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Magnetic properties of mixed spinel ferrites are determined, in great extent, by the magnetic cation 
distribution among tetrahedral and octahedral positions in a crystal. In the case of CoZn‑ferrites, most 
researchers reported a predominant localization of the divalent cobalt ions in octahedral positions. 
Using the citrate precursor auto‑combustion method, we successfully synthesized  CoxZn1‑xFe2O4 
nanoparticles (x changed from 0.0 to 0.5) with an approximately evenly distribution of  Co2+ ions between 
these interstitial positions.  Fe3+ ions are localized preferably in octahedral positions. This type of 3d‑ion 
distribution predetermined the combination of the large saturation magnetization and very low coercive 
field of the nanoparticles, which may be of importance for applications. MCD spectra of  CoxZn1‑xFe2O4 
nanoparticles are studied here for the first time. Revealed intense MCD peak at 1.75 eV corresponds to 
the emission wavelength (710 nm) of some lasers, e.g., ALP‑710 nm (NKT Photonics, Denmark) which may 
be of interest for photonic devices.

Introduction
Until very recently, mixed cobalt-containing spinel ferri-
tes have been one of the central objects of magnetic materi-
als research [1–9]. Among them, ferrites based on Zn and Co 
 (CoxZn1-xFe2O4) have attracted great attention from researchers 
and engineers due to their unique properties, such as high spe-
cific electrical resistivity, low eddy current losses [10, 11], high 
saturation magnetization and Curie temperature [12], and tem-
perature stability and low cost [13]. Nanoparticles (NPs) with 
different relative Co and Zn concentrations have an impressive 
range of applications, such as systems for targeted drug delivery 
and hyperthermia [14–16], magnetic resonance imaging [17], 
magnetic fluids [18], water purification [19], catalysis [20, 21], 
and many others (see, for example, Rev. [22] and references). 
Due to the wide application of NPs, it is necessary to improve 
their properties, particularly their magnetic properties, which 

determine the possibility of their use in many applications 
and depend primarily on the ratio of Co and Zn concentra-
tions in the ferrite composition. The extreme members of the 
 CoxZn1-xFe2O4 series,  ZnFe2O4 and  CoFe2O4, have the same 
crystalline spinel structure as the Fd-3 m space group but differ 
in the cation distribution between crystalline positions.  ZnFe2O4 
is a normal spinel where divalent  Zn2+ ions occupy tetrahedral 
positions and trivalent  Fe3+ ions are situated in octahedral posi-
tions.  CoFe2O4 refers to the partly inverse spinel structure where 
the  Fe3+ and  Co2+ ions occupy both tetrahedral and octahedral 
positions with an inversion parameter ranging from 0.6 to 0.9 
[23, 24]. According to the cation distributions,  ZnFe2O4 is char-
acterized by antiferromagnetic order with a low Neel tempera-
ture  TN = 10 K.  CoFe2O4 is a ferrimagnet with the Curie tem-
perature  Tc and the room temperature saturation magnetization 
 Ms depending on the inversion parameter that can reach values 
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of 793 K and 66.3 A  m2/kg, correspondingly [12]. Great varia-
tions of the inversion parameter are frequently observed in the 
case of NPs due to low particle dimensions, surface effects, and 
high concentrations of surface defects [25]. Note that Zn-ferrite 
in the nanoparticle state can be partly inverted too. The degree 
of inversion in this case can be presented with the formula 
 (Zn1-δFeδ)  [ZnδFe2-δ]  O4, where parentheses and square brackets 
refer to tetrahedral and octahedral positions, respectively. For 
example, the authors of [25] synthesized partially inverted Zn-
ferrite NPs with a size of 9.8 ± 0.2 nm using the thermal decom-
position technique and showed that the obtained NPs were fer-
rimagnetic at room temperature with a saturation magnetization 
of 44.9 A  m2/kg. The same authors provided a table of saturation 
magnetization values obtained by 15 other authors for partially 
inverted Zn-ferrite NPs synthesized by various methods, which 
varied from 10 to 88 A  m2/kg. An even more complex distribu-
tion of cations across crystal positions can be expected for the 
case of mixed spinels  Zn1-xCoxFe3O4 synthesized with differ-
ent techniques. In Ref. [26], monophasic Co-ferrite, Zn-ferrite, 
and  Co0.5Zn0.5Fe2O4 NPs were synthesized via a flash method 
based on urea decomposition. The mixed NPs were morpho-
logically similar to the Co-ferrite NPs, and  Co0.5Zn0.5Fe2O4 dis-
played an  Ms of 55.3  A  m2/kg, which was lower than the  Ms of 
Co-ferrite (66.3 A  m2/kg) but higher than the data for a mixed 
Zn-ferrite composition reported by other authors. For example, 
 CoxZn1-xFe2O4 NPs with x varying from 0 to 1.0 synthesized 
by the polyethylene glycol (PEG)-assisted hydrothermal route 
[27] demonstrated essentially lower  Ms values of 7.83, 45.7, and 
44.9 A  m2/kg for x = 0.5, 0.7, and 1.0, respectively. When study-
ing the electrical and magnetic properties of  Co1-xZnxFe2O4 NPs 
with x = 0, 0.2, and 0.8 synthesized by combustion, the authors 
of Ref. [28] obtained  Ms values of 56.72, 47.08, and 2.5 A  m2/
kg for  CoFe2O4,  Co0.8Zn0.2Fe2O4, and  Co0.2Zn0.8Fe2O4, respec-
tively. High room temperature  Ms values were demonstrated in 
Ref. [29] for  CoxZn1-xFe2O4 NPs with x = 0.0, 0.1, 0.2, 0.3, 0.4, 
and 0.5 synthesized by the combustion method: 10.01, 16.76, 
34.88, 52.21, and 67.18 A  m2/kg, respectively. The dependence 
of unsteady  Ms behavior on Co concentration was observed in 
Ref. [30] for  CoxZn1-xFe2O4 NPs with x varying from 1.0 to 0.5 
synthesized from metal salts by co-precipitation of hydroxides. 
As the Co content decreased, the  Ms increased, reached a value 
of 114 A  m2/kg, and then decreased again. However, it remained 
very high for x = 0.5–82 A  m2/kg. The reason for this behavior 
was not elucidated in the paper. These examples demonstrate 
the exceptionally strong effect of the technological methods on 
the properties of the synthesized NPs and stress the necessity 
of thoroughly investigating the magnetic characteristics of the 
obtained samples in each case.

