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Fueled by the widespread adoption of machine learning and the high-throughput screening of materials, 
the data-centric approach to materials design has asserted itself as a robust and powerful tool for the in 
silico prediction of materials properties. When training models to predict material properties, researchers 
often face a difficult choice between a model’s interpretability and performance. We study this trade-off 
by leveraging four different state-of-the-art machine learning techniques: XGBoost, SISSO, Roost, and 
TPOT for the prediction of structural and electronic properties of perovskites and 2D materials. We then 
assess the future outlook of the continued integration of machine learning into materials discovery 
and identify the key problems that will continue to challenge researchers as the size of the literature’s 
datasets and complexity of models increases. Finally, we offer several possible solutions to these 
challenges with a focus on retaining interpretability and share our thoughts on magnifying the impact of 
machine learning on materials design.

Introduction
Today, big data and artificial intelligence revolutionize many 
areas of our daily life, and materials science is no exception 
[1–3]. More scientific data are available now than ever before 
and the size of the literature is growing at an exponential rate 
[4–7]. This has led to multiple efforts in building the digital 
ecosystem for material discovery, most notably the Materials 
Genome Initiative (MGI) [8, 9]. The MGI is a multinational 
effort focused on improving the tools and techniques surround-
ing materials research, which recently has included suggestions 
to adopt the set of Findable, Accessible, Interoperable, and Reus-
able (FAIR) principles when reporting data [10]. In the years 
since the creation of the MGI, a number of large materials and 
chemical datasets have emerged, including the 2D Materials 
Encyclopedia (2DMatPedia) [11], Automatic Flow (AFLOW) 
database [12, 13], Computational 2D Materials Database 
(C2DB) [14, 15], Computational Materials Repository (CMR) 
[16], Joint Automated Repository for Various Integrated Simu-
lations (JARVIS) [17], Materials Project [18], Novel Materials 
Discovery (NOMAD) repository [19], and the Open Quantum 
Materials Database (OQMD) [20]. We note that all of these are 

primarily computational in nature, and that there is still a scar-
city of large databases containing comprehensively characterized 
experimental data. Despite this, at least in computational mate-
rials discovery, the current availability of data has been a boon 
for exploration of the materials space, as it allows for highly 
flexible, data-hungry [21] models to be trained.

One such approach that has seen widespread popularity in 
recent years is gradient boosting. Gradient boosting [22] is an 
ensemble technique in which a collection of weak learners (typi-
cally decision trees) are incrementally trained with respect to 
the gradient of the loss function [23]. A well-known variant is 
eXtreme Gradient Boosting (XGBoost) [24], which reformulates 
the algorithm to provide stronger regularization and improved 
protection against overfitting. In chemistry, its applications have 
been diverse: XGBoost has been used to predict the adsorption 
energy of noble gases to Metal-Organic Frameworks (MOFs) 
[25], biological activity of pharmaceuticals [26], atmospheric 
transport [27], and has even been combined with the repre-
sentations found in Graph Neural Networks (GNNs) to gener-
ate accurate models of various molecular properties, as Deng 
et al demonstrated for several well-known datasets including 

http://crossmark.crossref.org/dialog/?doi=10.1557/s43578-023-01164-w&domain=pdf
http://orcid.org/0000-0003-3719-522X
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TOX-21 [28] (a toxicology dataset), FreeSolv [29] (a dataset of 
small molecule hydration free energies), SIDER [30] (a dataset 
of adverse drug reactions), and others. [31].

Neural networks have also seen a lot of interest, owing to 
their ability to learn new features from input data. This has 
included the influential Behler-Parinello [32] and Crystal Graph 
Convolutional Neural Network (CGCNN) [33] architectures 
based on chemical structure, the Representation Learning from 
Stoichiometry (Roost) [34] architecture based on chemical for-
mula, and many other approaches [1, 2, 35–41]. Historically, 
interpretability of neural networks has been a major challenge, 
although there has also been substantial recent work in address-
ing this problem [42].

The modern machine learning (ML) toolbox is large, 
although it is still far from complete. As a result, model selec-
tion techniques are becoming increasingly necessary: this has 
led to the field of automated machine learning (AutoML). This 
area of work has seen much progress in recent years [43, 44], 
and has even been extended to Neural Architecture Search 
(NAS) [45], for the automated optimization of neural network 
architectures. In this work, we leverage the Tree-based Pipe-
line Optimization Tool (TPOT) approach to AutoML [46–48], 
which uses a Genetic Algorithm (GA) to create effective ML 
pipelines. Although it generally draws from the models of 
SciKit-Learn [49], it can also be configured to explore gradient 
boosting models via XGBoost [22], and neural network mod-
els via PyTorch [50]. Moreover, TPOT also performs its own 
hyperparameter optimization, thus providing a more hands-off 
solution to identifying ML pipelines. The success of GA-based 
approaches in ML is not isolated to AutoML. Indeed,    they 
are a fundamental part of genetic programming, where they are 
used to optimize functions for a particular task [51, 52]. Eureqa 
[53] is a particularly successful example of this [54], leveraging 
a GA to generate equations fitting arbitrary functions, and has 
been used in several areas of chemistry, including the generation 
of adsorption models to nanoparticles [55] and metal atoms to 
oxide surfaces [56]. This approach of fitting arbitrary functions 
to a task is also known as “symbolic regression.” Recent work 
surrounding compressed sensing has yielded the Sure Independ-
ence Screening and Sparsifying Operator (SISSO) approach [57]. 
SISSO also generates equations mapping descriptors to a target 
property, proceeding by combining descriptors using various 
building blocks, including trigonometric functions, logarithms, 
addition, multiplication, exponentiation, and many others. This 
methodology has been highly successful in a variety of areas 
including crystal structure classification [58], as well as the 
prediction of perovskite properties [59–61] and 2D topological 
insulators [62].

While the recent raise in the availability of scientific data 
has led to the increased integration of machine learning and 
artificial intelligence techniques into materials science, one of 

the ongoing challenges associated with using these methods is 
getting physically interpretable results. By physical interpreta-
tion, we mean an understanding of the relationship between the 
chosen descriptors and the target property. Although a black-
box model which has a high level of accuracy but little physical 
interpretation may lend itself well to the Edisonian screening 
of a wide range of materials, it may be difficult to understand 
exactly what feature (or combination of features) actually mat-
ters to the design of the material. Once the screening is done and 
the target values are calculated, little may be done to improve 
performance aside from including new features, adjusting the 
model’s hyperparameters, or increasing the size of the train-
ing set. Alternatively, consider a model which has less accuracy, 
but which has an intuitive explanation, such as an equation 
describing an approximate relationship between features and 
target. Although such a model may at first glance seem less 
useful than a highly accurate black-box, such a model can help 
deliver insight into the underlying process that results in the 
target property. Moreover, by understanding which features are 
important, the model can give clues into what may be done to 
further improve it — driving the rational discovery of materials. 
In addition, interpretability versus accuracy is not a strict trade-
off, and it is possible for interpretable and black-box models to 
deliver similar accuracy [63]. Therefore, in this work we take 
steps to compare the performance of TPOT, XGBoost, SISSO, 
and Roost for each problem with respect to i) performance and 
ii) interpretability.

