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In the recent years the demand of high energy density, high power density energy storage device 
with long cycle stability increased because of their vast applications from portable electronics devices 
to power tolls and hybrid electric vehicles. Also, the developments in renewable energy sources also 
created immediate demand for high energy density energy storage devices. Supercapacitors are found 
to be suitable to fulfill the current demand of energy storage devices. Transition metal nanomaterials are 
considered to store high charge because of their large surface area and variable oxidation states. In the 
present review, we discussed the recent advances in the area of supercapacitors using transition metal 
oxides, nitride, sulfides, diselenides, phosphides, and ferrites. The effect of surface morphology, synthesis 
process, and various doping/composites on specific capacitance of supercapacitors were discussed in 
detail.

Introduction
The excess exhaustion of fossil fuels has raised great concern 
about global energy crisis as well as environmental pollution 
and demand the development of clean and renewable energy 
sources such as solar energy, wind energy, hydroenergy, and 
biomass [1]. The energy obtained from renewable sources has 
tremendous potential as an alternative to energy generated from 
conventional energy sources. The replacement of the traditional 
energy sources with clean and renewable energy is essential for 
continuous energy supply. However, the energy produced from 
these renewable energy sources depend on climatic conditions 
or geographical locations. These renewable energy sources need 
to be harvested when available and stored till required. There-
fore, the development of high energy density energy storage 
systems is required to fulfill the energy needs around the world 
without any significant environmental impact.

Recently, energy storage devices such as rechargeable bat-
teries, fuel cells, and supercapacitors have attracted significant 
attention, owing to their diverse applications in hybrid electric 
vehicles, energy management, and smart portable electron-
ics [2–5]. Rechargeable batteries such as lithium-ion batteries 

have been widely employed for various commercial application 
ranging from consumer electronics to hybrid electric vehicles. 
However, rechargeable batteries possess high energy density 
but often suffers from slow charging/discharging, limited 
cycle life, high cost of Li metal, low power density, poor cycle 
life, and environmental issues. Currently, supercapacitors are 
becoming more popular to overcome the issues raised by Li on 
rechargeable batteries such as low power density and limited 
cycle life [6].

Supercapacitors also known as electrochemical capacitors 
are important elements of modern energy storage technologies, 
owing to their notable properties such as higher energy density, 
prolonged stability, large cycle ability, and high power density 
as compared to batteries [7, 8]. Supercapacitors have supe-
rior properties as it provides high power density, fast charge/
discharge rate, and long cycle life. Batteries are able to deliver 
energy density between 150–500 Whkg−1 but have limited power 
densities due to slow electron and ion transport at high rates 
with discharge time more than 10 min [9, 10]. In contrast, super-
capacitors, provide power output between 10–20 kWkg−1 and 
release energy in less than 10 s [11, 12].
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Meanwhile, the big challenge for the advancement in the 
field of supercapacitors is their low energy density [16, 17]. 
The comparison between performance parameters of batteries 
and supercapacitors is shown in Table 1. Moreover, due to their 
distinguished properties, supercapacitors have emerging appli-
cations that require fast on–off response such as wind power 
generation, photovoltaics, railways, hybrid electric vehicles, 
aerospace, portable, and wearable electronics [18, 19]. Superca-
pacitors are classified into two types on the basis of their charge 
storage mechanism, i.e., electrochemical double layer capaci-
tors (EDLCs) and pseudocapacitors (PCs). EDLCs stores charge 
in strictly electrostatic manner by reversible ion adsorption at 
electrode interface, whereas energy storage mechanism for PCs 
is faradic redox reaction [20]. Hybrid supercapacitors, a com-
bination of EDLCs and pseudocapacitors, are another type of 
supercapacitors and it utilizes the amalgamation of faradic and 
non-faradic mechanisms to store charges. There are many fac-
tors such as electrode material, electrolyte type, and operating 
potential windows that affects the performance of supercapaci-
tor in terms of specific capacitance, cyclic stability, energy den-
sity, and power density. Out of these factors, the crucial one 
is the selection of electrode material that significantly affects 
the advancement in supercapacitor technology. The commer-
cially fabricated supercapacitors often used carbon as electrode 
materials [21]. Carbon-based electrode materials store/release 
charges via physical adsorption/desorption of electrolytic ions 
on the surface of the electrode and this type of charge storage 
mechanism provide less than 10 Whkg−1 energy density [22]. 
For practical utilizations, high energy density is always needed; 
therefore, so many efforts have been made in order to develop 
several other electrode materials with higher specific capaci-
tance. The search of new electrode materials is always at top pri-
ority and a substantial challenge in order to reach the required 
supercapacitor performance.