A series of  CoxZn1-xFe2O4 NPs with x values varying from 
0.0 to 0.5 prepared by the citrate precursor technique demon-
strated remarkable resistivity and improved dielectric properties 

[31]. In particular, the value of the dielectric loss tangent varied 
in the range of 0.003–0.052 at 1 MHz for different concentra-
tions of cobalt ions; the samples were found to be good insu-
lators with enormous resistivity values ranging from 1.4 ×  1010 
Ω × cm to 1.4 ×  1011 Ω × cm. The specific synthesis conditions 
that ensured such electrical characteristics could lead to a redis-
tribution of  Co2+,  Fe3+, and  Zn2+ cations between tetrahedral 
and octahedral positions in  CoxZn1-xFe2O4 nanocrystals and 
thus greatly affect their magnetic properties. In particular, they 
can allow the formation of magnetic properties necessary for 
specific applications. For example, the NPs’ superparamag-
netic behavior is important for their use for hyperthermia [32]; 
high values of magnetization and low coercivity are required to 
extract NPs with adsorbed pollutants from wastewater with the 
help of a magnetic field [22]; the distribution of magnetic ions 
over magnetic sublattices is important for the NPs application 
in catalysis [21] and so on.

The study aims to synthesize  CoxZn1-xFe2O4 NPs using 
the citrate precursor auto-combustion technique [31]. Citrate 
precursor method is a scalable technique for producing large 
quantity of nanoparticle and quite economic as there is no loss 
of materials. The goal is to trace the evolution of the distribution 
of  Co2+,  Fe3+, and  Zn2+ ions over tetrahedral and octahedral 
positions in the crystal and the resulting magnetic properties, 
including magneto-optical spectra, depending on the Co con-
tent in NPs in order to expand their potential applications.

Results and discussion
Nanoparticles morphology and structure

The X-ray diffraction patterns shown in figure (Online Resource 
1) revealed the spinel cubic phase of the Fd-3 m space group 
for all the samples. The average crystallite size of the samples 
calculated by Scherer’s equation increases from 28 to 36 nm with 
increasing Co concentration in the NPs (Online Resource 2). 
The lattice constant decreases from 8.443 to 8.403 Å, which was 
associated with the smaller  Co2+ ion radius compared to the 
 Zn2+ ion radius, 0.72 and 0.74 Å, correspondingly [33].

The TEM and HRTEM analyses carried out here provided 
additional information on the NP morphology, local crystal 
structure and, especially important, elemental distribution 
inside the NPs. TEM images of the  CoxZn1-xFe2O4 NPs are 
shown in figure (Online Resource 3). NPs with irregular shapes 
and large size dispersions are observed for all x values. The 
average size of nanoparticles is 15–20% larger than the average 
crystallite size obtained from the analysis. This is due to the 
fact that electron microscopy reveals the entire particle, while 
XRD detects only coherent scattering regions, which are usually 
smaller than the particle size due to the disorder of the surface 
layers. As an example, the histogram of NPs size distribution 
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is presented in Fig. (Online Resource 4). In addition, there is a 
tendency for particles to combine into conglomerates. Many of 
the large particles seen in figure (Online Resource 3) are actually 
conglomerates of small particles, as can be clearly seen in the 
HRTEM images (Fig. 1). In Fig. 1, atomic planes are also visible 
even for the smallest particles; that is, they are single crystals. 
This explains the size of the crystallites obtained from the XRD 
pattern analysis. The atomic interplanar distances observed in 
the HRTEM images correspond to those of  ZnFe2O4. Accord-
ing to the analysis of the SAED patterns (examples are shown in 

Figs. 2(a) and 3(a)), the main phase in all the samples is  ZnFe2O4 
(Fd-3 m, PDF 4 + card #00-022-1012).  

Figures 2 and 3 show the elemental maps for groups of NPs 
in samples with x = 0.1 and 0.4, respectively, from which a close 
to uniform distribution of Fe, Co, Zn, and O over the particle 
volume is observed. A more detailed elemental analysis of the 
sample with x = 0 indicated that it was composed of  ZnFe2O4. 
In the samples with x = 0.1–0.3, Co was distributed evenly. For 
higher doses, when studying the local elemental composition 
of individual particles by the EDS method, it was found that 

Figure 1:  HRTEM images of  CoxZn1-xFe2O4 NPs for samples 1, 2, and 6 with x = 0, 0.1, and 0.5, panels (a–c), respectively.

Figure 2:  SAED pattern (a), TEM image (b) and corresponding EDS elemental mappings of Fe (c), Co (d), Zn (e), and O (f ) for the group of NPs in the 
 Co0.1Zn0.9Fe2O4 sample.



 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 2
02

4 
 w

w
w

.m
rs

.o
rg

/jm
r

Article

© The Author(s), under exclusive licence to The Materials Research Society 2024 4

in some particles the cobalt content is somewhat lower than 
it should be in accordance with the given formulas. However, 
since neither in the XRD patterns nor in the electron diffraction 
pattern (Online Resource 1), diffraction reflections correspond-
ing to phases other than  CoxZn1-xFe2O4 are observed, it can be 
assumed that the number of such particles is insignificant and 
they do not make any significant contribution to the observed 
properties of the samples.

