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We present a high-throughput, material-agnostic strategy to discover new compositionally complex 
ceramics (C3) for extreme environments by utilizing machine learning (ML) techniques to predict the 
stoichiometries and properties of structures within a given design space. This example study focuses on 
a well-understood design space (Si–C–N) so that predictions may be validated. Evolutionary structure 
searches coupled with density functional theory (DFT) calculations are applied to find structures with 
low energies (i.e., lying on or close to the convex hull), while also maximizing a targeted property (in 
this case, hardness). The structure–property relationship data obtained throughout these searches 
are exploited in ML algorithms to create an accurate and efficient surrogate model of the energy and 
hardness landscapes. The ML models serve to screen structures with optimal attributes and reduce 
computational costs associated with the property calculations, thereby accelerating the discovery of new 
structures and stoichiometries with desired traits.

Introduction
Genetic (or evolutionary) algorithms are often utilized to 
explore material design spaces and map the energy landscape 
[1–7]. Coupled with ab initio methods such as density func-
tional theory (DFT) or empirical methods such as molecular 
dynamics (MD), these grand canonical algorithms perform local 
optimization through structure relaxation and identify basins of 
attraction in the design space, and global optimization through 
crossover and mutation operations on the best locally optimized 
phases. Hence, the genetic algorithm (GA) aims to pass on the 
desired features from the ‘parent generation’ to the ‘offspring 
generation,’ thereby ‘learning’ the best approaches to identify 
better compositions and structures along the way (as opposed 
to a random search). However, the most computationally expen-
sive parts of these algorithms are the DFT calculations, which 
are accurate but take orders of magnitude longer to complete 
than the GA operations. This step creates a bottleneck in the 
search process, with the computational expense increasing with 
the number of atoms in the unit cell. Often, most of the com-
putation time during a search may be spent performing these 

DFT calculations for every structure generated by the GA, which 
could also include many unstable structures, or structures with 
undesirable properties. Hence, even with modern high com-
putational power (including GPU acceleration), performing 
GA searches for compositionally complex ceramics (C3) can be 
time- and cost-prohibitive.

Machine learning (ML) models have been successfully used 
to learn the results of DFT calculations and predict the proper-
ties of given input crystal structures [8–14]. These can act as 
surrogate models to map the energy and property landscapes 
of the given design system and quickly predict the stability and 
properties of a candidate structure without the need for expen-
sive DFT calculations. In this way, they can screen all candidate 
structures and only pass on the high-value candidates that are 
predicted to be stable (and with desired attributes) for DFT cal-
culations. However, machine learning crystal structural data 
present a unique challenge—an appropriate data representation 
technique must be selected to encode the unit cell structure into 
a form compatible with the ML algorithms. Additionally, a high-
performing model must be selected, and its hyperparameters 

http://crossmark.crossref.org/dialog/?doi=10.1557/s43578-023-01217-0&domain=pdf
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must be tuned before it can be deployed unsupervised into the 
genetic algorithm.

In this manuscript, we build on our previous work on learn-
ing the energy landscape for metallic systems [8–10] and extend 
it to map the energy and hardness of a ceramic system. The 
Si–C–N material system is chosen as the model design space 
for this study as it is known to contain many hard structures of 
interest to the ceramics community (SiC, Si3N4, CN, etc.), which 
will aid in the validation of the results as well as our approach. 
We particularly focus on one property, hardness, because such 
data can be easily determined from bond-level (intrinsic) prop-
erties [15]. At a fundamental level, hardness measures the com-
bined resistance of chemical bonds to indentation or, simply, 
localized plastic deformation. Numerous studies have shown 
that the “intrinsic hardness” of a material can be predicted from 
its crystal structure, and specifically for covalent brittle materi-
als, from its bonding environment [15–27]. Hence, hard phases 
in a given material system can be targeted through systematic 
searches using global optimization techniques, augmenting 
searches for stable phases in the system using the same meth-
ods [28].