We leverage a diverse selection of techniques in order to 
draw comparisons of model accuracy and interpretability. Tak-
ing advantage of the current abundance of chemical data, we 
can re-use the Density Functional Theory (DFT) calculations of 
others stored on several FAIR chemical datasets. A set of three 
different problems are investigated: (1) the prediction of per-
ovskite volumes, (2) the prediction of 2D material bandgaps, 
and (3) the prediction of 2D material exfoliation energies. These 
problems allow for coverage over a range of relevant areas within 
materials science. Perovskites are well-studied systems with rel-
evance to catalysis and solar cells [64] [65], and the unit cell is a 
fundamental property of crystalline materials. 2D materials are 
an exciting new field within nanotechnology with applications 
in electronics [66] [67]. The bandgap in particular is a crucial 
property for electronics [68] and the exfoliation energy is often 
a key parameter in the production of 2D materials [69].

For the perovskite volume problem, we leverage the ABX3 
perovskite dataset (containing 144 examples) published by 
Körbel, Marques, and Botti [70]; this dataset is hosted by 
NOMAD [19], whose repository has strong focus on enabling 
researchers to report their data such that it satisfies the FAIR 
data principles [71]. For the 2D material problems, we apply 
the 2DMatPedia published by Zhou et al [11], a set of 6,351 
hypothetical 2D materials identified via a high-throughput 
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screening of systems on the Materials Project [18]. Although 
at first glance this may seem like a relatively small dataset, we 
note the general rarity of known 2D materials in the litera-
ture. Haastrup et. al. released the C2DB [14], which contains 
around 4,000 systems algorithmically generated from a set of 
prototypes. The JARVIS [17] database maintained by NIST 
contains, among many other systems, around 1,000 low-D 
materials. Thus, we choose the 2DMatPedia because it offers 
us access to a large number of structures out of the box, with-
out needing to combine together multiple data sources. In 
addition, we note that data can sometimes be hard to come by 
in the materials science space: datasets with large numbers of 
entries may not always exist for properties of interest. Thus, 
evaluating the performance of ML approaches on smaller 
datasets is an important (and realistic) benchmark to measure.

The manuscript is organized as follows: we begin by train-
ing a diverse set of four models, which are XGBoost, TPOT, 
Roost, and SISSO to investigate each of the three problems, 
resulting in a total of 12 trained models. Performance metrics 
(and comparative plots) are presented for each trained model 
to facilitate comparison, and we discuss the interpretation we 
can achieve from each of these models. Overall, between the 
four categories of model we trained, we leverage the XGBoost 
model as a baseline, as it is the simplest among them. Addi-
tionally, it is a common workhorse oftentimes achieving good 
results on tabular data. Framing our analysis as a comparison 
to the interpretability and accuracy relative to the XGBoost 
model, we can then draw conclusions about the interpretation 
and applicability of the other three model types. Finally, we 
provide a discussion of the future outlook of ML in the digital 
materials science ecosystem and what can be done to further 
accelerate materials discovery.

We find that TPOT delivers high-quality models, generally 
outperforming the other methods in terms of fitness metrics. 
Despite this, interpretability is not guaranteed, as it can create 
highly complex pipelines. XGBoost lends itself to interpreta-
tion more consistently, as it allows for an importance metric, 
although it may be harder to understand exactly what the rela-
tionship is between the different features (or combinations of 
different features) and the target variable. We found that Roost 
performed well on problems that could be approached via com-
positional descriptors (i.e., without structural descriptors); as a 
result, it can help us understand when a target property requires 
more than just the composition. Finally, we achieve the easiest 
interpretability from SISSO, as it provides access to descriptors 
which directly capture the relationship between the features and 
target variable. Using these results, we discuss the advantages 
and disadvantages of each method, and discuss areas where the 
digital ecosystem surrounding materials discovery could be 
improved to improve adherence to FAIR principles. Our work 
provides a comparison of several common ML techniques 

on challenging (but relevant) materials property prediction 
problems.

Results
Perovskite volume prediction

XGBoost, TPOT, and SISSO were applied to investigate the vol-
ume of perovskites as a function of the compositional features 
described in Sect. “Compositional Descriptors. Additionally, 
we trained a Roost model on the chemical formula of the per-
ovskites to predict the volume. The train/test split resulted in 
a total of 129 entries in the training set, and 15 in the test set. 
We find generally good performance on the perovskite volume 
problem across all 4 models, although the TPOT and SISSO 
model display the best performance by all metrics investigated 
(see Table 1), including respective test-set R2 of 0.996 and 0.990. 
We note again here that we only used the compositional descrip-
tors for this problem, and not the structural descriptors. The 
Roost model also performs well with a test-set R2 of 0.935, but it 
also has a non-normal error, as can be seen in Figure 1. Finally, 
we find that while XGBoost is the worst performing method, it 
still has a relatively good test-set R2 of 0.866.

The performance of all 4 models is summarized in Figure 1. 
Visually, we find a very tight fit by the TPOT model in both the 
training and test sets, with good correlation from the XGBoost 
and SISSO models. We also find a systematic under-prediction 
of perovskite volumes in the Roost model in both the training 
and test set, with the under-prediction beginning at approxi-
mately 75 Å3/formula unit, achieving a maximum deviation at 
approximately 130 Å3/formula unit, and returning to parity at 
approximately 200 Å3/formula unit.

The good performance of the TPOT model results from a 
generated pipeline with seven stages. The first three stages are 
based on the Familywise Error, Feature Variance, and Family-
wise Error (FWE) again. This down-selects features according to 
the FWE error, and removes features with a variance under 0.20.

TABLE 1:   Performance metrics for the XGBoost, TPOT, Roost, and SISSO 
models on the perovskite volume prediction problem.

The parity plots for these models are depicted in 1.

Error Metric Partition XGBoost TPOT Roost SISSO

MAE Train 8.15 1.194 9.11 7.28

RMSE Train 11.88 1.6227 11.21 9.08

Max Error Train 43.29 5.7475 22.94 26.74

R2 Train 0.949 0.999 0.955 0.971

MAE Test 12.89 3.6362 8.83 4.05

RMSE Test 17.17 4.9172 12.00 4.71

Max Error Test 37.10 13.611 31.69 10.27

R2 Test 0.866 0.996 0.935 0.990
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The alpha values for the two FWE thresholds are 0.047 and 
0.046, respectively, which means the highest allowed uncorrelated 
p-value for a feature is 0.046. From here, the remaining features 
are passed to a series of stacked Random Forest, Extremely Ran-
domized Trees [72], and XGBoost. The Random Forest uses 100 
trees with bootstrapping, can use at most 60% of the features, and 
each leaf must contain at least 16 samples. The Extremely Rand-
omized Trees model averages over 100 trees without bootstrap-
ping and at most 20% of the features, with each leaf containing 
at least 16 samples. The XGBoost stage has 100 estimators, and is 
rather shallow with any individual tree having a maximum depth 
of 1. The "stacked" component of this series of 3 regressors means 
that each regressor adds its own predictions to the dataset as a new 
column, which informs further models down the pipeline. Finally, 
a LASSO model is fit with a Least Angle Regressor.