Mössbauer spectroscopy

Mössbauer spectra recorded at 300 and 4.2 K are presented 
in Figs. 4 and 5. The characteristics of the room temperature 
spectra change with increasing Co concentration in a sample. 
The quadruple doublets dominate in the spectra of samples 1–3; 
sextet components are barely visible, which is evidence of the 
predominantly paramagnetic state of the NPs in these samples at 
room temperature. The relaxation characteristics of the spectra 
of samples 4–6 may be related to the superparamagnetic state 
of the NPs and proximity of the blocking temperature to the 
measurement temperature. Distinct sextet components appear 
in the spectrum of sample 6, which has the highest Co content. 
The observed room temperature spectra are very close to those 
presented in Ref. [29] for the series of  CoxZn1-xFe2O4 (x = 0.0, 

0.1, 0.2, 0.3, 0.4, 0.5) NPs synthesized by the precursor combus-
tion method.

Lowering the measurement temperature leads to major 
changes in the spectra. Well-resolved sextets characteristic of 
the magnetically ordered state of the NPs are observed for all 
samples at 4.2 K (Fig. 5); the central doublet completely disap-
pears. These sextets can be used to estimate the ion distribution 
among crystal positions. The rather broad line widths of the 
doublets and the sextet peaks are due to the overlap of several 
components originating from the nonequivalent states of iron 
ions. Therefore, the experimental Mössbauer spectra were fitted 
by several sextets. The processing of the recorded spectra was 
performed in two stages. In the first stage, possible nonequiva-
lent iron positions in the samples were determined by calculat-
ing the probability distributions of magnetic hyperfine fields. 
In accordance with the results obtained, a preliminary model 
spectrum was formed. In the next stage, the model spectrum 
was fitted to the experimental spectrum by varying the entire 
set of hyperfine parameters using the linear approximation of 
the least squares method.

The parameters of the spectra obtained as a result of their 
processing are shown in Table 1. The isomer chemical shift (IS) 
characterizes the local surroundings (octahedral or tetrahedral) 
of an iron ion as well as the charge state of this ion. At the same 
charge state, there is less IS in the tetrahedral surroundings than 

Figure 3:  SAED pattern (a), TEM image (b) and corresponding EDS elemental mappings of Fe (c), Co (d), Zn (e), and O (f ) for the group of NPs in the 
 Co0.4Zn0.6Fe2O4 sample.
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in the octahedral surroundings because of the higher electron 
density on the iron nucleus. This difference allows us to distin-
guish the iron ion positions in the spinel lattice. However, in the 
case of the considered samples, such differentiation is somewhat 
difficult. This is due to the closeness of the temperature of the 

liquid helium at which the measurements were made and the 
temperature of the magnetic transition in  ZnFe2O  (TN ~ 8 K for 
bulk  ZnFe2O [34, 35]). In addition, at room temperature, the 
tetra- and octahedral states are indistinguishable, which may 
be a consequence of the superparamagnetic state. Nevertheless, 
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Figure 4:  Mössbauer spectra of all the samples recorded at 300 K. The dots are experimental data; errors in measurements are less than the dots 
size. The fitted spectra are shown as red lines. Partial components are shown as colored areas. The parameter χ2, characterizing the accuracy of 
experimental data processing, is specified for each sample.
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Figure 5:  Mössbauer spectra of all the samples recorded at 4.2 K. The dots are experimental data; errors in measurements are less than the dots size. The 
fitted spectra are shown as red lines. Partial components are shown as colored areas. The parameter χ2, characterizing the accuracy of experimental 
data processing, is specified for each sample.
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an attempt to determine whether iron belongs to the tetra- and 
octahedral positions can be made; however, this analysis should 
be performed critically. Furthermore, the obtained results are 
qualitatively confirmed by the magnetization measurement data, 
which are presented below.

According to the Mössbauer spectrum parameters presented 
in Table 1, the following ion distributions over the tetrahedral 
and octahedral positions can be proposed.

Sample 1 –  (Zn0.76Fe0.24)  [Zn0.24Fe1.76]  O4.
Sample 2 –  (Zn0.80Fe0.20)  [Co0.10Zn0.10Fe1.80]  O4.
Sample 3 –  (Co0.08Zn0.80Fe0.12)  [Co0.12Fe1.88]  O4.
Sample 4 –  (Co0.12Zn0.70Fe0.18)  [Co0.18Fe1.82]  O4.
Sample 5 –  (Co0.24Zn0.60Fe0.26)  [Co0.26Fe1.74]  O4.
Sample 6 –  (Co0.22Zn0.50Fe0.28)  [Co0.28Fe1.72]  O4.
It can be seen that cobalt ions are distributed between tet-

rahedral and octahedral positions starting from x = 0.2, and 
there is an obvious tendency for the occupancy of tetrahedral 
positions by  Co2+ ions to increase as the Co concentration in 
NPs increases. At that, all  Zn2+ ions are concentrated only in 

tetrahedral positions (except sample 1) and  Fe3+ are concen-
trated mainly in octahedral positions. About 10 percent of  Fe3+ 
ions are localized in tetrahedral positions. Note large discrep-
ancies between the results of various authors concerning the 
distribution of  Co2+,  Zn2+, and  Fe3+ ions across the positions. 
For zinc ferrite NPs fabricated with the sol–gel method and 
with ball-mailing, the proportions of  Zn2+ ions in the tetrahe-
dral positions were almost the same — 0.62 and 0.58, respec-
tively [36]. In the case of the  Co0.2Zn0.8Fe2O4 NPs prepared via 
combustion, the fourth part of divalent cobalt ions is located in 
tetrahedral and three quarters—in octahedral positions (0.05 
and 0.15, respectively) [28]. An increase in the Co concentra-
tion leads to  Co2+ ion localization in the octahedral positions 
only. The system of  CoxZn1-xFe2O4 NPs with x = 0.5, 0.6, and 0.7 
prepared by the wet-chemical co-precipitation technique was 
considered in Ref. [37], and the next  Co2+ ion distribution over 
the crystal positions was suggested: 0.15 of the  Co2+ ions occupy 
tetrahedral positions for all x, and the proportion of these ions 
preferring octahedral positions increases with increasing x. 