A machine learning framework for material discovery 
requires several ingredients: (i) an initial learnable dataset, (ii) 
an objective function suitable for the selected application, (iii) 
an appropriate data representation for the structural data, and 
(iv) an optimal machine learning algorithm. In our work, GA 
searches are used to create datasets of structures and the associ-
ated energy and intrinsic hardness for each structure is calcu-
lated using DFT and a semi-empirical intrinsic hardness model 
[15], respectively. The objective function, or fitness function in 
the case of the GA, is based on the distance of the structure (in 
eV) from the convex hull in the phase diagram, shown by �EH 
in Fig. 1, which is a measure of the structure’s relative stability.

Two ML algorithms, Ultra-Fast Force Field (UF3) [8] and 
support vector regression (SVR), are evaluated to predict the 

energy and hardness, respectively, of each structure. The ML 
algorithms take a vector x ∈ R

n as input and return a predicted 
value y . Hence, a vector-based data representation of the crys-
tal structure that encodes the position and chemical identity 
of the atoms into constant-length vectors must be constructed 
before these algorithms may be used for energy and hardness 
predictions. The selection of this representation scheme is criti-
cal to the generation of an accurate surrogate model. Simple 
descriptors relying on chemical or physical attributed (atomic 
number/mass, density, band gap, elastic moduli, etc.) do not 
capture the required structural information [29, 30]. Ideally, the 
structural descriptor must fulfill three criteria [9]: (i) invariance 
with respect to the choice of unit cell and crystal symmetry, (ii) 
uniqueness, so no two different crystal structures have the same 
vector representation, and (iii) continuity, such that the energy 
difference between two crystal structures with vector representa-
tions x1 and x2 goes to zero in the limit �x1 − x2� → 0.

The UF3 algorithm uses a linear combination of cubic 
B-spline basis functions, joined at knot positions, to represent 
the structural information of the system [8]. Cubic B-splines are 
chosen as they are globally flexible and smooth, but still main-
tain locally simple forms for computational efficiency. The spline 
coefficients are then optimized simultaneously using a regular-
ized linear least squares method. These descriptors are inher-
ently invariant and continuous due to their formulation. For the 
SVR model to predict hardness, partial radial distribution func-
tions (RDFs) and angular distribution functions (ADFs) [9, 10] 
are used to represent the structures. These structural descriptors 
also satisfy the first and third conditions above (invariance and 
continuity) but may not necessarily be unique. However, the 
combination of these two descriptors has performed well with 
ML models on metallic systems and produced a rapid reduction 
in prediction error with smaller training set sizes [10].

The models generated using these algorithms are optimized 
using the datasets created by the GA. The best model parameters 
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Figure 1:   Phase diagram of a two-element ( n = 2 ) system. Each filled circle represents an offspring structure in a generation, while 
unfilled circles represent structures from previous generations. The squares at the endpoints represent the elemental reference 
states. These structures contain atoms of only a single element. All stable structures lie on the convex hull of the system (black line). 
Any structure above this convex hull is unstable or metastable. The vertical distance between each structure and the convex hull 
( �EH ) is used to define the objective function in Eq. (2). The red and green circles represent the structures in the generation with the 
maximum and minimum distance from the convex hull, respectively.
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can then be used to create an ML-augmented GA that can be 
trained on-the-fly to screen candidate structures and accelerate 
the discovery of stable crystal structures with high hardness. 
An example design space consisting of three elements, Si, C, 
and N, was chosen to illustrate the concept and our approach 
to material discovery. While this study focuses on illustrating 
the method using this model system with hardness as the tar-
geted property, the methodology is material-agnostic and can be 
applied to target a wide range of material systems and properties 
for tailored applications.