Transition metal-based materials such as oxides, sulfide, 
selenides, nitrides, phosphide, and carbides can store much 
more energy than carbon due to faradaic charge transfer process 
in the electrochemical process [23, 24]. Due to their high theo-
retical specific capacitance (100–2200 Fg−1), abundant sources, 
and low cost, transition metal oxides have attracted great atten-
tion of the researchers for supercapacitor applications [25]. Also, 
these materials possess multiple oxidation states due to which 

multiple electrons transfer exists and discharge time extends, 
resulting in improving energy density in rapid Faraday redox 
reactions. In recent years, attention has been focused on various 
transition metal oxides such as MnO2, RuO2, transition metal 
hydroxides and their derivatives such as sulfides and selenides 
[26]. In addition to this, some transition metal hydroxides 
along with their derivatives such as Ni, Co, Cu, and Cd-based 
materials are often used to combine with capacitive electrode 
materials in order to assemble hybrid supercapacitor [27, 28]. 
These hybrid supercapacitors can attain high working poten-
tial and contribute to larger and fast charge storage capabilities 
and thus, considered as most promising materials for next gen-
eration supercapacitors. Various characteristics such as specific 
capacitance, energy density, power density, and cyclic ability of 
different transition metal-based supercapacitors are depicted in 
Fig. 1 via radar plot (Table 2).

It is evident that the key criteria for supercapacitors are 
rapid charge/discharge capability and long cycling stability of 
minimum 5,000 cycles. However, the low electrical conductiv-
ity, low power density, poor electrochemical stability, and sev-
eral other issues still limit the transition metal-based materials 
for large-scale applications [29]. Recently, transition metals 
with nanoscale dimensions have aroused significant attention 
in numerous applications, owing to their attractive intrinsic 
characteristics, such as small size effect and surface effect [30, 
31]. Compared with bulk materials, the combination of transi-
tion metals with carbon materials, conducting polymers, with 

TABLE 1:   Comparison between 
performance parameters of 
batteries and supercapacitors 
[13–15].

Performance parameters Batteries Supercapacitors

EDLC TM

Charging/discharging 0.2–5 h 1–10 s Moderate High

Power density  < 1000 WKg−1 500–10,000 WKg−1 High Moderate

Energy density 10–100 WhKg−1 1–10 WhKg−1 Low High

Life cycle 500–1000 h 500,000 h High Low

Figure 1:   Radar plot of various characteristics of different transition 
metal-based supercapacitors.
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introduction of lattice defects, heterostructures, metal heter-
oatoms, etc., are found to have improved electrochemical per-
formance and thus valuable for the supercapacitor applications 
[32, 33]. Moreover, transition metal-based nanomaterials display 
large surface area and thus large amounts of surface electrons 
aggregate in the long-term charge/discharge process.

A large number of studies have drawn tremendous attention 
toward transition metal-based nanomaterials for supercapacitor 
applications. However, the deeper research is still necessary to 
understand the energy storage process and attenuation mecha-
nisms. Additionally, the efficient discussion about the structure 
and design strategies, high power/energy densities, and fast 
pseudocapacitive reaction kinetics is demanded for the prac-
tical implementation of transition metal-based electrodes for 
supercapacitors. In this review, our prime focus is to summarize 
the recent advances in the field of transition metal-based nano-
material electrodes for supercapacitors. Recent developments 
in the field of transition metal sulfides, selenides, oxides, ferri-
tes, nitrides, and phosphides and their performance in terms of 
energy/power density, electrochemical stability, cyclic life have 
been discussed in detail. The review provides comprehensive 
overview of latest advancement in the various transition metal-
based nanomaterials and their composites as well as recent 
methods to improve upon their rate capacities and cyclic per-
formances from the year 2010 to present. Various strategies such 
as morphological control, interface and defect engineering, and 
composite fabrication for the enhancement in the electrochemi-
cal performances of the supercapacitors have been highlighted. 
More importantly, we discussed the challenges and perspec-
tives of developing transition metal-based nanomaterials and 
their composites, along with the possible strategies and research 
directions to improve the electrochemical performances of elec-
trode materials for advanced supercapacitors.