Moving onward from TPOT, in the case of our XGBoost 
model, we can extract feature importances. Although vari-
ous different feature importance metrics can be derived from 
XGBoost, in this case we use the “gain” metric, which describes 

how the model’s loss function improves when a feature is cho-
sen for a split while constructing the trees. A large number of 
features were input into this model, so we display only the 10 
most important features identified by XGBoost in Supporting 
Information Figure 5. Here, we find that the average Rahm 
atomic radii [73, 74] (importance score 0.48) have the highest 
importance score, followed by the average Van der Waals radius 
used by the Universal Force Field (UFF) [75] (importance score 
0.27). The remaining 288 features fall off as a long tail of low 
importance scores, indicating that they did little to improve the 
model’s performance in predicting the perovskite volume.

For SISSO, we used the feature space as outlined in Sect. 
“Symbolic Regression with SISSO,” with the pre-screened 
features listed in the Supporting Information along with the 
assumption we made about the units of the descriptor when 
fed into SISSO.

Generally, we find that the main descriptors selected by 
the procedure are related to volume and atomic radius. Some 
other descriptors with less interpretability are found, such as 

Figure 1:   Parity plots for the XGBoost, TPOT, Roost, and SISSO models on the perovskite unit cell volume problem. Included are the training and testing 
sets. A diagonal line indicating parity is drawn as a guide to the eye.
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the C6 dispersion coefficients, polarizability, melting points, 
and Herfindahl-Hirschman Index (HHI) [76] production and 
reserve values. Although typically used to help indicate the size 
of a company within a particular sector of the economy, the 
XenonPy definition of HHI appears to come from the work of 
Gaultois et al [76]. In the referenced work, the HHI production 
value refers to the geographic distribution of elemental produc-
tion (in other words, it assesses how concentrated or dispersed 
the global industrial effort is which produces those elements), 
and HHI reserve value describes the geographic distribution of 
known deposits of these materials (e.g., whether they are spread 
out over a wide area, or concentrated in a small area).

We report the best descriptor found in Eq. 1. In this equa-
tion, the variables c0, a0, a1 are the regression coefficients deter-
mined by SISSO.

where c0 = −10.547 , a0 = 4.556 , c1 = 3.050 , Zave is the average 
atomic number, Cave is the average mass-specific heat capacity of 
the elemental solid, raveSlater is the average atomic covalent radius 
predicted by Slater, ravepyykko,triple is the average triple bond cova-
lent radius predicted by Pyyko, ravepyykko is the average single bond 
covalent radius predicted by Pyyko, and Vave

gs  and Vmin
gs  are the 

average and minimum ground state volume per atom as calcu-
lated by DFT. Unsurprisingly the ground state atomic volumes 
and covalent radii play an important role in determining the 
final volume of the perovskite structures. Interestingly, both the 
atomic number and specific heat capacity of the material appear 
in the final descriptor. This is interesting because they do not 
intuitively have a connection to the unit cell volume. It’s possible 
that these just act as another source of variance for the model to 
pick up on, but we also note here that it could just be a correla-
tion with the size of the individual atoms (e.g., another source 
of information about the volume). For the atomic number, it is 
well known that it has a periodic trend with the atomic radius 
(e.g., He is a small atom and Cs is a very large atom).

2D material bandgaps

The bandgap predictions leveraged a data filtering strategy 
(described in Sect. “Data Filtering.” As a result of our data fil-
tering approach, the 6351 entries in the dataset were reduced 
to 1412 entries. The train/test split divided the data into a 
training set of 1270 rows, and a test set containing 142 entries. 
The performance metrics of the XGBoost, TPOT, Roost, and 
SISSO models of 2D Material Bandgap can be found in Table 2. 

(1)

VPerovskite ≈ c0 + a0 ·
Zave

Cave ·

(

raveSlater − ravepyykko,triple

)

+ a1 ·
(

Vave
gs − Vmin

gs

)

·

ravepyykko,triple

ravepyykko

Performance is generally worse on this problem when compared 
to the perovskite volume predictions. As a result, in addition to 
the compositional features of XenonPy (Sect. “Compositional 
Descriptors) we also used several structural features (Sect. 
“Structural descriptors”). We also leveraged the bulk bandgap 
of the parent-3D material for each of the 2D materials, as we 
observed the performance of the TPOT, SISSO, and XGBoost 
models increased when this value was included.

Although test-set model performance was worse compared 
to the perovskite problem, XGBoost, TPOT, and SISSO models 
all perform well with nearly equivalent metrics for the test-set 
R2, Mean Absolute Error (MAE), and Root Mean Squared Error 
(RMSE). We find the Roost model overfit the data to some extent 
on the data, as the test-set error metrics are considerably worse 
than their training set counterparts. A parity plot summarizing 
these results can be found in Figure 2. In all cases, we can see a 
spike of misprediction for systems with a DFT bandgap of 0. We 
note here that a large portion of these entries had DFT bandgaps 
of 0: of the 382 of the 1412 entries in the dataset, a total of 27% 
of all training data.

The pipeline generated by TPOT is less complex than that 
of the perovskite volume problem. The first stage of the pipeline 
is a MaxAbsScaler unit, scaling each feature by the maxi-
mum absoulte value of the feature. The second stage is then an 
ElasticNetCV unit, which uses 5-fold cross-validation to 
optimize the alpha and L1/L2 ratio of the Elastic Net model. The 
converged alpha value was 0.0001 , and the converged L1/L2 ratio 
was 0.85, which strongly leans toward the L1 (Least Absolute 
Shrinkage and Selection Operator (LASSO)) regularization pen-
alty. Finally, it uses an ExtraTreesRegressor and averages 
over 100 decision trees to estimate the target property. Each tree 
in this final step can use 80% of the features with each leaf hav-
ing at least two samples and each internal node splitting at least 
14 samples.

We can also extract feature importances from the XGBoost 
model, and we report the 10 highest-ranked features in 

TABLE 2:   Performance metrics for the XGBoost, TPOT, Roost, and SISSO 
models on the 2D material bandgap problem.

The rung-2, 4-term SISSO model is reported. The parity plots for these 
models are depicted in 2.

Error metric Partition XGBoost TPOT Roost SISSO

MAE Train 0.16 0.109 0.11 0.28

RMSE Train 0.29 0.208 0.27 0.46

Max Error Train 2.81 2.056 2.83 4.34

R2 Train 0.965 0.982 0.968 0.912

MAE Test 0.89 0.273 0.65 0.31

RMSE Test 0.47 0.460 1.07 0.53

Max Error Test 2.28 2.220 4.80 3.41

R2 Test 0.903 0.908 0.507 0.880
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Supporting Information Figure 6. Similar to the perovskite 
results the XGBoost model is dominated by a single feature, 
namely the bandgap of the parent-3D material (importance 
score 0.44). This feature also very important for the SISSO mod-
els, as shown in Supporting Information Table 7, signaoling that 
the similarity of the performance of these three models could 
be attributed to this feature. In fact the selected SISSO model is

where c0 = −0.3296 , a0 = 1.69× 103 , a1 = 6.59× 10−1 , rmin
vdw is 

the minimum Van der Waals radius of the atoms in the mate-
rial, ravecov,slater is the average Slater covalent radius of an atom 
in the material, rcov,cordero is the Cordero covalent radius of an 
atom in the material, E3D,parentBandgap  is the bandgap of the 3D-parent 

(2)

E2DBandgap ≈ c0 + a0 ·
Periodave · ravecov,slater

(

rmin
cov,cordero

)3

+ a1 ·
E
3D,parent
Bandgap

rmin
rahm

(

rmin
vdw + rmin

cov,cordero

)

material, rmin
rahm is the minimum Rahm radius of an atom in the 

material, and Periodave is the average period of the elements 
in the material. This descriptor primarily represents a simple 
rescaling and shifting of the bandgap of the 3D-parent material, 
further implying the dominant role this feature plays in describ-
ing the bandgap of the 2D material.