Results
The Si–C–N ternary system is divided into its three binary 
parts (Si–C, Si–N, and C–N) to create a total of three design 
spaces, as shown in Table 1. GA searches are performed on these 
three design spaces using DFT calculations to calculate each 
structure’s energy and the Cheenady model [27] to calculate its 
intrinsic hardness. To reduce computational time, structures are 
limited to a maximum of 16 atoms in the unit cell. The results of 
this search are shown in Fig. 2 for a binary and the ternary sys-
tem, where the color of the diamond corresponds to the stabil-
ity of the relaxed structure (distance from the convex hull) and 

the size of the diamond corresponds to its intrinsic hardness. 
Only structures with higher stability ( �EH ≤ 1 eV/atom) are 
plotted to prevent clutter. The GASP search successfully identi-
fies [in Fig. 2(b)]the well-known stable phases of SiC and Si3N4, 
as well as experimental phases such as CN [31] in the Si–C–N 
system. These crystal structures serve as the input data for the 
ML models. A total of 6 types of models are trained—2 target 
properties (energy and intrinsic hardness) on 3 datasets (i.e., 
Si–C, C–N, Si–N), each. Representative examples of the results 
of these models in predicting the formation energy and intrinsic 
hardness of structures are shown in Figs. 3 and 4.

Figure 3 compares the UF3-predicted energies in the Si–C 
system with the DFT calculations for the training and testing 
sets, which are obtained by sampling all the relaxed and all 
unrelaxed structures from the GA searches. Of the three binary 
systems, the Si–C dataset had the highest number of structures, 
over 4 times those of the other two (see Table 1). The predictions 
for the training set [Fig. 3(a)] show that the model successfully 
learned the data provided. The tight clustering of points around 
the diagonal implies that the models predicted the energy of the 
structures reasonably well. While it is not a measure of the pre-
dictive capability of the model, it does show that the relationship 
between the descriptor and target is learnable. The results from 

TABLE 1:   Datasets (generated using 
GASP) used for training and testing 
the ML models. Only 10% of the 
unrelaxed structures within each 
DFT trajectory are included in the 
SVR datasets.

Design space 
(material system) DFT runs

Total structures 
(relaxed + unrelaxed) Model Training set sizes Testing set sizes

Si–C 510 68,604 UF3 55,130 13,474

SVR 5376 1454

Si–N 186 17,037 UF3 13,801 3236

SVR 1355 437

C–N 161 13,077 UF3 10,234 2,843

SVR 1,076 304

Figure 2:   Results of a GASP search on the (a) Si–N and (b) Si–C–N systems. The color intensity of the diamonds corresponds to energy of the structure 
above the convex hull (lighter colored diamonds represent more stable structures). The size of the diamond corresponds to the intrinsic hardness of 
the structure (larger diamonds represent harder structures).
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the test dataset [Fig. 3(b)] demonstrate the predictive capabili-
ties of the model, as these are data that the model has not seen 
previously. While there are a greater number of outliers in this 
set (reasons to be discussed in the following paragraph), the 
overall trend of the data is captured well, and most points lie 
close to the diagonal. For quantitative comparison, the mean 
absolute error (MAE) and the root mean square error (RMSE) 
are presented in Table 2. Both metrics aim to capture the aver-
age error, but the RMSE is more skewed by higher errors (and 
is always higher than the MAE). Hence, MAE is a more robust 

statistic, but the RMSE gives a better measure of the model’s 
ability to capture the entire energy landscape within the design 
space.

Figure 4 compares the SVR model’s predictions for intrin-
sic hardness to the values obtained from the Cheenady model 
[27], and the respective error metrics are shown in Table 2. The 
dataset for the SVR model contains all relaxed structures but 
includes only 10% of the unrelaxed structures. This is because 
the structures within a single relaxation trajectory are quite 
similar to each other, and selecting every unrelaxed structure 

Figure 3:   Scatter density plots for the ML-predicted vs expected (i.e., DFT-calculated) energies of structures in the (a) training and (b) testing sets for the 
Si–C system. Lighter colors indicate a higher density of data points in the region.

Figure 4:   Scatter density plots for the ML-predicted vs expected (i.e., calculated by the Cheenady model [26]) hardness of structures in the (a) training 
and (b) testing sets for the Si–C system. Lighter colors indicate a higher density of data points in the region.
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leads to a large amount of correlation between the data points, 
resulting in overfitting of the SVR model (a very low error for 
the training set, but a high error for the testing set). Hence, only 
a fraction (10%) of the unrelaxed structures is chosen for the 
SVR database.