Table 1:  The parameters of the 
Mössbauer spectra of all samples 
measured at 4.2 K.

IS isomer chemical shift relative α-Fe,  Hhf hyperfine field on iron nuclei, QS quadruple splitting, W width of the 
Mössbauer line at half height, dH line broadening because of hyperfine field inhomogeneity, A relative popu-
lation of positions in a crystal.

IS, ± 0.005 mm/s Hhf, ± 0.5 T
QS, ± 0.02

mm/s W, ± 0.03 mm/s dH, ± 0.03 mm/s A, ± 0.03 o.e Position

Sample 1

 1 0.476 490.9 0.214 0.363 0.323 0.39 [B]

 2 0.468 447.8 − 0.145 0.399 1.371 0.43 [B]

 3 0.435 514.4 0.004 0.257 0.166 0.06 [B]

 4 0.412 487.6 − 0.851 0.349 0.078 0.12 (A)

Sample 2

 1 0.478 506.1 0.137 0.36 0.183 0.39 [B]

 2 0.456 464.1 − 0.159 0.31 1.205 0.36 [B]

 3 0.467 521.8 0.318 0.29 0.105 0.15 [B]

 4 0.417 505.6 − 0.823 0.32 0 0.10 (A)

Sample 3

 1 0.471 511.6 0.065 0.32 0.22 0.51 [B]

 2 0.490 478.8 − 0.257 0.51 0.668 0.21 [B]

 3 0.460 525.7 0.327 0.32 0.124 0.22 [B]

 4 0.424 509.9 − 0.823 0.25 0 0.06 (A)

Sample 4

 1 0.481 516.9 0.277 0.35 0.2 0.62 [B]

 2 0.458 512.3 − 0.534 0.44 0 0.29 [B]

 3 0.453 534.9 0.529 0.29 0.065 0.09 (A)

Sample 5

 1 0.472 517 0.271 0.35 0.176 0.60 [B]

 2 0.495 512.2 − 0.566 0.46 0 0.27 [B]

 3 0.440 537.6 0.539 0.28 0.15 0.13 (A)

Sample 6

 1 0.472 516.3 0.273 0.34 0.163 0.55 [B]

 2 0.444 512.9 − 0.579 0.43 0 0.29 [B]

 3 0.453 534.8 0.514 0.27 0.124 0.14 (A)
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Thus, one can stat that the technology used here for the synthesis 
of the Co–Zn-ferrite nanocrystals provides a greater presence 
of  Co2+ ions in tetrahedral positions compared to the data of 
other authors.

Magnetic properties

The magnetization (M) curves of samples 1–6 versus applied 
magnetic field (H) up to 1.5 T at 300 and 100 K are presented 
in Fig. 6. The error in measuring magnetization  (10–2 A  m2/kg) 
does not exceed the width of the line in the figure. Only sample 
1 with x = 0 demonstrates pure paramagnetic behavior at room 
temperature [curve 1 in Fig. 6(a)]. Even for sample 2 with x = 0.1, 
the room temperature magnetization curve deviates from the 
linear dependence characteristic of a paramagnetic substance 
[curve 2 in Fig. 6(a)], and for sample 3 with x = 0.2, a very nar-
row hysteresis loop is clearly visible [curve 3 in Fig. 6(a)]. At the 
same time, with an increase in the magnetic field, the magnetiza-
tion of these three samples increases linearly in the field, differ-
ing significantly from the magnetization curves of samples 4–6 
[Fig. 6(b, d)]. It can be assumed that some of the NPs in samples 
2 and 3 are in the superparamagnetic state at room temperature, 
while most of the particles in those samples are paramagnetic 

which is responsible for the linear increase in magnetization in 
high fields.

In the case of samples 4–6, the shape of the magnetization 
curves is typical of ferrimagnetic (or ferromagnetic) state with 
narrow hysteresis loops and magnetic saturation in magnetic 
field of about 0.3 T. A sharp magnetization increase is observed 
at the transition from sample 3 to sample 4, which can be inter-
preted as a transition from a heterogeneous magnetic state of the 
entire ensemble of NPs to the ferrimagnetic state of most NPs. A 
similar picture was observed in Ref. [22, 25, 38, 39].

As the temperature decreases to 100 K, the superparamag-
netic component appears in sample 1, which does not contain 
Co. This follows from a change in the shape of the magnetiza-
tion curve: a characteristic s-shaped bend appears near zero. 
An appearance of the magnetic moment in the  ZnFe2O4 NPs 
was observed earlier (e.g., [40]), but not always. For example, 
magnetic ordering was not observed up to 50 K in Zn spinel NPs 
obtained via the co-precipitation method [11, 28]. For all other 
samples, upon cooling, a strong increase in the magnetization 
is observed. The remnant magnetization  Mr and coercivity  Hc 
also increase when cooling but to varying degrees, as shown in 
Table 2. All magnetic characteristics increase with increasing Co 
concentration in NPs approximately according to a parabolic 
law, as shown in Fig. 7(a) for saturation magnetization.