2D material exfoliation energy

In the case of the 2D material exfoliation energy problem, the 
training and test-set statistics for the XGBoost, TPOT, Roost, 
and SISSO models can be found in Table 3. In this case, our fea-
ture selection methodology down-selected the 6351 rows of our 
dataset into 3388 rows. The train/test split further divided this 
into a training-set of 3049 entries, and a test set of 339 entries. 
Generally, we see the worst performance of the models in this 
problem, compared to the perovskite volume and 2D material 
bandgap problems.

Figure 2:   Parity plots for the XGBoost, TPOT, Roost, and SISSO models on the 2D material bandgap problem. Included are the training and testing sets. 
A diagonal line indicating parity is drawn as a guide to the eye. Regression statistics for the models shown on this plot can be found in Table 4.
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A set of parity plots for all four models is presented in Fig-
ure 3. To facilitate easier comparison at experimentally relevant 
energy ranges, we have zoomed the plot in such that the highest 

exfoliation energy is 2 eV. Plots showing the entire energy range 
explored can be found in Supporting Information Figure 8. 
Here, we find that all models perform generally poorly, with the 
largest errors occurring at higher exfoliation energies in the case 
of XGBoost, TPOT, and SISSO (see Figure 3). The best test-set 
R2 and RMSE this time is only TPOT, although they are still rela-
tively poor, with a test-set R2 of only 0.603. Roost displays the 
best test-set MAE, although the model seems to have overfit, as 
it displays drastically better performance on the training set than 
it does on the test set. The XGBoost model performs slightly 
worse than either TPOT or Roost, and the SISSO approach did 
not perform well for this problem.

The TPOT algorithm results in a relatively complicated 
model pipeline, with multiple scaling and estimation steps. The 
pipeline firsts standardizes the features and then creates a linear 
model using linear ridge regression. From here it counts the 
number of zero and non-zero feature values for each samples 

TABLE 3:   Performance metrics for the XGBoost, TPOT, Roost, and SISSO 
models on the 2D material exfoliation energy problem.

Please see Methodology Sect. Data Filtering for details on how this data 
was filtered. The parity plots for these models are depicted in 3.

Error Metric Partition XGBoost TPOT Roost SISSO

MAE Train 0.20 0.04 0.06 0.27

RMSE Train 0.35 0.13 0.24 0.48

Max Error Train 7.11 5.12 9.63 8.89

R2 Train 0.624 0.941 0.827 0.274

MAE Test 0.23 0.18 0.19 0.30

RMSE Test 0.35 0.31 0.34 0.78

Max Error Test 1.64 1.86 1.96 12.30

R2 Test 0.476 0.603 0.498 -1.558

Figure 3:   Parity plots for the XGBoost, TPOT, Roost, and SISSO models on the 2D material exfoliation energy problem. Included are the training and 
testing sets. A diagonal line indicating parity is drawn as a guide to the eye. Regression statistics for the models shown on this plot can be found 
in Table 3, the values presented here are for only the demonstrated data.. To facilitate comparison at energy ranges that are more experimentally 
relevant, we have zoomed in the plot to study energies no higher than 2 J/m2 . The full data range is plot in Supporting Information Figure 8.
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and adds it to the feature set, and then rescales the features by 
the maximum absolute value of each feature. It then adds an 
ExtraTreesRegressor using 100 trees, 70% of the fea-
tures, a minimum samples per leaf of 6, and a minimum number 
of samples per split of 15. The next stage is a SelectFwe unit, 
which down-selects the features according to the FWE [23]. An 
alpha value of 0.011 is selected for this purpose. This is then 
fed into a linear support vector regressor with a C value of 0.5 
and rescaled such that each feature is between 0 and 1. Finally, 
a last ExtraTreesRegressor unit is used with 100 trees, 
a maximum of 10% of all features used and a minimum of 5 
samples at each split.

We again extract features from the XGBoost model (Sup-
porting Information Figure 7), and find the Mendeleev Number 
again appears as an important feature (importance score 0.08), 
albeit as the maximum instead of the minimum. Additionally, 
we see descriptors related to bond strengths in the correspond-
ing elemental systems: average melting points (importance score 
0.05), and average heats of evaporation (importance score 0.05).

The list of preselected features can be found in the Support-
ing Information Table 8. The best SISSO model found for this 
problem is

where c0 = 8.29× 10−1 , a0 = −1.48× 10−4 , a1 = −8.56× , 
10

−1 , BPmax is the maximum boiling point of an elemental solid 
of an atom in the material, qmin

evaporation is the minimum atomic 
evaporation heat of each element in the material, EA is atomic 
electron affinity of an atom in the material, Vave

ICSD is the average 
atomic volume in the ICSD database, and navep  is the average 
number of p valance electrons. Examining this equation gives 
insights into why the SISSO model’s performance is as poor as it 
is. The Vave

icsd of graphene is 5.67, lower than any other data point 
in the dataset. Removing this single data point increases the 
Test R2 to 0.329 and reduces the MAE, RMSE, and max error to 
0.26, 0.40, and 1.88, respectively. All of which are inlined with 
the training results.

Discussion
We have developed a series of models which are capable of 
generating predictions for (1) the volume per formula unit of 
a series of ABX3 perovskites, (2) the DFT-calculated bandgap 
of several 2D materials, and (3) several 2D material exfolia-
tion energies. These problems encompass a variety of out-
comes that one may find when training models of predictive 
properties.

(3)

EExf ≈ c0 + a0BP
maxnavep + a1

(

EAvar
+ EAave

)

+ a2
qmin
ev

Vmax
ICSD

Perovskite volume per formula unit

In the case of the volume per formula unit of ABX3 perovskites, 
we observe all four model types perform well. Overall, we find 
that the volume per formula unit for ABX3 perovskites can be 
predicted using only compositional descriptors (i.e., with no 
structural descriptors). The likely reason all four models per-
form well despite having no structural information is the gen-
eral similarity in crystal structure between these systems—they 
are all perovskites, and therefore all possess very similar crystal 
structures. Supporting this is that the Roost model, which only 
leverages the chemical formula as an input, and which we did 
not optimize the hyperparameters or architecture for, performed 
just as well on this problem—albeit with some systematic 
deviation from parity at intermediate volumes (see Figure 1). 
Although interpretability is reduced by virtue of being a neu-
ral network, we can still achieve an important insight from this 
model—just by knowing the chemical formula of the system, we 
can achieve accurate predictions of perovskite volumes, which 
further justifies our use of compositional descriptors (see Sects. 
“Compositional Descriptors) on this problem as we move to the 
SISSO, XGBoost, and TPOT models. Additionally, we note this 
performance was achieved with a dataset containing only 129 
entries—compared to the original Roost paper [34] that lever-
aged approximately 275,000 entries from the OQMD datset [77].