Transition metal oxides (TMO)
A good choice of electrode materials with remarkable electrical 
conductivity and a large specific surface area is an important 
factor for developing high-performance supercapacitors [34]. 
Transition metal oxide materials have been emerged as promis-
ing candidates to be used as electrodes of energy storage devices 
on account of their huge resources, easy synthesis procedure, 
eco-friendly nature, and other intriguing features such as large 
surface area, various morphologies, and high theoretical spe-
cific capacitance. Transition metal oxide materials have high 
specific capacitance (100–2000 Fg−1) and higher energy density 
than carbon-based materials as well as better chemical stability 
than polymer materials [35, 36]. High energy and power density 
are the major requirement for wearable electronic equipment 
like flexible supercapacitors [37]. To enhance the capacitive 
behavior of supercapacitors, research community focused on 

different transition metal oxides such as RuO2, ZnO, CoO, CuO, 
and NiO and their synthesis methods like hydrothermal [38], 
co-precipitation [39], microwave combustion method [40], and 
many more because of wide variety of structures and variable 
valences of TMOs.

Nwanya et al. deposited CuO films on indium tin oxide 
(ITO) substrate via successive ionic layer adsorption and reac-
tion (SILAR) approach. The prepared material showed the good 
electrochemical performance which may be attributed to their 
nanosheet-like and nanorod-like morphology. It was found 
that nanosheet-like structure film showed specific capacitance 
of 566.33 Fg−1[41]. Chaudhary et al. reported that doping of 
transition metals such as Co and Fe can significantly enhanced 
the electrochemical performance of copper oxide nanostruc-
tured-based supercapacitors. They synthesized pure, Co-doped, 
and Fe-doped CuO via simple co-precipitation method. They 
reported that Fe-doped CuO-based electrodes showed best 
electrochemical performances and the specific capacitance was 
obtained as 186 Fg−1 at 5mVs−1 with retention rate of 90.47% 
after 5000 charge–discharge cycles. They reported that the high 
specific capacitance of Fe-doped CuO electrode was due to their 
nanorod-like morphology and the synergistic effect between Fe 
metal ion and CuO, which provided more reactive sites for elec-
trochemical reactions [39].

It has been reported that the specific capacitance of transi-
tion metal ion-based electrodes can be improved by doping of 
TMO. Microwave irradiation method was used to synthesize 
ruthenium and cerium-doped tungsten oxide nanostructures 
by Paulraj and co-workers. They reported that small doping 
of transition metals like Ru and Ce can significantly improve 
the electrochemical performance of tungsten oxide material. 
The pure tungsten oxide nanostructures showed the specific 
capacitance of 13.9 Fg−1 at a current density of 0.1 Ag−1, while 
2 wt% Ru-doped and 2 wt% Ce-doped tungsten oxide mate-
rial exhibited specific capacitances of 39.50 Fg−1and 52 Fg−1, 
respectively. The energy densities of pure, Ru-doped, and Ce-
doped WO3 were found to be 1.90, 5.49, and 7.22 Whkg−1, 
respectively [42]. To get large operating potential window up 
to 1.6 V, Wang et al. prepared a flexible electrode based on 
MnO2 carbonized cotton textile composite via chemical reac-
tion method. The prepared electrode demonstrated highest 
capacitance of 751.78 Fg−1 at 1 mA.cm−2 with good cyclabil-
ity of 98.7% after 10,000 cycles. The energy density and power 
density were found to be 5.71 mWhcm−3 and 3.97 Wcm−3, 
respectively [43]. Cui et  al. successfully synthesized MnO2 
nanoparticles on rGO/lignin-based porous carbon (RGO/PC) 
to form a ternary composite using electrodeposition method. 
The prepared ternary electrode showed the specific capacitance 
of 1136mFcm−2 at a current density of 1mAcm−2 and delivered 
energy density of 0.253mWh.cm−3 at 0.5mAcm2 and power 
density of 0.018 Wcm−3 at 5mAcm-2. They further reported 
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TABLE 2:   Electrochemical performance of various transition metal-based materials compared with other existing literatures.

