red) and inhibition (black) kinetic pathways. (b) Spatial 
representation of local activation and lateral inhibition. In two dimensions, Turing structures generally consist of spots or stripes. (c) 
Schematic illustration of interfacial polymerization Turing system. The inhibitor, trimesoyl chloride (TMC), is dissolved in the organic phase 
(top), and the activator, piperazine (PZ), and the macromolecule poly(vinyl alcohol) (PVA) are dissolved in the aqueous phases (bottom). 
The polyamide (PA) membrane with nanoscale Turing structures forms on the porous support (PSU). (d and r) AFM topography images of 
the Turing-type PA membranes. Bright yellow and orange regions correspond to the formed solid-state nanoscale Turing structures. Initial 
concentrations for nanoscale spots (d) are [TMC] = 6 mM, [PZ] = 28 mM, and [PVA] = 12 mM, and for nanoscale stripes (e), [TMC] = 8 
mM, [PZ] = 23 mM, and [PVA] = 32 mM. Scan area is 2 microns by 2 microns. Adapted from Ref. 77 with permissions.
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Prospective direction: extensions of reaction–
diffusion models
Turing[7] showed that near an instability for a two component 
system undergoing reaction and diffusion, six different cases 
may arise and in the most important case, stationary waves 
arise. The latter is known as Turing patterns and has been dis-
cussed in the previous section in relation to polyamide mem-
branes (cf. Fig. 5) synthesized using interfacial polymeriza-
tion. In contrast, this instability is completely ignored in the 
models describing autoacceleration in free-radical polymeri-
zation. Such models (discussed in “Autocatalysis in kinetics 
of polymerization: breakdown of equal reactivity hypothesis” 
section) focus on connecting rate constants to diffusion con-
stants of reactive free radicals, polymer chain lengths, entan-
glements, and concentration of the chains. A major focus of 
the theoretical works related to reactions in polymers has 
been on the diffusion-controlled reactions.[83,84] Extensions 
of these works to study effects of fluid flow and electrostat-
ics are required to gain insights into autocatalysis. Efforts to 
include effects of fluid flow[19] and electrostatics[39,85,86] on 
reactions have been reported. However, these models have 
been developed for dilute reacting formulations and they 
need to be extended to concentrated solutions in order to be 
applicable for modeling autocatalysis. An attractive approach 
to extend such models for understanding autocatalysis is to 
consider reactions using Lotka–Volterra equations[12,13] (also 
known as predator–prey equations). By modeling reactions 
using Lotka–Volterra equations and considering diffusion of 
various chemical species, heterogeneities and chemical insta-
bilities can be captured by these models. However, we are 
not aware of any such extended model applied to study either 
polymerization or depolymerization. Hence, for developing a 
detailed understanding of autocatalysis in polymeric systems 
and pattern formation, reaction–diffusion models based on 
Lotka–Volterra equations need to be developed.

Prospective direction: reactive simulations 
based on molecular dynamics (classical 
and quantum) and Monte‑Carlo methods
Multi-scale molecular dynamics simulation protocols involv-
ing chemical reactions have been used to model living radical 
polymerization[87] and dynamic bond swaps in covalent adap-
tive polymer networks such as vitrimers.[88,89] These simu-
lations are multi-scale in a sense that the reacting species are 
either described in full atomistic details or in a coarse-grained 
manner, where a group of atoms are grouped together (e.g., at 
the monomer or the Kuhn segment level). Furthermore, these 
molecular dynamics simulations involve classical force fields 
that describes pairwise, bond, angle, and dihedral interactions. 
Integrated into these methods are Monte-Carlo moves to model 
chemical reactions, where rates of reactions are estimated from 
an Arrhenius-type equation. The activation energies and fre-
quency of Monte-Carlo moves determine the reaction rates. In 
principle, the same simulation methods and protocols can be used 

to model autocatalytic depolymerization. This type of method, 
where electron densities are neglected, allows for longer length 
and timescale simulations that can probe the effects of viscoelas-
ticity inherent to polymers. Such hybrid simulations involving 
classical molecular dynamics and Monte-Carlo moves enable 
direct comparisons with experiments using scattering, rheology, 
or size exclusion chromatography measurements. Furthermore, 
the hybrid simulations can be complemented by more accurate 
quantum chemistry methods, e.g., those based on density func-
tional theory (DFT), by providing the model with accurate esti-
mates of activation energies and reaction rates.