Like the Roost model, we have difficulty in interpreting 
the pipeline generated by TPOT. The TPOT model delivers the 
best performance—which is clearly visible from the parity plot 
in Figure 1. This performance came at a price, however, and 
the rather complex pipeline containing multiple feature selec-
tion steps, three estimators stacked together (the predictions 
from the previous are added as a new feature to the next), and a 
LASSO model fit using Least Angles regression.

Entering into the realm of interpretability, although the 
XGBoost model does not produce a direct formula for perovs-
kite volumes, we can still gain some insight using it. It is still, 
however, relatively accurate—and allows us access to a feature 
importance metric (see Supporting Information Figure 6). In 
this case, we see the five most important features are the average 
Rahm [73, 74] atomic radius, average UFF [75] atomic radius, 
sum of elemental velocities of sound in the material, average 
Ghosh [78] electronegativity, and the sum of the Pyykko [79] 
triple bond covalent radii. Overall, we see a strong reliance on 
descriptors of atomic radius—which as we noted in the TPOT 
discussion makes intuitive sense.

Finally, the SISSO model (Eq. 1) offers the most direct inter-
pretation, as it is simply an equation. Immediately, we see that 
a variety of descriptors related to volume are important. This 
result is highly intuitive and is not surprising when we consider 
that we are predicting volume.
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The overall good performance of SISSO for this application 
is promising, as it is one of the most accurate models, while 
being by far the most interpretable. This represents a key advan-
tage to symbolic regression, as if you can find an accurate model, 
then it will be easy to understand and analyze the results. More-
over, we note that are not alone in the literature when it comes to 
leveraging SISSO to generate models of perovskite properties—
the last several years have seen success in the creation of models 
of perovskite properties with this tool. The work of Xie et al. [61] 
achieved good success in predicting the octahedral tilt in ABO3 
perovskites, the work of Bartel et al. [60] resulted in the creation 
of a new tolerance factor for ABX3 perovskite formation, and 
Ihalage and Hao [59] leveraged descriptors generated by SISSO 
to predict the formation of quaternary perovskites with formula 
(A1−xA

′
x)BO3 and A(B1−xB

′
x)O3.

2D material bandgap

The 2D material bandgap models did not achieve the same per-
formance as for the perovskite systems (see Figure 2). Even in 
the case of TPOT, SISSO, and XGBoost, which still had the best 
test-set performance by most metrics, there were a few outliers. 
Specifically, we find that the test-set MAE for the models ranged 
between 0.273 to 0.89 eV (Roost) relative to the PBE DFT cal-
culations reported by the 2DMatPedia. Putting this number in 
perspective, we note the recent work of Tran et al [80], which 
benchmarked the bandgap predictions of several popular DFT 
functions for many of the systems in the C2DB; the work identi-
fied that the PBE functional exhibited a MAE of 1.50 eV relative 
to the G0W0 method. Other investigators have studied the pre-
diction of 2D material bandgaps: Rajan et al. [81] also achieved 
a test-set MAE of 0.11 eV on a dataset of 23,870 MXene sys-
tems (which, as far as we are aware, has not been made publicly 
available) using a Gaussian Process regression approach, with 
DFT-calculated properties including the average M–X bond 
length, volume per atom, MXene phase, and heat of forma-
tion, and compositional properties including the mean Van der 
Waals radius, standard deviation of periodic table group num-
ber, standard deviation of the ionization energy, and standard 
deviation of the meting temperature. Zhang et al. [82] improved 
on this error slightly, achieving a test-set MAE of 0.10 eV on the 
C2DB dataset (around 4000 entries) [14] with both Support-
Vector Regression and Random Forest approaches, albeit using 
descriptors such as the Fermi-energy density of states and total 
energy of the system (requiring further DFT work for additional 
prediction). In contrast to both approaches, which used DFT-
calculated values that would need to be obtained for new sys-
tems to be predicted, the only DFT-calculated value we leverage 
in our feature set is a bulk bandgap tabulated on the Materials 
Project [18]. Thus, although our TPOT model had a slightly 

higher MAE, we note that this would not require further DFT 
work to generate new predictions.

In addition, we note that although we considered the band-
gap of the corresponding bulk material, we did not consider 
the crystal structure of the corresponding bulk material. As this 
the electronic properties are heavily influenced by the structure, 
future work should evaluate the effect of crystal structure on 
bandgap models in order to ensure robustness across a wide 
array of structures.

As 2D systems are still relatively novel, we note that much 
more work has been performed in the 3D materials space, 
particularly in the leveraging of neural networks to predict 
bandgaps. The recent Atomistic LIne Graph Neural Network 
(ALIGNN) [83] reported a test-set MAE of 0.218 eV for the 
prediction of bulk materials hosted by Materials Project [18] 
(which as of October 2021 has over 144,000 inorganic systems). 
The Materials Graph Network (MEGNet) architecture [84] 
achieved a test-set MAE of 0.32 eV on the bulk systems of the 
Materials Project. Although these neural network models are 
on 3D systems, we note that they do not leverage DFT proper-
ties (which we re-iterate would cause any resulting model to 
require a DFT calculation for future prediction) and had access 
to much larger datasets than the training set we obtained after 
filtering the 2DMatPedia entries (see Sect. “Data Filtering”). 
Overall, although the systems we investigate are not 3D bulk 
systems, we believe this puts the TPOT MAE for the bandgap 
of 2D systems in perspective.

In all 4 models we trained, many of the incorrect predic-
tions occur where the DFT bandgap is 0 eV (which represented 
27% of the training set values). Because of this, we tried simpli-
fying the bandgap problem, by training an XGBoost model to 
predict whether the system was a metal (see Supporting Infor-
mation section 6.5.3), and showed that we could achieve good 
results — for the sake of trying a variety of approaches, we also 
incorporated a purely structural fingerprint, the Sine Matrix 
Eigenspectrum (see Supporting Information Section 6.5.1). As 
this descriptor resulted in some rather large vectors (of length 
40, the maximum number of atoms in any system) with lit-
tle direct physical intuition, we do not directly include it for 
the purposes of this section. Ultimately, that the Sine Matrix 
Eigenspectrum provides a useful model indicates the incorpo-
ration of structural features can provide useful information to 
predict the bandgap.

If we take a closer look at the Roost model, we can see a poor 
generalization to the test set (see Table 3). This indicates that we 
have likely caused it to overfit (which could have been improved 
for example through the use of early stopping). Given that Roost 
is a purely compositional model, this reinforces our conclusion 
that structural descriptors are necessary to the prediction of the 
bandgap of these systems.
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Future work on this problem may achieve better perfor-
mance on the bandgap problem by incorporating other struc-
tural features (e.g., investigating the bond strengths of the 
different elements in the system). We also note the very good 
performance that recent neural network approaches have had 
on the 3D bandgap problem [83, 84], likely due to their choices 
in representation of the structure of the 3D systems. Similar 
to how the Roost model achieves good success when composi-
tional descriptors are appropriate, we may find good success in 
leveraging neural network approaches when structural features 
are required. We note here that Deng et al. [31] achieved good 
results on a variety of molecule properties by incorporating 
various graph representations from different neural network 
architectures. Hence, future work in this domain may benefit 
from the incorporation of the information-dense structural 
fingerprints that may be obtained from neural network-based 
approaches.