S. No Electrode material
Synthesis 
method Morphology Electrochemical performance

References
Specific capaci-

tance Cyclability
Power density 

(W.Kg−1)
Energy Density 

(Wh.Kg−1)

1 NiSe2 Hydrother-
mal method

Hexapod-like 75 F g−1 5000 (94%) – – [111]

2 NiSe2 Hydrother-
mal method

Mushroom-like 262 mAh g−1 8000
(83.4%)

– – [112]

3 MoSe2 Hydrother-
mal method

Nanosheets 16.25 F g−1 10,000
(87%)

7.5 – [113]

4 N-rGO/NiSe2 Solvother-
mal method

Agglomerated 2451.4 F g−1 10,000
(85.1%)

841.5 40.5 [114]

5 PANI/CoSe2/NF Electro-
deposition 
method

Ball-like 1980 F g−1 – – – [115]

6 CoSe2/rGO Microwave 
method

Agglomerated 761 F g−1 10,000
(90%)

– 43.1 [116]

7 CoSe2/NC Selenylation Nanosheets 120.2 mAh g−1 10,000
(92%)

– – [117]

8 WSe2/rGO Hydrother-
mal method

Nanosheets 389 F g−1 3000
(98.7%)

400 34.5 [118]

9 VSe2/rGO Hydrother-
mal method

Cuboid-like 680 F g−1 10,000
(81%)

3.3 kWkg−1 212 [119]

10 Ni3S2 Hydrother-
mal method

Dendritic-like 626.1 Fg−1 2,000 – – [89]

11 Ni3S4 Hydrother-
mal method

Microspheres 1796 Fg−1 1,000
(80.5%)

– – [91]

12 FeS2 Microwave 
assist 
method

Nano ellipsoid 515 Cg−1 5,000
(91%)

271.2 64 [95]

13 MnS Self-
template-
etched 
method

Nanoplates 378 Fg−1 4,000
(90%)

– – [96]

14 NiCo2S4/NiS Hydrother-
mal method

Nanospheres 1947.5 Fg−1 1,000
(90.3%)

160 43.7 [100]

15 NiCo2S4/AC Sequential 
method

Onion-like 880 Fg−1 10,000
(87%)

1583 42.7 [101]

16 NiCo2S4@CoS2@
carbon cloth

Hydrother-
mal method

Nanostructures 1565 Fg−1 8,000
(90%)

242.8 17 [102]

17 MnS@rGO Electro-
deposition 
method

Sheet-like 2,220 Fg−1 1,000
(94.6%)

– – [106]

18 MnS@rGO@
Ni-foam

Hydrother-
mal method

Nanosheet 150.3 mAhg−1 – 1,500 21.3 [107]

19 CrN/AC Nitridation Polyhedral 75 F/g _ _ 30 Wh.kg-1 [68]

20 CrN OAMS Triangular 17.7 mF cm−2 92.2% (20,000 
cycles)

18.2 Wcm−3 7.4 mWh cm−3 [70]

21 HfN film DC magne-
tron

typical columnar 
structure

5.6 mF cm−2 _ _ _ [72]

22 NbN Magnetron 
sputtering

Dense grain 707.1 F cm−3 92.2%(20,000 
cycles)

_ _ [73]

23 VN/NCS Nitridation Sphere like 59F/g _ 801 W.Kg−1 19.8 Wh.Kg−1 [69]

24 CrN@NCs@CP Magnetron 
sputtering

_ 132.1 mF cm−2 95.9% (20,000 
cycles)

0.41 mW cm−2 2.7 Wh kg−1 [76]

25 Fe2N@OMC Nanocast-
ing with 
NH3 treat-
ment

Homogeneous 
distribution

398 F/g 85% (1000 
cycles)

_ _ [78]

26 NCF-N@FG/NF-3 Nitrogeniza-
tion

_ 2110 F/g 97.6% (5000 
cycles)

7484.2 W/kg 56.3 Wh/kg [80]
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TABLE 2:   (continued)

S. No Electrode material
Synthesis 
method Morphology Electrochemical performance

References
Specific capaci-

tance Cyclability
Power density 

(W.Kg−1)
Energy Density 

(Wh.Kg−1)