The datasets for the Si–N and C–N systems are smaller, 
resulting in training set sizes of less than 1,500 structures in 
both cases for the SVR model (see Table 1). However, even with 
the much smaller training data, the UF3 and SVR models can 
capture the energy and hardness landscapes in the design space. 
With less than a third of the data (as compared to the Si–C set), 
the model errors only increase slightly (see Table 2). Similar 
to the Si–C dataset, the largest errors in energy are for highly 
unstable structures (i.e., structures with a high energy). The 
higher hardness error for the C–N system can be attributed to 
the large spread (standard deviation) of the hardness values in 
this system.

Discussion
The prediction errors presented in Table 2 are within accept-
able limits because these ML algorithms are intended to be a 
screening tool in the material discovery process which aims to 
find structures with lower energies. After obtaining an estima-
tion of a structure’s target properties, only those predicted to 
be stable (low �EH ) and high hardness will be passed on to 
the next step for more accurate DFT calculations. Additionally, 
most of the outliers lie at the higher energy values, which cor-
responds to the more unstable structures, in the region where 
data are more limited. A high accuracy is not necessary in this 
region as these structures are far from stable and will fail any 
screening criterion. When only considering the structures with 
an energy lower than -5.28 eV/atom (which corresponds to the 
75th percentile) in the Si–C dataset, the RMSE and MAE drop 
to 94.61 meV/atom and 69.96 meV/atom, respectively (as com-
pared to 138.25 meV/atom and 78.35 meV/atom, respectively, 
for the entire test dataset).

It must be noted that the UF3 model was chosen (instead 
of the SVR model) to predict the energy of structures due to its 

higher accuracy. It is possible to use the RDF + ADF descriptors 
and the SVR model for predictions of energy in addition to hard-
ness; however, the errors are higher. The SVR model for energy 
had an RMSE and MAE of 0.4579 eV/atom and 0.2770 eV/atom, 
respectively, which is ~ 3.5 times that of the UF3 model. Addition-
ally, all unrelaxed structures cannot be used in the training of the 
SVR model, which is a disadvantage as these structures diversify 
and increase the size of the training dataset. While they are not 
at the local minima, they are still valid datapoints in terms of the 
relationship between the structure and its energy or hardness. The 
UF3 model was trained on all unrelaxed structures in the relaxa-
tion trajectory as it did not suffer from the overfitting problem.

For the SVR model, it was found that the choice of descrip-
tor hyperparameters does not greatly affect model performance. 
This is demonstrated in Fig. 5(a) for various values of dc , the cut-
off distance for RDF [see Eq. (8)]. The MAE and RMSE do not 
change considerably for the 100 iterations within the range of 3 
to 10 Å. Similar results were obtained for the cutoff distance ( dk ) 
and slope parameter ( k ) for the ADF [see Eq. (9)] and are shown 
as a 2D scatter plot in Fig. 5(b). The relative insensitivity of the 
MAE to the descriptor hyperparameters allows the model to be 
generalized for a variety of different materials without the need for 
an additional optimization step, thereby reducing the overall com-
putation time when running the material discovery algorithm.

Based on the results, we estimate that the UF3 and SVR mod-
els can be used as a surrogate screening method after as few as 150 
DFT relaxations. As a typical GA material discovery calculation 
includes between 500 and 1000 relaxations; hence, using such a 
screening model and only performing DFT calculation to obtain 
the accurate energy of promising structures can greatly reduce 
the amount of computational time required to discover stable 
structures with desired hardness in each design space. An outline 
of this proposed ML-augmented material discovery strategy is 
shown in Fig. 6. After an initial set of computationally expensive 
DFT calculations, the UF3 and SVR surrogate models can be used 
to perform an initial evaluation of each successive structure prop-
erties, and only promising stable structures (those predicted to 
have a high hardness and low energy) need to be evaluated using 
DFT. Various options are available to choose a screening criterion 
to select promising structures using both properties. One option 
is using minimum and maximum values for hardness and energy, 
respectively; either or both must be satisfied. Another option is 
a weighted objective function of the form f = wfE + (1− w)fH , 
where 0 ≤ w ≤ 1 . Here, fE is the objective function for the energy 
and fH is the objective function for hardness. As the accuracies of 
the ML models increase with an increase in the dataset, they can 
be retrained periodically as more DFT calculations are performed.