2D material exfoliation energy

We observed some of the worst model performance (across 
all models) in the case of the 2D material exfoliation energy. 
Despite being a larger dataset than either the perovskite (144 
total, 129 in the training set) or bandgap (1,412 total, 1,270 in 
the training set), the 3,049 entries in the training set (out of 
3,388 total) for the exfoliation energy proved insufficient to 
achieve good results for any of the models. Moreover, neither 
the compositional nor the structural features were sufficient to 
adequately describe the system.

When we predict exfoliation energies, we’re predicting the 
interaction between layers in an exfoliable material. Overall, 
finding better methods of cheaply approximating these weak 
interactions may provide better results in the prediction of exfo-
liation. Additionally, as the number of datasets which contain 
exfoliation energies increases (such as the 2DMatPedia [11], 
C2DB [14, 15], and JARVIS [17]), further insight into this prob-
lem will be possible, and more-complex (albeit less interpretible) 
models will become feasible.

Additionally, in order to obtain more-accurate predictions of 
exfoliation energy, data generated via a more thorough compu-
tational treatment may be required. We illustrate this by exam-
ining an outlier in the training set at 9.9 J / m2, which all four 
models heavily under-predicted (see Supporting Information 
Figure 8) (7–8 eV in the case of XGBoost and TPOT, and over 9 
eV in the case of Roost and SISSO). Upon closer examination of 
this system, we find that it is actually a pair of layers containing 
N atoms (Figure 4A). The 2DMatPedia [11] reports that this 
system (2dm-id 5985) was not directly sourced by a simulated 
exfoliation from a bulk structure, but instead was obtained by 
substituting the atoms in a hypothetical 2D Sb structure (Fig-
ure 4B). The Sb structure (2dm-id 4275) was obtained by a 

simulated exfoliation from a structure obtained from materials 
project (Figure 4C). The parent bulk material (mp-567409) is 
reported by the Materials Project [18] to be a monoclinic crystal 
which undergoes a favorable decomposition (energy above hull 
is reported as 0.121 eV/atom) to a triclinic system. That being 
said, as this is a hypothetical 2D system, comparison with the 
hypothetical 3D bulk system was necessary for the calculation 
of exfoliation energy. As the prediction of crystal structure is a 
very challenging field with few easy approximations [85], this 
may have contributed further to the extreme value of the exfolia-
tion energy. Indeed, as Zhou et al report [11], the decomposition 
energy lends itself better to assessing whether a material is truly 
stable. Indeed, despite the extremely high exfoliation energy of 
this hypothetical 2D N system, it is reported by the 2DMatPedia 
to have a decomposition energy of 0 eV/atom. This too seems 
somehwat high, as systems containing N-N bonds tend to be 
high-energy materials, typically undergoing strongly exothermic 
decomposition to inert, gaseous N2 [86]. With this in conjunc-
tion with the observation that our models all predict exfoliation 
energies significantly lower than the tabulated values, we have 
reason to believe that this system would be far easier to exfoliate 
than the  10 eV exfoliation energy implies. Moreover, this system 
may have a strong energetic preference to decompose further 
into N2, which additional DFT work could reveal. Overall, this 
underscores the importance of obtaining high-quality data, and 
filtering that high-quality data, for the training of interpretable 
models.

Future outlook

As ML is further integrated into materials discovery workflows, 
we anticipate that the numerous successes neural networks have 
presented [1–3, 32–41, 87–89] will continue to propel them onto 
the cutting edge of chemical property prediction. This comes 
with the challenge of honing our techniques for their interpreta-
tion, an area which has seen much interest in recent years, and 
where there is still plenty of opportunity for further develop-
ment [90, 91]. We also expect AutoML techniques such as TPOT 
will continue gaining traction in materials discovery, due to the 
amount of success and attention they have recently had [43–48]. 
This too presents the challenge of interpretability if highly com-
plex pipelines are generated (see Sect. 2.1 and 3.1). We note 
here that part of the value that AutoML techniques bring is the 
ability to make advanced techniques accessible to a wider audi-
ence of researchers by lowering the barrier of entry. Hence, we 
expect that the problem of interpretation may be compounded 
for AutoML (and especially NAS) systems: the ability to auto-
matically extract some level of interpretation from the generated 
pipelines is important for automation to make ML truly acces-
sible to non-experts. Overall, we expect that as neural network 
models and AutoML algorithms continue to grow in capability 
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and complexity, work in developing the tools and techniques 
needed to interpret them will see a greater attention.

In contrast with challenge of interpreting neural networks 
or the pipelines found by AutoML systems, symbolic regression 
tools like Eureqa and SISSO yield an exact equation describing 
the model and are thus easier to interpret. This makes it easier 
to achieve key insights with physical interpretations — such as 
the very intuitive way in which SISSO is able to describe the 
systems. Overall, despite its reduced ability to predict the exfo-
liation energy of a material when compared to the models of 
TPOT, XGBoost, and Roost, we note the mathematical equations 

returned by SISSO provide a direct relationship between the tar-
get properties and model predictions. Additionally, in the case 
of the exfoliation energy, we believe that we may see further 
improvements by including richer structural information. We 
base this on the observation that the Roost model performed 
poorly on both of this problems – recalling that Roost is only 
provided the chemical formula of the system, this could indicate 
that compositional descriptors alone are insufficient to describe 
these properties. Indeed, it is well known that structure and 
energy are intimately related (the fundamental assumption of 
geometry optimization techniques is that energy is a function of 

Figure 4:   Illustrations of  (A) a N-containing system (2dm-id 5985) which persisted as a large outlier across all exfoliation models in the training set, (B) 
the Sb structure (2dm-id 4275) the N-containing system was derived from, and (C) the bulk structure from Materials Project (mp-567409) from which 
the exfoliation of the Sb system was simulated.
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atomic position), hence it can be inferred that exfoliation energy 
and structure are similarly related. In the case of bandgaps, we 
note that there is also a strong dependence on structure; Chaves 
et al [68] notes that the number of layers in a 2D material can 
strongly influence the bandgap, reporting differences of up to 
several eV can occur between the bulk and monolayer form of 
a material.

Interoperability is still a challenge in the materials discovery 
ecosystem. Although it is possible to easily convert between dif-
ferent chemical file formats (e.g., by OpenBabel [92]), and pack-
ages such as Pymatgen [93], Atomic Simulation Environment 
(ASE) [94], and RDKit [95] can easily convert to each others’ 
format, we note that there is a challenge of calculating features 
using a variety of different packages. Some tools expect Pymat-
gen objects (e.g., XenonPy), others expect ASE objects, whereas 
others require RDKit objects (e.g., all of the descriptors in the 
RDKit library) to perform a calculation of features, thus creating 
some standard for the interoperability of these packages would 
be beneficial. Additionally, further efforts should be made to 
report the sources of data used by featurization packages. We 
note that MatMiner [96] is exemplary in this regard: each of the 
featurization classes it defines has a “citation” method return-
ing the appropriate source to credit. Mendeleev [97] is another 
good example of this; within its documentation, a table lists cita-
tions for many (though not all) of the elemental properties it 
can return. Overall, by placing a stronger focus on i) interoper-
ability and ii) data provenance, the Python materials modeling 
ecosystem can be made stronger—and therefore help accelerate 
materials discovery.