27 Fe-doped CuO Co-precipi-
tation

Nanorod 186 F/g 90.47%(5000 
cycles)

_ – [39]

28 CuO thin film SILAR Nanosheet 566.33 F/g _ _ _ [41]

29 α-Fe2O3 LPD Porous nature 960 F/g _ _ _ [48]

30 MnO2-based 
composite

Hydrother-
mal

– 751.78 F/g 98.7% (10,000 
cycles)

3.97 W cm−3 5.71 mWh cm−3 [43]

31 Co3O4–SnO@
SnO2

Hydrother-
mal

Nanosheet array 704F/g 91.5% (2000 
cycles)

_ _ [38]

32 NiCo2O4@
NiMoO4/PANI/
CC

Hydrother-
mal and 
polymeriza-
tion

holothurian 1322.2 F/g 92.36% (5000 
cycles)

443.2 W kg−1 90 Wh kg−1 [49]

33 Ru compound Chemical 
route

Agglomerated 
particles

797.7 F/g 90.2% (2000 
cycles)

50 W/Kg 17.3Wh/Kg [46]

34 Ce-doped WO3 Microwave 
irradiation 
method

Agglomerated 
particles

52 F/g _ _ 7.22 Wh/Kg [42]

35 Co2P Microwave-
assisted 
hydrother-
mal treat-
ment

Nanoshuttles 246 Fg−1 72% (1000 
cycles)

– – [124]

36 CoP Hydrother-
mal method 
followed by 
Phosphida-
tion

Nanowire 571.3 mFcm−2 82% (5000 
cycles)

114.2 mWcm−3 0.69 mWh/cm−3 [125]

37 Mn-doped CoP Hydrother-
mal Method

Nanosheet-
Nanowire cluster 
arrays

8.66 F cm−2 – 193 W Kg−1 35.21Wh Kg−1 [126]

38 Cu3P Direct 
electro-
oxidation 
and
phosphida-
tion

Nanotube arrays 300.9 F g−1 81.9% (5000 
cycles)

17,045.7 W kg−1 44.6 W h kg−1 [123]

39 Ni–Co–P Hydrother-
mal method 
followed by 
phosphori-
zation

Nanowire 1395 F g−1 83.04% (20,000 
cycles)

46.53 kW kg−1 53.31 W h kg−1 [128]

40 Ni–Fe–P Hydrother-
mal method 
followed by 
Phosphida-
tion

Nanosheet 1358 C g−1 91.5% (10,000 
cycles)

800 W kg−1 50.2 Wh kg−1 [129]

41 Zn–Ni–P Hydrother-
mal method 
followed by 
phosphori-
zation

Nanosheet 
arrays

384 mAh g−1 93.05% (20,000 
cycles)

611 W kg−1 90.12 Wh kg−1 [130]

42 Mn–Ni–Co–P Electro-
deposition 
method 
followed by 
low-tem-
perature PH 
3 plasma 
treatment

Nanoflower 1690 C g −1 97.4% (4500 
cycles)

749.91 W kg−1 55.25 Wh kg −1 [131]
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that MnO2 nanoparticles possessed nanoflake-like morphol-
ogy which after interconnection formed a porous structure due 
to which more specific area was provided to active material for 
the intercalation process [44]. In a report, sol–gel method was 
used to fabricate a distinctive flexible electrode based on ZnO/
rGO/ZnO free-standing sandwich-type material. According to 
this study, graphene oxide was used as a substrate for deposi-
tion of ZnO films. The specific capacitance of prepared elec-
trode was reported as 60.63 Fg−1 at scan rate of 5 mVs−1[45]. 
Wang et al. synthesized SnO2nanosheets on carbon cloth by 
using simple hydrothermal method and then annealed under 
argon atmosphere to get composite of SnO@SnO2. To improve 
the specific capacitance and cycle stability, Co3O4 was added to 
SnO@SnO2 skeleton to prepare a hierarchical nanostructured 
composite Co3O4-SnO@SnO2. The specific capacitance of pre-
pared composite electrode was reported to be 1.056 Fcm−2 at 
1 mAcm−2 with excellent stability of 91.5% after 2000 cycles 
[Fig. 1(a)–(c)][38]. Guo et al. prepared a ruthenium-based 
nanohybrid compound comprised of ruthenium nanoparticles 
capped by cysteine and hydrous ruthenium oxide (RuO2.H2O). 
It was reported that Ru-based compound exhibited great specific 
capacitance of 797.7 Fg−1 at the scan rate of 0.01 Vs−1, while 
RuO2.H2O and Ru nanoparticles possessed specific capacitances 
of 231.1 Fg−1 and 134.0 Fg−1, respectively, at the scan rate of 0.01 
Vs−1. Ruthenium compound retained its initial capacitance of 
90.2% after 2000 cycles and showed the better electrochemi-
cal stability as compared to hydrous ruthenium oxide and Ru 
nanoparticles. Among all these three electrodes, Ru compound 