Further, due to the reduced computational requirements, 
larger design spaces can be explored. For example, the GA run 
in this work was restricted to a maximum of 16 atoms in the 
unit cell of a structure. DFT calculations generally scale up as 

TABLE 2:   Prediction accuracy of the ML models for energy (UF3) and hard-
ness (SVR)

Design space  
(material system) Target MAE RMSE

Si–C Energy (meV/atom) 78.33 138.25

Hardness (GPa) 0.91 1.50

Si–N Energy (meV/atom) 129.68 212.71

Hardness (GPa) 1.42 1.75

C–N Energy (meV/atom) 136.13 262.38

Hardness (GPa) 2.47 3.63
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O
(
N3
a

)
 and the hardness calculation using the Cheenady model 

scales up as O(Nb) , where Na represents the number of atoms 
and Nb represents the number of bonds in the unit cell (which is 
often proportional to Na ). Hence, running a GA search for struc-
tures with larger unit cells can be prohibitively expensive. With a 

reduction in the number of DFT calculations due to well-trained 
ML models, larger unit cell structures can now be included in the 
search. This approach also allows for the use of more computa-
tionally expensive functionals (e.g., meta-GGAs like SCAN) that 
provide greater accuracy in the DFT calculations.

Initial reference
structures from 

database or
repository

Generate and relax 
additional initial
structures, and

calculate energies

Update pool of parent
structures

Generate offspring
structures through

promotion and
mutations

Calculate energy and
hardness with

surrogate ML model

Promising
properties?

Calculate energy and
hardness with DFT

and Cheenady model

Converged?Finish

Y

N

Y N

Figure 6:   Proposed material discovery strategy augmented with a machine learning model for computational efficiency.

Figure 5:   Prediction errors for varying descriptor hyperparameters for the (a) RDF and (b) ADF. The SVR model is insensitive to the descriptor 
hyperparameters.
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It is important to note that the limitation on the maximum 
number of atoms for the structures in the training dataset is not 
expected to affect the ML models’ accuracy when predicting ener-
gies and hardness of structures with larger unit cells. The struc-
tural descriptors used in this work are not simply learning the 
entire unit cell structure but are rather capturing local structural 
information. The largest cutoff radius used is 6 Å; hence, the mod-
els are learning localized structural environments within a 12 Å 
sphere. Reducing the maximum number of atoms would greatly 
reduce the computational cost; however, it would be at the cost 
of structural diversity in the dataset. Increasing the maximum 
number of atoms for the training dataset would result in the ML 
models learning some unique local environments; however, the 
increase in the dataset diversity would not scale efficiently with 
the increase in computational time after a certain point. The 
choice of 16 as the maximum number of atoms provides a suit-
able trade-off between dataset diversity and computational cost.

Summary
We have presented a strategy for material discovery that augments 
the genetic algorithm for structure prediction (GASP) with machine 
learning. By creating surrogate models to calculate a structure’s 
energy and intrinsic hardness, we can accelerate the computational 
discovery of structures with high hardness and stability (i.e., low 
energy) in a given design space. We have shown that the UF3 and 
SVR models can effectively learn the energy and hardness landscapes, 
respectively, of a given design space from as few as 150 structures 
generated by a genetic algorithm. These surrogate models can then 
be used to screen the subsequent structures created by the genetic 
algorithm, and the more accurate calculations (using DFT and the 
Cheenady model) can be performed on only the select few structures 
predicted to have desirable properties. The reduction in the number 
of expensive calculations allows for the expansion of the design space 
to include more structures, especially those with larger unit cells. We 
have also shown that the linear combination of cubic B-spline basis 
functions and the RDF + ADF descriptors are capable of encoding 
the material data for machine learning, and that the SVR model is 
insensitive to the descriptor hyperparameters, allowing for it to be 
used in material-agnostic environments. Future work will involve 
combining the genetic algorithm, the DFT and hardness calculations, 
and the surrogate models in a single package to automate the material 
discovery process for a variety of design space explorations.