-0,10 -0,05 0,00 0,05 0,10

-1,0

-0,5

0,0

0,5

1,0

-1 0 1
-6
-3
0
3
6

1
2

a  T=300K

M
as

s 
m

ag
ne

tiz
at

io
n 

(A
 m

2 /k
g)

H (T)

3

3

2
1

-0,10 -0,05 0,00 0,05 0,10
-8

-6

-4

-2

0

2

4

6

8

-1 0 1

-20

0

20

1
2

b   T=100K

M
as

s 
m

ag
ne

tiz
at

io
n 

(A
 m

2 /k
g)

H (T)

3

H (T)

3

2
1

-0,10 -0,05 0,00 0,05 0,10

-40

-20

0

20

40

-1 0 1
-60
-30

0
30
60

c  T=300K

M
as

s 
m

ag
ne

tiz
at

io
n 

(A
 m

2 /k
g)

H (T)

6

5
4

6

5
4

-0,2 -0,1 0,0 0,1 0,2
-80

-40

0

40

80

-1 0 1

-60
0

60

M
as

s 
m

ag
ne

tiz
at

io
n 

(A
 m

2 /k
g)

H (T)

d   T=100K 6

5

4

6
5
4

Figure 6:  The field dependences of the magnetization of samples 1–6 (curves 1–6, respectively) measured at T = 300 (a, c) and 100 K (b–d). Insets: the 
same dependences in magnetic field up 1.5 T.
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The temperature dependences of the magnetization 
[Fig. 7(b)] of samples 3–5 recorded in a magnetic field of 0.5 T 
are similar to the FC curves for  CoxZn1-xFe2O4 NPs synthesized 
with the precursor combustion method shown in Ref. [29]. For 
the 1 and 2 samples, magnetization temperature dependences 
are similar to that for sample 3 but with smaller increase when 
the temperature approaches to 100 K. Several mechanisms are 
responsible for the increase in the magnetization of NPs with 
decreasing temperature. The increase in the magnetic moment 
of each NP obeys the Curie law for paramagnets or the Langevin 
law for magnetically ordered media, as does the alignment of 
magnetic moments in the direction of the applied magnetic field. 
The shape of the temperature dependence curves confirms the 
conclusion made during the interpretation of the magnetization 
curves about the concentration transition from the predomi-
nantly paramagnetic to the ferrimagnetic state of NPs between 
Co concentrations of x = 0.2 and x = 0.3.

Magnetic circular dichroism

It seems reasonable to consider studies of the magneto-optical 
properties of cobalt ferrite compounds available in the literature 
before presenting the results of the MCD study. Several authors 

have devoted their efforts to studying the magneto-optics of the 
stoichiometric cobalt ferrite  CoFe2O4. Basically, these were stud-
ies of the spectral dependences of the Kerr effect (KE) in the 
reflected light, calculations of the off-diagonal components of 
the dielectric tensor, and attempts to understand the origin of 
the electron transitions responsible for the effect [41–50]. The 
authors of [51] revealed a rather high Kerr effect in nanocrystal-
line  ZnFe2O4 films. The magneto-optics of cobalt ferrite when 
its composition deviates from stoichiometry or when cobalt ions 
are replaced by other ions have been considered in a few works. 
The Kerr effect in single crystals of the  CoFe2-xCoxO4 system 
was investigated in Ref. [52], in bulk  CoFe2−xGaxO4 ferrite in 
Ref. [53], and in nanocrystalline  CoFe2-xMxO4 (M = Mn, Al, Sc) 
thin films in Ref. [54]. MCD in transmitted light was investi-
gated in Ref. [55] for the high-quality epitaxial  CoFe2O4 films 
(30–200 nm) grown on (001)-orientated  MgAl2O4 single crystal. 
MCD in the transmitted light was investigated in  CoFe2O4 NPs 
synthesized by the co-precipitation method [56]. Spectra of the 
components of the dielectric tensor ε calculated based on the 
measured Faraday rotation and ellipticity were presented in Ref. 
[57] for the epitaxial  CoxFe3-xO4 (001) thin films fabricated with 
magnetron sputtering. At that, the spectrum of the imaginary 
part of the off-diagonal component ε” was similar in shape to the 

Table 2:  The saturation 
magnetization  Ms*, coercivity  Hc, 
and remnant  Mr at 100 and 300 K.

*Ms was determined as M measured in a magnetic field of 1.5 T.

Ms, A  m2/kg Hc, mT Mr, A  m2/kg

Sample 300 K 100 K 300 K 100 K 300 K 100 K

1 2.00 7.74 0 1.3 0 0

2 3.4 15.4 1.8 3.1  < 0.1 0.2

3 5.9 30.6 1.2 6.8  < 0.1 1.0

4 13.9 60.6 1.2 6.8 0.1 4.4

5 33.5 83.0 2.0 21.9 1.3 17

6 60.7 106.6 6.5 45.6 6.7 34
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Figure 7:  (a) Saturation magnetization concentration dependencies in the magnetic field 1.5 T at temperatures 100 and 300 K; (b) magnetization 
temperature dependencies of samples 3–5 with x = 0.2–0.4, respectively, in a magnetic field of 0.5 T.
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MCD spectrum of the epitaxial  CoFe2O4 film [55]. In Ref. [58], 
MCD spectral dependences were studied for the  Zn1-xCoxFe2O4 
(0 ≤ x ≤ 1) (111) composition-spread thin film epitaxially grown 
on a  MgAl2O4 (111) substrate by combinatorial pulsed laser dep-
osition. Sequential deposition of the two end-compounds with 
monolayer-period led to the formation of solid solution with 
addressable composition, which led to the appearance of MCD 
spectra significantly different from the spectra of homogeneous 
Co-ferrite samples.

The MCD spectra of the investigated  CoxZn1-xFe2O4 NPs 
are shown in Fig. 8. For better readability, Fig. 8(c, d) show 
smoothed data. The error was determined by the sensitivity of 
the photomultiplier tube and is indicated by the error bars. In 

Fig. 8(c, d), the bars are shown for one curve to avoid clutter-
ing the graph. In Fig. 8(e, f), the error does not exceed the line 
width. For samples 1 and 2, the room temperature MCD signal 
is at the noise level. However, upon cooling to 100 K, in the first 
case, one can note the appearance of a broad structure with a 
positive sign in the region of 2.5–3.5 eV, and in the second case, 
negative peaks near 1.7 and 2.2 eV. A clear picture is observed 
starting with x = 0.2 [Fig. 8(c)].