also attained maximum energy density of 17.3Whkg−1, while 
RuO2.H2O and Ru nanoparticles possessed energy densities of 
4.93 and 2.11 Whkg−1, respectively. The improved electrochemi-
cal performance of ruthenium compound were because of the 
synergistic effect, which facilitated the electron–proton transfer 
process. [46]. Huang et al. successfully fabricated the flexible 
microsupercapacitor by depositing platinum thin films and 
hydrous ruthenium oxide on polyethylene terephthalate (PET) 
sheet. The prepared supercapacitor exhibited great energy stor-
age capacity along with power density of 73,460 mWcm−3 and 
energy density of 24.9 mWhcm−3[47]. Khatavkar et al. deposited 
α-Fe2O3 on thin and flexible stainless steel mesh substrate via 
liquid phase deposition technique. From galvanic charge–dis-
charge (GCD) curves, the highest specific capacitance was cal-
culated to be 960 Fg−1 at 4 mA cm−2, while from cyclic voltam-
metry (CV) curve, the specific capacitance was obtained to be 
548 Fg−1 at 5mVs−1[48]. The improved specific capacitance was 
reported due to the synergistic effect between the components. 
Shen et al. successfully grown the nanowire arrays of NiCo2O4 
on carbon cloth by hydrothermal method with annealing pro-
cess. By following the same procedure, NiMoO4nanosheets were 
grown on NiCo2O4. At last, in situ polymerization was used to 
coat the surface of NiCo2O4@NiMoO4 arrays with polyaniline 
(PANI) nanorods to get NiCo2O4@NiMoO4/PANI/CC. The 
prepared composite revealed holothurian-like morphology 
[Fig. 1(d), (e)], which provide better electrochemical transporta-
tion of ions within the electrolyte. The specific areal capacitance 
of prepared composite electrode was found to be 1322.2 Fg−1 at 

TABLE 2:   (continued)

S. No Electrode material
Synthesis 
method Morphology Electrochemical performance

References
Specific capaci-

tance Cyclability
Power density 

(W.Kg−1)
Energy Density 

(Wh.Kg−1)

43 NiFe2O4 Solvother-
mal Method

Spherical 368 F g−1 88% (10,000 
cycles)

225.8 W kg−1 10.4 Wh kg−1 [161]

44 MnFe2O4 Co-pre-
cipitation 
method

Spherical 173 F g−1 105% (10,000 
cycles)

1207 W kg−1 12.6 Wh kg−1 [156]

45 ZnFe2O4 Ultrasonic 
irradiation 
technique

Spherical 712 F g−1 96.6% (2000 
cycles)

250 W kg−1 24.2 Wh kg−1 [157]

46 CuFe2O4 Solvother-
mal method

Spherical 189.2 F g–1 84% (1000 
cycles)

– – [158]

47 CoFe2O4 Hydrother-
mal process

Nanoplatelets 
(square-shaped 
nanoparticles)

429 F g–1 98.8% (6000 
cycles)

– 10.68 Wh kg−1 [159]

48 Ce0.5Co2Fe1.5O4 Hydrother-
mal method

Spherical grain 
nanoparticles

937.50 F g−1 82.3% (10,000 
cycles)

– – [160]

49 Ni0.5Zn0.5Fe2O4 Hydrother-
mal method

Thin hexagonal 
platelets

504 F g−1 93.05% (20,000 
cycle)

450 kW kg−1 56 kWh kg−1 [163]

50 CuCoFe2O4 Self-
combustion 
method

Spherical 220 F g−1 – 605 W kg−1 34.7 Wh kg−1 [162]
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current density 1.0 mAcm−2 with retention rate of 92.36% after 
5000 cycles [Fig. 1(f)]. The maximum energy and power densi-
ties were found to be 90 Whkg−1 and 443.2 Wkg−1, respectively 
[49].