Classical molecular dynamics coupled with Monte-Carlo are 
ideally suited for simulations of several thousands of atoms. 
The quality of molecular dynamics simulations critically 
depends on the accuracy of force fields employed. Choice of 
functional forms and parameters of force fields is crucial to 
ensure faithful modeling of physico-chemical processes and 
reproducing experimental measurements. Popular force fields 
such as CHARMM,[90] AMBER[91], and GROMOS[92] used in 
simulations of liquids and biological systems suffer from poor 
description of bond breaking and formation in which the atomic 
connectivity changes due to chemical processes. This has been 
addressed by introducing reactive bond order potentials in 
methods such as reaxFF[82] and AIREBO-M.[93] The bond order 
is an empirical function and its values describe the topology of 
chemical bonding network (single, double, or triple bonding) 
and coordination of atoms based on the local environment of a 
given atom. It is calculated from atomic coordinates and used 
along coordinates to compute energy and forces for molecular 
dynamics. Reactive force fields have been successful in mod-
eling chemical processes that involve changes in the covalent 
bonding of hydrocarbons and the condensed phases[93]; are 
particularly promising for modeling chemistries relevant to 
polymer upcycling.

In general, force fields used in classical molecular dynam-
ics simulations represent an estimation of the ground-state 
electronic structure energy within the Born–Oppenheimer 
approximation for potential energy surfaces. The optimization 
of parameters used in force fields can be done using high-level 
ab initio calculations and experimental data to ensure that the 
predicted observables are accurate and reproduce molecular 
properties such as crystallographic structures, vibrational fre-
quencies, and thermodynamics. The primary shortcomings 
of molecular dynamics based on parametrized force fields 
are the limited applicability to modeling processes involving 
electronically excited states, such as photo-reactions, redox 
and field-induced reactions, proton-coupled electron reac-
tions, and charge transfer processes. Such processes generally 
require explicit treatment of electronic structure and may often 
need time-dependent quantum mechanical treatment. A natural 
framework for such simulations is through ab initio molecular 
dynamics methods.

In the ab initio molecular dynamics-based approaches, the 
issue of parametrization is not present since the forces that gov-
ern the dynamics of the nuclei are calculated directly from the 
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electronic structure theory evaluated on-the-fly at each time step. 
The choice of the specific electronic structure theory is non-triv-
ial and also requires expertise. These ab initio approaches also 
allow one to go beyond ground-state electronic structure and 
simulations of chemistries involving electronically excited states 
and non-adiabatic processes when employing time-dependent 
quantum dynamical methods. Example applications include 
non-equilibrium charge transfer,[94] as well as electron beam and 
electric field-induced chemical transformation[95] of materials.

The main limitation of the ab initio methods is the computa-
tional cost of electronic structure, usually a DFT method. The 
computational time required for a single DFT calculations scales 
cubically with the system size due to the time cost of the matrix 
diagonalization. That is, doubling the number of atoms will typi-
cally lead to eight-fold increase in the computer time required 
for simulation of a given number of time steps. Whereas the 
conventional DFT method is a workhorse for a static electronic 
structure calculations of hundreds to thousands of atoms, but 
their high computational cost makes DFT impractical for routine 
ab initio molecular dynamics of systems consisting more than 
a few hundred atoms. Semi-empirical and approximate DFT 
methods based on tight-binding parametrization, such as density 
functional tight binding[96] (DFTB), become critical for ab initio 
molecular dynamics of large systems. The DFTB is an approxi-
mate DFT method in which only valence electrons are treated 
quantum mechanically while all core electrons and nuclei are 
approximated via pairwise interatomic repulsive potential. For 
a typical DFTB-based molecular dynamics with 1000 atoms, 
over 90% of computer time is spend on diagonalization and on 
other linear algebra matrix–matrix operation. These simplifica-
tions allow to extend routine application of ab initio methods to 
molecular systems consisting a few thousands of atoms. A more 
detailed overview of DFTB method can be found elsewhere.[96]

Although these quantum mechanical methods are accurate 
and do not require any parameterization, applications of these 
methods to simulate polymers with ≫ 10,000 atoms require huge 
computational resources. With the currently available computa-
tional resources, these methods can be used to compute activa-
tion barriers for reactions and study probabilities of different 
reaction pathways by computing underlying potential energy 
surfaces. With rise in computational resources, it is expected that 
such quantum mechanical methods based on ab initio molecular 
dynamics will play an important role in studying mechanisms of 
reactions by simulating different reaction pathways.