Methodology
Dataset

The dataset is generated using the Genetic Algorithm for Struc-
ture Prediction (GASP) [4, 5], coupled with the density func-
tional theory software VASP [32–34]. While the DFT calculations 

perform the local optimization through relaxation, GASP is a 
grand canonical global optimization algorithm that explores the 
entire design space to identify low-energy basins in the entire 
landscape. For each binary design space, a pool of initial stable 
reference elemental structures (that exist at the endpoints of the 
phase diagram for each design space) is mined from existing 
databases such as The Materials Project [35] to create the initial 
generation of unrelaxed structures. The relaxed structures and 
energies of this generation are obtained through DFT calcula-
tions, and the intrinsic hardness of the structures are obtained 
using the semi-empirical Cheenady [27] model (discussed 
below). Next, ‘offspring’ structures are generated through muta-
tion and mating operations, using a promotion system that favors 
the ‘fittest parents,’ as defined by the objective function (discussed 
below). The DFT and hardness calculations are then run on the 
offspring generation, and the best offspring are selected as par-
ents for the following generation. This process continues until a 
termination criterion (computation time or the number of organ-
isms) is met. Thus, GASP acts as an intelligent global search tool 
to map the entire energy landscape of a given material system.

The dataset for training the ML models contains the energy 
and intrinsic hardness values for the relaxed structures, and 10% 
of the unrelaxed structures, generated during the GASP run. The 
data are then split into training (80%) and testing (20%) sets, as 
shown in Table 1. While splitting the data, we make sure that 
unrelaxed structures from the same relaxation run do not cross 
over between the trained and tested sets, as that would cause 
the two sets to become too correlated and underpredict the true 
model uncertainty.

Objective function

The objective function, or fitness function in the case of a genetic 
algorithm, is based on the energy per atom of the crystal structure 
relative to the energy of its elemental components. For a material 
system with n elements, this formation energy is defined as

where E is the energy per atom of the crystal structure (obtained 
through DFT calculations), Xj is the molar fraction of the j th 
element in the structure, and Ej is the energy per atom of the ele-
mental j reference state (i.e., the endpoints of the design space). 
This can be visualized from the phase diagram for the design 
space, illustrated in Fig. 1 for n = 2 (binary system), where each 
new structure created in a generation is represented by a filled 
circle. Structures generated in a previous generation are repre-
sented by unfilled circles. The initial stable reference elemental 
structures are shown with black squares. Stable structures lie 
on the convex hull of the phase diagram. For the remaining 

(1)Ef = E −

n∑

j=1

XjEj
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structures, their distance from the convex hull in the phase dia-
gram, termed as �EH and illustrated in Fig. 1, is a measure of 
the structure’s relative stability. In the genetic algorithm, the fit-
ness of each offspring in a generation of structures is defined by 
normalizing this parameter within the generation, as

The offspring with the higher fitness values have a higher 
probability of being promoted to be parents and create the next 
generation via mating and mutation operations.

For each composition and structure thus generated, we 
can calculate the intrinsic hardness using the semi-empirical 
model recently proposed by Cheenady et al. [27]. This model 
was slightly modified for its pre-factor and exponents because 
the values for these empirical parameters in the original Cheen-
ady equation were fit to the hardness of a set of ceramics using 
an electronegativity scale for covalent crystals defined by Li 
and Xue [36]. However, in the current study, we use the more 
common Pauling [37] scale of electronegativity, as the values in 
this scale are available for every element of the Periodic Table. 
Hence, the empirical pre-factor and exponents for this study, 
shown in Eq. (3a), were obtained by fitting the Cheenady equa-
tion to the same hardness data used by Cheenady et al. [27], with 
the only difference being the electronegativity scale used. The 
resulting equation is given as

where Nb is the number of bonds in the unit cell of the struc-
ture, V  is the volume of the unit cell, and dab is the bond length 
between the atoms a and b. For each bond, Zab and fiab are 
defined as

 where χa and χb are the electronegativity values, and ηa  and ηb 
are the coordination numbers, respectively, of atoms a and b that 
make up the bond.