Liu et  al. prepared a hybrid structure of phosphorous-
doped Co3O4 nanoparticles in situ inserted into phosphorous 
and nitrogen co-doped carbon nanowires by following pyroly-
sis–oxidation–phosphorization strategy. The prepared hybrid 
structure maintained 1D-oriented arrangement, which exhibited 
a large surface area due to hierarchically porous structure and 
enabled sufficient diffusion and transfer of electrolyte ions. It 
was reported that the fabricated hybrid P-Co3O4@P, N–C deliv-
ered the highest specific capacity of 669 mCcm−2 at 1 mAcm−2 
with good cyclability and also achieved a high energy density 
of 47.6 Whkg−1 at 750 Wkg−1[50]. Li et al. synthesized Co3O4/
NiCoAl-layered double hydroxide nanowire arrays by using 
simple hydrothermal method. They reported that layered dou-
ble hydroxide nanosheets provided large electroactive surface 
area and were uniformly distributed on Co3O4 nanowires which 
allowed fast electron transport and enhanced the electrochemi-
cal performance of prepared material [51]. Recently, Lee et al. 
reported that cobalt–vanadium-layered double hydroxides could 
become a good candidate as an electrode for hybrid superca-
pacitors. To enhance the charge storage mechanism, they con-
trolled the molar ratio of vanadium and cobalt. It was noticed 
that prepared electrode exhibited highest specific capacitance of 
1579 Fg−1 at 1 Ag−1. The prepared electrode also possessed high-
est energy density of 75.71 Whkg−1 at a power density 1043.72 
Wkg−1 with cyclic stability 82% after 1000 cycles [52]. Shinde 
et al. used a combination of chemical deposition strategies to 
synthesize multicomponent CoMn2O4@NiCo-OH and VN@
NC nanostructures on carbon cloth. The prepared electrode 
showed high specific capacity of 349.0 mA h g−1 at 1 mA cm−2 
with good cyclic stability. The fabricated device demonstrated 
maximum specific energy of 68.83 Whkg−1at a specific power 
of 2048 Wkg−1[53].

Transition metal nitrides (TMN)
Transition metal nitrides are emerging as unprecedented elec-
trode materials for energy storage devices involving superca-
pacitors, lithium-ion batteries, lithium-ion hybrid capacitors, 
and lithium–sulfur batteries because of their unique electronic 
structure, superior chemical stability, high conductivity and 
excellent catalytic activity [54]. Generally, TMNs have a special 
combination of several properties such as metallic, ionic, and 
covalent [55, 56]. Incorporation of nitrogen atoms can change 
the density of state in the d-band. The less shortage in d-band 
occupation and high density of states of metal near the Fermi 
level improves the electron donating ability of metal nitrides 
which is responsible of improved electrochemical properties and 

noble metal-like activities to TMNs [57]. TMNs have higher 
volumetric densities compared to carbon-based materials 
(generally < 1.0 g cm−3). For example, the volumetric density of 
NbN[58], VN [59], TiN [58], MoN [60], and WN is 8.47 g cm–3, 
6.13 g cm–3, 5.4 g cm–3, 9.2 g cm–3, and 17.7 g cm–3, respec-
tively [57]. Because of high volumetric densities, TMNs offer 
high volumetric energy density [59]. Transition metal nitrides 
are the interstitial compounds of group IVB–VIB in which the 
nitrogen atoms are incorporated into the interstitial sites of the 
parent metals [61].