With a further increase in x, the shape of the spectra in the 
region of 1.2–2.2 eV does not change, and only the intensity of 
the band increases [Fig. 8(d–f)]. In the higher energy region, 
the broad structured band observed for the sample with x = 0.2 
is modified into an asymmetric maximum centered at 2.5 eV. 
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Figure 8:  The MCD spectra of  CoxZn1-xFe2O4 NPs at different temperatures. The Co concentration (x) is shown in each panel.
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This shape of the spectrum is also preserved for samples 5 and 
6 with x = 0.4 and 0.5. The situation looks as if the MCD spectral 
dependence in the samples is associated mainly with cobalt ions. 
It is worth comparing the spectra recorded at 300 K with the 
MCD spectra for thin  CoxZn1-xFe2O4 films given in Ref. [58] 
recorded also at 300 K. One can note the close similarity of the 
shape of the spectra in the region 1.8–3.0 eV: the wide band con-
sisting of at least two overlapping peaks. In our case, this band 
shifts a little bit to higher energies comparing to that in Ref. [58]. 
In addition, the peaks in our case are better resolved. At higher 
light wave energies, the picture is not so clear because, due to 
the stronger light absorption by the silicone matrix, we were 
unable to measure the MCD at energies above 4.1 eV. However, 
an increase in the MCD signal is visible starting from 3.55 eV 
with a characteristic inflection near 3.7 eV.

Let us now pay attention to the intense, relatively narrow 
peak at 1.75 eV, which becomes visible already in the spectrum 
of sample 2 with x = 0.1. In the case of thin films [58], this peak 
was not observed, perhaps it remained outside the observation 
area since the entire spectrum is slightly shifted to lower energy 
values comparing to our case. Meanwhile, the wavelength cor-
responding to the center of gravity of this peak matches exactly 
to the emission wavelength (710 nm) of some lasers, e.g., ALP-
710 nm, manufactured by NKT Photonics (Denmark), and light 
emitting diodes manufactured by many companies in the world, 
for example, by BMI SURPLUS Inc. (USA), which may be of 
interest for photonic devices.

Spectra recorded at lower temperatures are much better 
resolved and therefore are more informative. For example, a 
signal at the noise level is recorded at 300 K for sample 3 with 
x = 0.2. When cooled to 193 K, a spectrum with a number of 
features appears and develops further with decreasing tempera-
ture. A similar picture is observed for sample 4 with x = 0.3. In 
this case, the spectrum at energies less than 2.3 eV is similar 
to the spectrum of sample 3, but at higher energies of the light 
wave, it changes significantly and remains the same with a fur-
ther increase in x.

The MCD spectra shown in Fig. 8 can be compared with 
the spectra of the polar Kerr effect (PKE) or the transverse Kerr 
effect (TKE) given in a number of works. The comparison of 
the PKE, TKE, and MCD spectra seems to be quite natural 
because all the effects, MCD (θF), PKE (θKp), and TKE (θKt), are 
described by similar equations [39, 59]:

(1)θF =
4π

�

{

n

k2 + n2
ε′′xy −

k

k2 + n2
ε′xy

}

,

(2)θKp =
B

B2 − A2
ε′′xy −

A

B2 − A2
ε′xy ,

(3)θKt = a(n, k,ϕ)ε′xy + b(n, k,ϕ)ε′′xy ,

where εxy ′ and ε′′xy are the real and imaginary parts of the off-
diagonal component of the dielectric tensor ε; n and k are the 
refractive index and absorption coefficient, respectively; λ is the 
light wavelength; and A, B, a, and b are functions of n, k, and φ 
(in the case of TKE).

Sample 1 contains only one type of magnetic ion,  Fe3+. In 
the bulk  ZnFe2O4 spinel, these ions occupy octahedral positions, 
and the superexchange interaction between them provides anti-
ferromagnetic ordering at T < 10 K, as mentioned in the intro-
duction. In small magnetic particles, no equilibrium states can 
arise, and redistribution of  Fe3+ ions between sublattices can 
occur, leading to magnetic ordering [37], which is what occurs 
in our case, according to the VSM data (Fig. 6). Since there are 
no other magnetic ions in this sample except  Fe3+, one can com-
pare the MCD spectrum with the TKE spectra of the  MgFe2O4 
polycrystalline sample and single-crystal film and the  LiFe2O4 
single crystal [42]. TKE spectra in all these cases coincide with 
each other. They contain four peaks in the region of 2–4 eV: one 
very weak at 2.3 eV and three overlapping peaks at 2.6, 3.25, and 
3.9 eV. Authors of Ref. [42] ascribed them to the single-ion tran-
sition 6A1g(6S)–4Eg(4G) and two-exciton transitions  2T1g, 
 T1g +  T2g, and  2T2g, respectively, where the energies of  T1g and 
 T2g were 1.3 and 1.95 eV, respectively. These types of transitions 
can mainly contribute to the wide positive structure in the MCD 
spectra of the sample 1 with x = 0.0 [Fig. 8(a)]. In samples 3–6, 
 Co2+ ions partially occupy tetrahedral positions instead of non-
magnetic  Zn2+ ions, as follows from Mössbauer data, and 
thereby contribute to an increase in intersublattice indirect 
exchange interactions. At that, two variants are possible. (i) The 
 Fe3+ ions move from octahedral to tetrahedral positions due to 
cobalt’s preference for the octahedral positions, which leads to 
an increase in the MCD signal due to the excitation of  Fe3+ ions 
at energies higher than 2.2 eV [Fig. 8(c)]. (ii) Despite the cation 
distribution in a single crystal corresponding to the formula 
 [Fe3+](Co2+Fe3+)O4 [60], deviations from such a distribution 
were observed by several authors (e.g., [61]) in nanostructured 
samples and thin films depending on the synthesis conditions, 
and cobalt ions can partially enter tetrahedral positions in 
accordance with the formula 

[

Co2+δ Fe3+1−δ

](

Co2+1−δFe
3+
1+δ

)

O4. The 

ratio between the  Fe3+ and  Co2+ content in tetrahedral positions 
can vary depending on the technological conditions.