Prospective direction: machine learning 
for automated reactions and integration 
with multi‑scale models
Within the last decade, reaction and chemical characterization 
processes in batch and flow reactors have been optimized using 
neural networks and automated workflows. Both, single[97] 
and multi-step[98] reactions, such as those involving nitration, 
hydrolysis, and hydrogenation have been optimized in flow 
reactors coupled with in situ chemical characterization via 

NMR, UV–VIS, and FTIR. Similar works on reactions fol-
lowing first-order kinetics have appeared and extension of such 
efforts to autocatalysis exhibiting deviations from first-order 
kinetics are expected in the near future. Similar advances in 
automating polymerization reactions[99] using microfluidics 
have been made and we expect the use of neural networks-
based surrogate model developments in future. These advances 
in coupling automated synthesis to machine learning algo-
rithms will require more accurate models for reaction kinet-
ics. Additionally, bringing new insights into the effects of fluid 
flow, temperature, and catalyst in affecting autocatalysis will 
be essential. Integration of machine learning algorithms with 
multi-scale models for homogeneous reactions[100] has been 
attempted. For using such algorithms to be useful for studying 
autocatalysis, they must be extended to include heterogeneity, 
bifurcation (signature of instability), and non-uniqueness of 
correspondence between reaction mechanisms and mathemati-
cal models. Specifically, neural networks trained on new reac-
tion–diffusion models based on Lotka–Volterra equations, as 
discussed in “Prospective direction: extensions of reaction–dif-
fusion models” section, can be used to study autocatalysis in 
automated reactions. These neural networks can be used to not 
only learn about the non-linear kinetics of reactions but also 
study the onset of autoacceleration and its origin. This is an 
interesting direction for future research.

Summary of proposed research 
directions
Heterogenity, non-linear kinetics, and the inherent far-from-
equilibrium nature of autocatalysis require a concerted effort 
involving in situ studies of reactions, multi-scale models, and 
machine learning algorithms in order to garner insights into 
the mechanisms of autoacceleration, underlying instabilities, 
and their effects on various patterns and physical proper-
ties. In this article, we have proposed a number of prospec-
tive directions to pursue, which are technologically relevant 
and fundamentally important. These directions involve the 
following: 

(1)	 Development of efficient chemical upcycling protocols by 
autoaccelerating depolymerization reactions. For devel-
oping such protocols, understanding autocatalysis in the 
kinetics of free-radical depolymerization, especially in the 
absence of solvent, is a key direction of future research. In 
particular, studies focused on understanding mechanism 
and kinetics of photo-oxidation in amorphous and semi-
crystalline polymers will play a pivotal role in designing 
the next-generation polymers for a sustainable circular 
economy.

(2)	 Autocatalysis has been studied extensively in the presence 
of solvent, where reactions are controlled by diffusion. In 
the presence of explicit charges, effects of electrostatics 
on rate of autoacceleration need to be studied in detail. 
Such studies are vital for developing faster polymeriza-
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tion schemes of charged polymers as well as acid-base 
catalyzed depolymerization reactions.

(3)	 Development of in situ characterization tools for under-
standing effects of radiations on depolymerization and 
polymer degradation in semi-crystalline polymers. 
These tools are based on electron microscopy coupled 
with pulsed laser systems, which can provide insights 
into kinetics of reactions with a temporal resolution of 
femtosecond. In particular, studies showing connections 
between the loss of crystallinity and depolymerization 
events are recommended in order to understand mecha-
nisms of polymer degradation in solvent-free polymeric 
materials.

(4)	 With advances in using fluid flow for various polymeri-
zation schemes, controlling depolymerization reaction 
rates by fluid flow is an interesting direction of research. 
In particular, automation of polymerization and depo-
lymerization reactions using microfluidics coupled with 
in situ chemical characterization via NMR, UV–VIS, and 
FTIR is a promising direction, which can lead to commer-
cialization of certain reactions. Furthermore, integration 
of automated synthesis with more accurate multi-scale 
and neural network-based surrogate models can provide 
unprecedented insights into mechanisms of reactions.

(5)	 Autocatalysis near oil–water interfaces can be realized 
due to changes in physical properties of products during 
the course of a reaction. These reactions depend on criti-
cal aggregation number of products and can be harnessed 
to create set-ups producing self-generating polymeric 
micelles and vesicles from reactions near oil–water inter-
faces. However, mechanism of autocatalysis and trapping 
of various functional cargo in these micelles and vesicles 
need to be studied in detail in order to create artificial 
cells.

(6)	 Pattern formation due to chemical instabilities in bipha-
sic autocatalysis can be harnessed to generate polymeric 
membranes with different morphologies. Such pattern for-
mation due to reactions near oil–water interfaces needs 
to be studied in detail for charged homopolymers and 
copolymers in order to generate the next generation of 
gas as well as water desalination polymeric membranes.

(7)	 Multi-scale models bridging reaction–drift–diffusion 
models with molecular reactive simulations based on 
molecular dynamics (classical and quantum) and Monte-
Carlo methods need to be developed in order to under-
stand roles of different reaction pathways on the onset 
of autocatalysis and resulting pattern formation. Lastly, 
machine learning-based surrogate model development has 
the potential to accelerate the multi-scale model building 
and comparisons with the experiments.

These directions should be pursued in order to develop innova-
tive routes to the next generation of smart and active materials, 
vital to a sustainable circular economy.
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