Moreover, we note that as models continue to grow in com-
plexity, it will continue to be more important to evaluate their 
complexity if they are to be used for practical applications. 
Although we did not benchmark the models in this study for 
time, if one were to deploy a model in a production setting, it 
would be important to understand the CPU / GPU and memory 
requirements for training and inference to be possible.

All of the models we have investigated in this work required 
sufficient training data to avoid overfitting. Although techniques 
such as cross-validation, early stopping (in the case of neural 
networks and XGBoost), and train/test splitting can help guard 
against (and detect) overfitting, having a sufficiently large data-
set is of the utmost importance to achieve truly generalizable 
models. As a result, there is a critical need for data management 
approaches that satsify the set of FAIR principles. This crucial 
need for effective data management has led to the incorporation 
of data storage tooling in popular chemistry packages including 
Pymatgen [93], ASE [94], and RDKit [95]. Moreover, advances 
in both computational capacity and techniques has given rise 
to studies performing the high-throughput screening of chemi-
cal systems [98–100]. This has resulted in the development of 
tools focusing on the provenance of data, such as the Automated 

Interactive Infrastructure and Database for Computational Sci-
ence (AiiDA) system [101, 102].

Overall, we have identified a series of key issues should see 
more attention as the digital ecosystem surrounding materials 
modeling continues to develop. First, interpretability of mod-
els allows us to derive physical understanding from the avail-
able data. This is a key benefit of symbolic regression tools like 
SISSO, which result in the creation of human-readable equations 
describing the model. Additionally, increasing the accessibility 
of ML techniques through automation (such as in the field of 
AutoML) will allow a wider range of researchers the ability to 
benefit from advances in modeling techniques. Data manage-
ment and data provenance are another major issues, which allow 
us to better understand which datasets can be combined (e.g., 
when combining DFT datasets, the methodologies should be 
consistent between them), and to help us understand if some-
thing intrinsic to the training data is affecting model perfor-
mance. These data management goals are core focus of platforms 
such as Exabyte [103], which provides an all-in-one solution for 
i) storing material data and metadata, ii) storing the methodol-
ogy required to derive a property from a material, and iii) pro-
viding the means to automatically perform calculations, and iv) 
automatically extracting calculation results and storing them for 
the user. This focus on providing a tool that manages materials, 
workflows, and calculations has allowed Exabyte to be a highly 
successful platform, which has led to studies involving auto-
mated phonon calculations [104], high-throughput screening of 
materials for their band structure [105, 106]. Future capabilities 
of the platform are slated to include a categorization scheme for 
computational models to provide even more metadata to track 
the provenance of calculated material properties [107].

Conclusion
In this work, we have performed a series of benchmarks on a 
diverse set of ML algorithms: gradient boosting (XGBoost), 
AutoML (TPOT), deep learning (Roost), and symbolic regres-
sion (SISSO). These models were used to predict (i) the volume 
of perovskites, (ii) the DFT bandgap of 2D materials, and (iii) 
the exfoliation energy of 2D materials. We identify that TPOT, 
SISSO, and XGBoost tend to produce more-accurate models 
than Roost, but Roost works well in systems where composi-
tional descriptors are enough to predict the target property. 
Finally, although SISSO was unable to find an accurate model 
for the exfoliation energy, it provides a human-readable equa-
tion describing the model, facilitating an easier interpretation 
compared to the other algorithms. We believe that interpretabil-
ity will remain a key challenge to address as complex techniques 
(i.e., neural networks and AutoML) become more mainstream 
within the digital materials modeling ecosystem. Overall, as 
tools improving the accessibility of machine-learning continue 
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to be developed, data provenance and model interpretability will 
become even more important, as it is a critical part of ensuring 
the accessibility of these techniques. By working to ensure that 
a wider audience of researchers can achieve insight from the 
rich digital ecosystem of materials design, materials discovery 
can be accelerated.

Methodology
Data sources

Crystal structures for the perovskite systems were obtained from 
the “Stable Inorganic Perovskites” dataset published by Körbel, 
Marques, and Botti [70], as hosted by NOMAD [19]. This data-
set contains a total of 144 DFT-relaxed inorganic perovskites 
identified via a high-throughput screening strategy. Using this 
dataset, we develop a model of perovskite volume. As we rely on 
the use of compositional descriptors for these systems, we have 
scaled the volume of the perovskite unit cell by the number of 
formula units, such that the volume has units of Å3 / formula 
unit.

Structures for 2D materials were obtained from the 2DMat-
Pedia [11], a large database containing a mixture of 6,351 real 
and hypothetical 2D systems. This database was generated via a 
DFT-based high-throughput screening approach, which inves-
tigated bulk structures hosted by the Materials Project database 
[18] to find systems which may plausibly form 2D structures. 
Among other things, the 2DMatPedia provides DFT-calculated 
exfoliation energies and bandgaps, along with a DFT-optimized 
structure for each material. We use this dataset to develop 
models for the bandgap and exfoliation energy of 2D materials. 
Although the dataset reports exfoliation energies in units of eV, 
to facilitate comparison with other works focusing on 2D mate-
rial exfoliation energy, we have converted these into units of J / 
m2. Bandgaps are reported in units of eV.

Because datasets may change and evolve over time, we 
note that all datasets used in this work were accessed during 
the time period between June and December of 2021. Further 
details on the datasets can be found in our supporting informa-
tion section 6.8.

Feature engineering

To facilitate the development of ML algorithms capable of rap-
idly predicting material properties, we focus primarily on fea-
tures that do not require further (computationally intensive) 
DFT calculations. A variety of chemical featurization libraries 
were used to generate compositional and structural descriptors 
for the systems we investigated, and they are listed in Sects. 
“Compositional Descriptors” and “Structural descriptors,” 
respectively. Features with values of NaN (which occurred when 
a feature could not be calculated) were assigned a value of 0.

In the case of the 2D material bandgap, we include the DFT-
calculated bandgap of the respective bulk material; we note that 
these values are tabulated on the Materials Project and can be 
looked up, thus circumventing the need for further DFT work. 
We also note that the 2D and 3D material bandgaps are highly 
correlated with one-another. In effect, our model becomes a cor-
rection on top of the 3D bandgap term and furthermore reduces 
its applicability to systems with a corresponding 3D parent to 
be derived from. We acknowledge this produces a slightly less 
interesting result, but ultimately included it given the difficulty 
of the bandgap prediction problem.

Compositional descriptors

Compositional (i.e., chemical formula-based) descriptors were 
calculated via the open-source XenonPy packaged developed by 
Yamada et al [108]. XenonPy uses tabulated elemental data from 
Mendeleev [97], Pymatgen [93], the CRC Handbook of Chem-
istry and Physics [109], and Magpie [110] in order to calculate 
compositional features. XenonPy does this by combining the 
elemental descriptors (e.g., atomic weight, ionization potential, 
etc.) in various ways to form a single composition-weighted 
value. For example, three compositional descriptors may be 
obtained with XenonPy by taking the composition-weighted 
average, sum, or maximum elemental value of the atomic weight. 
Leveraging the full list of compositional features implemented 
in XenonPy results to 290 compositional descriptors, which are 
explained in greater detail within their publication [108].