To obtain the intrinsic hardness of each structure using this 
model, the local environment around every atom in the unit 
cell must be analyzed to obtain its bonding and co-ordination 
information (i.e., detect all the bonds in which an atom par-
ticipates). For this purpose, a crystal-near-neighbor approach 
(CrystalNN), which uses Voronoi decomposition and solid 
angle weights to determine coordination environments [38], was 

(2)f =
�EH,max −�EH

�EH,max −�EH,min

(3a)H = 986

�
Nb

V

�0.844



Nb�

a,b=1

Z0.006
ab d−3.18

ab e−2.44fiab




1/N

(3b)Zab =
χa

ηa

χb

ηb

(3c)fiab =

(
χa − χb

χa + χb

)2

utilized through the “local_env” module from the Pymatgen 
library of Python [39]. Once the bonding information for each 
atom in a structure is obtained,  Eq. (3) can then be applied to 
obtain a measure of the structure’s intrinsic hardness by looping 
over each bond in the structure to perform the geometric aver-
age. While this analysis may be performed reasonably quickly 
for structures with a small number of atoms in the unit cells, 
the computational cost increases quadratically with an increase 
in the number of atoms, as the CrystalNN algorithm loops over 
every atom and atom-pair in the structure to detect if atoms 
are bonded. Hence, an ML approach that is independent of 
the number of atoms in the structure would greatly accelerate 
the hardness predictions, particularly for the more complex 
structures.

Machine learning algorithms

For predicting a structure’s energy, we employ the Ultra-Fast 
Force Field (UF3), which learns the low-order many body expan-
sion [40] of the system’s potential energy landscape [8]. Each 
two- and three-body term (higher-order terms are neglected) 
in the expansion are represented by a set of basis functions of 
pairwise distances ( r ) as

where i runs over all the atoms in the unit cell and j, k run over 
all neighboring atoms up to a defined cutoff distance. V2 and V3 
are expressed as linear combinations of cubic B-splines as

where Kx is the number of basis functions per spline, and cn 
and clmn are the corresponding coefficients. The model is fit by 
simultaneously optimizing all the spline coefficients c using the 
linear least squares method with Tikhonov regularization. This 
is mathematically represented as

where X contains the B-spline values over all pair distances 
within the cutoff radius for all the structures in the dataset, I 
is the identity matrix, and y contains the energies of the struc-
tures. �1 controls the the ridge penalty and �2DT

2D2 controls the 
smoothness across adjacent splines with a difference penalty. 
The optimization problem in Eq. (6) is strongly convex, and 
results in an efficient and deterministic solution.

(4)E =
∑

i,j

V2

(
rij
)
+

∑

i,j,k

V3

(
rij , rik , rjk

)

(5)

V2

(
rij
)
=

K∑

n=0

cnBn
(
rij
)

V3

(
rij , rik , rjk

)
=

Kl∑

l=0

Km∑

m=0

Kn∑

n=0

clmnBl
(
rij
)
Bm(rik)Bn

(
rjk
)

(6)c =
(
XTX + �1I+ �2D

T
2D2

)−1
XTy
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For the prediction of intrinsic hardness, we choose a support 
vector regression ( ǫ-SVR) model, deployed using its implemen-
tations in the sci-kit learn library for Python [41]. It implicitly 
uses the kernel trick to transform the input vectors xi ∈ R

n to 
a higher dimensional function space φ(xi) ∈ R

m ( m > n ). A 
linear model is fit in this function space but is nonlinear when 
transformed back to the original feature space. In this work, we 
use the popular Gaussian radial basis kernel, defined as

where 
∣∣x, x′

∣∣ is the Euclidean distance (L2-norm) between two 
input vector variables x and x′ , and σκ is the kernel width which 
is optimized when fitting the model to the data. In our case, 
the input vectors xi are obtained by concatenating the partial 
radial ( XRDF ) and angular ( XADF ) distribution functions for 
each structure i.