Along with the features caused by electronic transitions 
associated with the  Fe3+ ions, a negative peak at 1.75 eV appears 
in the MCD spectrum at the minimal Co addition [Fig. 8(b)], 
which is characteristic of the  CoFe2O4 crystals [62] and films 
as well for Ga-diluted  CoFe2O4 NPs [53]. The MCD spectra of 
the samples with x ≥ 0.3 are close in shape to the PKE spectrum 
of the  CoFe2O4 thin film prepared with sol–gel techniques. 
Spectrum was characterized by extrema centered near 1.8, 2.2, 
2.6, and 3.5 eV [48]. A similar PKE spectrum (shifted along the 
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y-axis) was observed for the  CoFe2O4 epitaxial thin film grown 
on Nb-doped  SrTiO3(100) substrates by pulsed laser deposition 
[49]. The appearance of the MCD spectrum typical for cobalt 
ferrite in samples 4–6 allows one to conclude that the long-range 
magnetic order in these samples is established upon going from 
x = 0.2 to x = 0.3, which is consistent with the VSM data.

The nature of the magneto-optical spectra of ferrites is 
still a subject of discussion despite the rather long history of 
their research [63]. Several electronic processes are considered 
to explain the features of the ferrite magneto-optical spectra. 
Among them, there are (i) the electron transition between cati-
ons of different valences (intervalence charge transfer—IVCT), 
(ii) the electron transition between cations of different sublat-
tices (intersublattice charge transfer—ISCT), (iii) the single-ion 
transition between the ion ground and excited states split by the 
crystal field (CF), so-called CF transitions, (iv) the exciton–mag-
non transitions when two neighboring ions coupled by exchange 
interactions are simultaneously excited, and (v) the transition 
from the  O2p band to the electronically higher cation band. 
For cobalt ferrite, the results of the Kerr effect spectra inves-
tigation and their analysis presented by different authors were 
somewhat different. This can be attributed to the very strong 
dependence of the measured KE on the sample surface quality 
and on the difference in the cation  Co2+ and  Fe3+ distributions 
between the octahedral and tetrahedral positions in the sur-
face layers of samples. Nevertheless, most authors who studied 
the KE spectra of cobalt ferrite observed features in KE spec-
tra or in the ε′′xy spectra near energies of 1.8 and 2.2 eV, which 
were identified as the CF spin-allowed transition in the tetra-
hedral-coordinated  Co2+ ion 4A2 → 4T2(t52e2 ) and IVCT  [Co2+]
t2g →  [Fe3+]t2g, respectively [42, 43, 46, 52, 62, 64, 65]. Similarly, 
features in the MCD spectrum of cobalt ferrite NPs at energies 
of 1.81 and 2.25 eV were identified in Ref. [55]. It should be 
noted here that the CF transitions in  Co2+ ions with the  3d7 
electronic configuration occur at close values of the light wave 
energy in both tetrahedral and octahedral coordination [66]. 
To compare the bands in the optical absorption spectrum of 3d 
ions with d-d electronic transitions, the spectra of impurity ions 
are usually studied in crystals where they occupy only one type 
of portions. For example, optical spectra of  Co2+ ions in ZnO, 
ZnS, and CdS crystals, where they are localized in tetrahedral 
positions only, and in MgO single crystal, where they occupy 
octahedral positions, were studied in detail in Ref. [67, 68], 
correspondingly. In both cases, the spectra contained a set of 
absorption bands located at close values of the light wave energy. 
In particular, an absorption band centered at 1.7 eV was present 
in the absorption spectrum of MgO crystal with embedded  Co2+ 
ions. Thus, the correlation of the observed negative MCD peak 
in the region of 1.7–1.8 eV with the transition in tetrahedral-
coordinated  Co2+ ions seems ambiguous. Detection of such an 
MCD peak in a sample with x = 0.1 [Fig. 8(b)] containing ions 

only in octahedral positions, according to the Mössbauer effect 
data, allows us to associate it with the spin-allowed transition in 
the  Co2+ ions in octahedral positions. The peak positions in the 
KE or MCD spectra at higher light wave energies and their iden-
tification are different among different authors too. For example, 
Zviagin and coauthors [64] referred to the feature at 2.64 eV for 
ISCT  (Fe3+)t2 →  [Fe3+]t2g and the feature at 3.41 eV for IVCT 
 [Co2+]t2g →  [Fe3+]eg. Fontijn and coworkers [46] analyzing the 
experimental results presented in Ref. [52, 62] reported that the 
extremum in the ε′′xy spectrum of  CoFe2O4 observed at 2.6 eV 
was the same as that observed in Ref. [64], but the feature near 
3.55 eV was associated with ISCT  [Fe3+]eg →  (Fe3+)t2. Gromova 
and coauthors [55] observed no peaks in the interval between 
2.25 and 2.92 eV and ascribed the peaks revealed at higher ener-
gies to the CF transitions in  Fe3+ ions. Krinchik and coauthors 
[42, 43] considered features in the TKE spectra at higher ener-
gies as originating from the pair transitions. Thus, the origin 
of the magneto-optical spectra of ferrites, particularly cobalt 
ferrite, is rather complicated. A more detailed study of MCD in 
dilute cobalt ferrites is currently in progress.