The 290 compositional descriptors were used for the per-
ovskite volume prediction, 2D material bandgap, and 2D mate-
rial exfoliation energy prediction problems. We note that these 
descriptors were not used in the Roost model, as it directly takes 
the composition for its input.

Structural descriptors

Some structural descriptors were calculated using MatMiner 
[96], an open-source Python package geared toward data-
mining material properties. Leveraging MatMiner, the follow-
ing 9 descriptors were calculated: Average bond length, average 
bond angle, Global Instability Index (GII) [111], Ewald Sum-
mation Energy [112], a Shannon Information Entropy-based 
Structural Complexity (both per atom and per cell), and the 
number of symmetry operations available to the system. In the 
case of the average bond length and average bond angle, bonds 
were determined using Pymatgen’s implementation of the JMol 
[113] AutoBond algorithm. This list of bonds was also used to 
calculate an average Coordination Number (CN) over all atoms 
in the unit cell. Finally, we also took the perimeter:area ratio of 
the 2D material’s repeating unit.

The structural descriptors were used for the 2D material 
bandgap and 2D material exfoliation energy problems. We did 
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not use these descriptors in the case of the perovskite volume 
prediction problem, and we note that they were not used as 
inputs to the Roost model.

Data filtering

The data filtering methodology was chosen based on the prob-
lem at-hand. The perovskite volume prediction problem did not 
utilize any data filtering. In the case of the 2D material bandgap 
and exfoliation energy prediction problems, the data obtained 
from the 2DMatPedia were required to satisfy all of the follow-
ing criteria: 

1.	 No elements from the f-block, larger than U, or noble gases 
were allowed.

2.	 Decomposition energy must be below 0.5 eV/atom.
3.	 Exfoliation energy must be strictly positive.

Additionally, in the case of the 2D material bandgap, data were 
required to have a parent material defined on the Materials 
Project. This was done because we use the Materials Project’s 
tabulated DFT bandgap of the bulk system as a descriptor for 
the bandgap of the corresponding 2D system.

ML models

For each dataset investigated, 10% of the given dataset was 
randomly selected to be held out as a testing set. The same 
train/test split was used for all 4 models considered (XGBoost, 
TPOT, Roost, and SISSO). To facilitate a transparent comparison 
between models, in all cases we report the MAE, RMSE, Maxi-
mum Error, and R2 score of the test set.

Gradient boosting with XGBoost

For details on how XGBoost works, we refer the reader to the 
XGBoost publication by Chen and Guestrin [24] and to the 
package’s documentation located at the following URL: https://
xgboost.readthedocs.io/en/stable/. When training XGBoost 
models, 20% of randomly selected data were held out as an 
internal validation set. This was used to adopt an early-stopping 
strategy, where if the model RMSE did not improve after 50 
consecutive rounds, training was halted early. When training, 
XGBoost was configured to optimize its RMSE.

Hyperparameters were optimized via the open-source 
Optuna [114] framework. The hyperparameter space was sam-
pled using the Tree-structured Parzen Estimator (TPE) approach 
[115, 116]. To accelerate the hyperparameter search, we lever-
aged the Hyperband [117] approach for model pruning, using 
the validation set RMSE to determine whether to prune a model. 
Hyperband’s budget for the number of trees in the ensemble 
was set to range between 1 and 256 (corresponding with the 

maximum number of estimators we allowed an XGBoost model 
to have). The search space for hyperparameters is found in 
Table 4.

The variable names here (e.g., learning_rate) corre-
spond with the variable names listed in the documentation of 
XGBoost. Additionally, Optuna was used to select a standardi-
zation strategy, choosing between Z-score normalization (i.e., 
subtracting the mean and dividing by the standard deviation) 
or Min/Max scaling (i.e., scaling the data such that it has mini-
mum 0 and maximum 1). To prevent test-set leakage, the chosen 
standardizer was fit only with the internal training set, i.e., the 
portion of the training set that was not held out as an internal 
validation set. Optuna performed 1000 trials to minimize the 
validation set RMSE. We report the results of the final optimized 
model.

AutoML with TPOT

The AutoML tool TPOT was leveraged with a population size of 
100 pipelines, with training proceeding for a total of 100 genera-
tions. The default maximum evaluation time of 5 minutes per 
model was set. As TPOT is an actively maintained open-source 
repository, for the purposes of future replication we enumerate 
this configuration’s set of allowable components in Table 55. The 
models listed in this table could be combined in any order any 
number of times. Models were selected such that their 10-fold 
cross-validated RMSE was optimized. TPOT also conducts its 
own internal optimization of model hyperparameters, thus we 
did not perform our own hyperparameter optimization of the 
TPOT pipelines.

Neural networks with Roost

The Roost Neural Network (NN) architecture was leveraged 
using the “example.py” script provided with its source code. 
Roost is a message-passing graph neural network which lever-
ages the material stoichiometry instead of the material struc-
ture for its inputs. For details on the specific architecture (e.g., 
the number of message-passing layers, activation functions, 
etc.) we refer the reader to the original paper by Goodall et. 

Table 4:   Ranges of hyperparameters screened with Optuna for all 
XGBoost runs. The search was inclusive of the listed minima and maxima. 
Hyperparameters use the same variable naming convention as in the 
XGBoost documentation.

Hyperparameter Minimum Maximum

Learning_rate 0 2

Min_split_loss 0 2

Max_depth 0 256

Min_child_weight 0 10

Reg_lambda 0 2

Reg_alpha 0 2
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al. for more details on how it is formulated [34]. Our work 
used the reference implementation found on the GitHub page 
reported by the original Roost publication.

Models are trained for a total of 512 epochs with the 
default settings. In the case of Roost models, the only feature 
provided is the composition of the system, given through the 
chemical formula.

Symbolic regression with SISSO

The first step of using SISSO is reducing the number of pri-
mary features down from a list of hundreds down to the tens. 
This is done due to the exponential computational cost of 
SISSO with respect to the number of features and the number 
of rungs being considered. To perform this down selection 
we first generate a rung 1 feature space including all of the 
primary features and operators that are used in the SISSO 
calculation. We then check how often each of the primary 
features appear in the ten thousand generated features that 
are most correlated to the target property. Additionally, we 
add units to all of the preselected primary features to ensure 
all generated expressions are valid.

In many cases, it was easy to infer what the abstract units 
are for the XenonPy descriptors. In a few cases where the 
units weren’t as clear, we compared the reported elemental 
values of those units to those of known sources (e.g., the 
NIST WebBook [118] or the CRC Handbook [109]) in order 
to determine the units. Finally, although it was generally easy 
to determine where the source of a feature was, sometimes we 
were unable to determine a source. In these cases, we refer to 
the features as a "XenonPy" feature (for example, “ rXenonPy”).

The optimal number of terms (up to 3) and rung (up to 2), 
i.e., the number of times operators is recursively applied to the 
feature space, is determined using a five-fold cross-validation 
scheme. For all models, we allow for an external bias term to 
be non-zero and use a SIS selection size of 500. The resulting 
descriptors were then evaluated using the same external test 
set for each of the other methods. To take advantage of SISSO’s 
ability to generate new composite descriptors and operate in 
large feature spaces, additional features were included in the 
SISSO calculations. A full list of features used in the SISSO 
work can be found in the linked GitHub repository.
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