The partial RDF is averaged over the entire structure and 
captures the average distribution of inter-atomic distances, 
dABkl =

∣∣∣−→r A
k −

−→r
B
k

∣∣∣ , between atoms k and l  of types A and B , as

where dc is the cutoff distance, enforced by the Heaviside func-
tion �

(
dc − dABkl

)
 . This cutoff distance is chosen such that it 

extends beyond the unit cell of the structure in order to capture 
periodicity. The width of the Gaussian distribution is controlled 
by σg.

Similarly, the ADF captures the average distribution of inter-
atomic angles, θklm , centered on atom l  , between atoms k , l  , and 
m of types A , B, and C , as

In  t h i s  c as e ,  t he  log i s t i c  f unc t ion ,  f (d) =[
1+ exp{k(d − dk)}

]−1 , is used instead of a hard cutoff, where 
dk is the midpoint and k controls the fall rate (steepness) of the 
logistic function.

As the RDFs and ADFs result in continuous functions, they 
are binned to obtain discrete representations of the crystal struc-
ture. To mitigate the loss of information during binning, the 
bin width, h , is selected such that h ≤ σg . Hence, the final input 
representations for the ML models are constant-length vectors 
XRDF = ĝ zAB∀(z,A,B) and XADF = q̂zABC∀(z,A,B,C) for each 
structure.

The ǫ-SVR algorithm works by finding a surrogate function 
f (x) = �w, x� + b that is allowed to deviate by a maximum of ǫ 

(7)κ
(
x, x′

)
= exp

(
−

∣∣x − x′
∣∣2

2σ 2
κ

)

(8)

gAB(r) =
1

NA

NA∑

k=1

∞∑

l=1

1

r2
exp

[
−

(
r − dABkl

)2

2σ 2
g

]
�
(
dc − dABkl

)

(9)

qABC(x) =

NB∑

l=1

∞∑

k=1

∞∑

m=1

exp

[
−
(r − cos θklm)

2

2σ 2
g

]
f
(
dABkl

)
f
(
dBClm

)

from y . This creates an “ ǫ-tube” (of diameter ǫ ) around the true 
value, y ; any points within this tube are considered as accurate 
predictions and not penalized by the algorithm. Slack variables 
ξi , ξ

∗
i  measure the distance to points outside the tube. The opti-

mization problem in this case is to identify a surrogate function 
that puts more points inside the tube while at the same time 
reducing the “slack.” Mathematically, it is defined as

subject to the following constraints 

where the parameter C is the regularization parameter. The 
input vectors, xi , are normalized by subtracting the means and 
dividing by the standard deviation (feature scaling) to avoid 
bias toward vector components with higher variance. Before 
determining the coefficients for (i.e., training) the ML models, 
the regularization parameter ( C ) and width of the ǫ-tube are 
optimized via fivefold cross-validation with a random search 
using 500 iterations [42]. For each iteration, these hyperpa-
rameters are randomly sampled from exponential distributions 
( P(x) = βe−βx).

For both descriptors, we set σg=0.2Å. T he remaining hyper-
parameters for each descriptor are optimized by sampling the 
hyperparameter space using a random search (with 100 itera-
tions), as shown in Fig. 5. The cutoff distances ( dc and dk ) are 
varied from 3Å to 10Å , and the slope parameter ( k ) is varied 
from 1 to 5. For the RDF, dc=6Å was chosen for the Heaviside 
cutoff function. The bin width ( h ) is selected to be 0.1Å, and 
hence, the length of XRDF is 180 for a binary system as there are 
three types of atom pairs (A–A, A–B, B–B). For the ADF, the 
range is taken as [−1, 1] for the cosine of six types of angles in 
the binary system (A–A–A, A–A–B, A–B–A, A–B–B, B–A–B, 
B–B–B), and the bin width ( h ) is selected as 0.1, resulting in a 
length of 120 for XADF . For the logistic cutoff function, dc=6Å 
and k=2.5Å−1 were the chosen hyperparameters.
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|w|2 + C
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