Conclusion
The  CoxZn1-xFe2O4 NPs with x varying from 0.0 to 0.5 were 
successfully synthesized by the citrate precursor auto-com-
bustion method, which is a scalable technique for producing 
large quantity of nanoparticle and quite economic as there is no 
loss of materials. According to the XRD patterns, as well as the 
interplanar spacing well resolved in the HRTEM images, the 
NPs were nanocrystals of the  ZnFe2O4 (Fd-3 m) structure. The 
distribution of  Co2+,  Fe3+, and  Zn2+ ions over tetrahedral and 
octahedral positions in the crystal has been established, which 
plays a key role in the formation of the magnetic properties of 
NPs. Unlike NPs of similar composition synthesized by other 
methods, in the case under consideration, the  Fe3+ ions occupy 
preferably octahedral positions at all Co concentrations used: 
the amount of iron in tetrahedral positions was about ten per-
cents, first decreasing from 12% at x = 0.0, passing through a 
minimum at x = 0.2 (8%), and increasing again to 14% at x = 0.5. 
The fraction of Co ions occupying tetrahedral positions also 
changes somewhat with changes in their concentration: Co was 
included only in octahedral positions at x = 0.1. The ratio of the 
 Co2+ ions amount in tetrahedral and octahedral positions tends 
to 1:1 as the Co concentration in NPs increases.

Purely paramagnetic behavior at room temperature was 
observed only for the sample with x = 0.0. For all other compo-
sitions, already at room temperature, field dependences of mag-
netization characteristic of a magnetically ordered state were 
observed. For the composition with x = 0 at 100 K, a nonlinear 
dependence of magnetization on the external magnetic field also 
arose. The saturation magnetization increased with increasing 
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x, first slowly (x = 0.1–0.3) and then very quickly (x = 0.4, 0.5) 
approximately according to the parabolic law. For x = 0.5, the 
saturation magnetization reached the value 60 A  m2/kg which 
is very close to that of bulk Co-ferrite (66.3 A  m2/kg) where Co 
content is 1.0. Combination of high magnetization with very low 
coercivity (6 mT for x = 0.5 at T = 300 K) makes the NPs rather 
attractive for applications.

The MCD spectra of NPs were shown to change strongly 
with the Co concentration increase. For pure Zn-ferrite NPs 
(x = 0), a clearly visible but noisy MCD signal was detected, indi-
cating the formation of a magnetically ordered phase in accord-
ance with the magnetic data and low-temperature Mössbauer 
spectrum. An increase in the MCD signal and pronounced 
changes in the MCD spectra were observed with increasing 
Co concentration in the NPs. Analysis revealed that octahedral 
coordinated  Co2+ ions contributed greatly to the low-energy 
part of the MCD spectra. Particular attention was paid to the 
MCD peak centered at 1.75 eV. The wavelength correspond-
ing to the center of gravity of this peak matches exactly to the 
emission wavelength (710 nm) of some lasers, e.g., ALP-710 nm, 
manufactured by NKT Photonics (Denmark), and light emit-
ting diodes manufactured by many companies in the world, for 
example, by BMI SURPLUS Inc. (USA). This made the investi-
gated NPs to be of interest for photonic devices. Investigations 
in this direction are in progress now.

Methods and experimental details

Synthesis

CoxZn1-xFe2O4 NPs with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 and sam-
ples 1–6 were prepared by using the citrate precursor technique 
as described in Ref. [31]. Stoichiometric amounts of analytical-
grade materials, zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 
Sigma‒Aldrich; 98% purity), cobalt nitrate hexahydrate 
(Co(NO3)2·6H2O, Sigma‒Aldrich; 99% purity), and iron(III) 
nitrate nonahydrate (Fe(NO3)3·9H2O, Sigma‒Aldrich 98% 
purity) were first dissolved in a beaker containing 125 mL of dis-
tilled water. Five grams of citric acid was added to the solution 
containing metal nitrates and then stirred at 80 °C to obtain a 
homogeneous solid solution. Thereafter, the samples were pres-
intered at 700 °C for 3 h in a muffle furnace, followed by cooling 
to room temperature.

Methods

The crystal structure of the NPs was studied with a Japanese 
X-ray diffractometer (Rigaku Minifiex 600) using CuKα radia-
tion (λ = 1.5405 Å). The 2θ values varied in the range from 20° 
to 90° with a step size of 0.02°. The morphology, microstructure, 
and local elemental composition of the NPs were investigated 
via high-resolution transmission electron microscopy (HRTEM) 

using a JEM-2100 (JEOL Ltd.) microscope operating at an accel-
erating voltage of 200 kV. The microscope was equipped with 
an energy dispersive spectrometer (EDS), Oxford Instruments, 
which was used to control the elemental composition of indi-
vidual NPs.

The Mössbauer spectra of the samples were recorded on 
an MS-1104Em spectrometer (made by the Research Institute 
of Physics of Southern Federal University, Rostov, Russia) in 
transmission geometry with a  Co57 (Rh) radioactive source at 
different temperatures.

The dependence of the magnetization on an external mag-
netic field and temperature was studied with a vibrating sample 
magnetometer (VSM) (Lake Shore 8604) in a magnetic field up 
to 1.5 T at temperatures ranging from 90 to 350 K. The magnetic 
moment measurements were carried out with an accuracy of at 
least  10–7 A  m2, and the sample mass was ~  10–2 g (with a meas-
urement accuracy of  10–5 g).

The MCD was measured using specially prepared samples: 
transparent plane-parallel plates made of a mixture of NP pow-
der with silicon-based glue (“Rayher” art. no. 3338100) with a 
weight proportion of 0.5/100. The plates were placed in the lab-
oratory-made measuring device so that their plane was normal 
to the direction of propagation of the light beam and external 
magnetic field. The MCD was measured as the difference in opti-
cal density (∆D = D+ – D–) of the samples for light waves right 
(D+) and left (D–) circularly polarized relative to the direction 
of sample magnetization in the spectral range of 1.2–3.8 eV in 
a magnetic field up to 1.3 T at temperatures of 80–300 K. The 
measurement accuracy was approximately  10–4, and the spectral 
resolution was 20–50  cm–1 depending on the wavelength.
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