Synthesis procedure of TMNs also plays an important role 
toward the electrochemical performances of TMNs [59]. The 
formation of nitrides undergoes some issues because of the 
thermodynamic barrier in nitride formation that involves the 
formation and deformation of triple bond between nitrogen 
atoms. Various synthesis methods to synthesize TMNs have 
been discussed in literature. Some of the methods are sol–gel, 
co-precipitation, hydrothermal, and sonochemical [58, 62]. 
TMNs such as vanadium nitride (VN), titanium nitride (TiN), 
niobium nitride (Nb4N5 or NbN), and molybdenum nitride 
(MoN or Mo2N), with different morphologies including nano-
particles (NPs), nanorods (NRs), nanowires (NWs), nanotubes 
(NTs), nanosheets (NSs), and nanohybrids were synthesized and 
used for supercapacitor applications [58, 59, 63–67]. Das et al. 
prepared the nitride nanoparticles of chromium and cobalt by 
simple nitridation of their corresponding metal oxides at rela-
tively low temperature, in the presence of ammonia and oxygen. 
The particle size of synthesized nanoparticles was found in the 
range of ~ 20–30 nm. CrN nanoparticles showed polyhedral 
morphology, while agglomeration of particles was observed in 
CoN nanoparticles. In this study, the specific capacitances of 
CrN/AC and CoN/ AC were found to be 75 Fg−1 and 37 Fg−1, 
respectively, at a current density of 30 mAg−1 [68].

Jiang et al. prepared vanadium nitride and nitrogen-doped 
carbon hollow sphere nanocomposite by simple nitridation of 
corresponding oxide precursor (V2O3/C). The prepared com-
posite showed excellent energy density of 19.8 Whkg−1 at a 
power density of 801 Wkg−1 [69]. Qi et al. employed oblique 
angle magnetron sputtering (OAMS) to fabricate nanostruc-
tured porous CrN thin films for supercapacitor applications as 
shown in Fig. 2(a). It was found that OAMS-deposited CrN film 
showed the specific capacitance of 17.7 mFcm−2 at 1.0 mAcm−2, 
which was eight times greater than normal magnetron sputtered 
(NMS) film [Fig. 2(b)–(d)]. It was also observed that OAMS-
deposited CrN film electrodes exhibited maximum power and 
energy densities of 18.2 Wcm−3 and 7.4 mWhcm−3, respectively 
[70]. It was reported that the specific capacitances of nitride 
films can be enhanced by silicon nanowire arrays coated with 
chromium. Guerra et al. deposited CrN films on Si nanowires 
via magnetron sputtering method. They reported the highest 
areal capacitance of prepared 3D electrode as 1806 mFcm−2 at 
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a scan rate of 5 mVs−1, with retention rate of 92% after 15,000 
cycles [71].

It was reported that the surface roughness of films can be 
significantly improved after etching process without change in 
phase structure. Gao et al. deposited HfN films by DC mag-
netron sputtering and then after deposition, etching process 
was done on the surface of films in the presence of plasma. 
Etching process reduced the charge transfer resistance of the 
films and increased the specific capacitance of the films eight 
times than that of the film without etching. It was reported that 
plasma-etched film attained high capacitance of 5.6 mFcm−2 at 
1.0 mA·cm−2 with excellent cyclic stability, which make it suit-
able for electrode materials in supercapacitors [72]. According 
to Shen et al., reactive magnetron sputtered niobium nitride 
(NbN) thin film could also become the good electrode mate-
rial for supercapacitors as the volumetric capacitance of NbN 
thin film electrode was found to be 707.1 Fcm−3 at 1 mAcm−2 
with cyclic stability of 92.2% after 20,000 cycles [73]. He et al. 
reported the synthesis of Mo2N with polyaniline that can be 
used as an electrode material in a supercapacitor. The pre-
pared composite material (Mo2N@PANI) showed higher 
specific capacitance of 111.8 Fg−1at the current density at 0.5 
Ag−1 with higher rate performance of 66.4% [74]. Ouendi et al. 
fabricated tungsten nitride films on silicon wafer via reactive 

magnetron sputtering. It was noticed that the best performance 
of prepared films was achieved at room temperature rather 
than higher temperatures. W2N film displayed areal capaci-
tance as 550 mFcm−2 and volumetric capacitance greater than 
700 Fcm−3 which confirmed the pseudocapacitive nature of 
these films [75].

Recently, Xu et al. deposited 3D porous chromium nitride 
films on MOF-derived nitrogen-doped nanosheet on carbon 
paper (CrN@NCs@CP) by magnetron sputtering technique. 
SEM morphology of the prepared composite revealed the large 
surface area that facilitates the diffusions of electrolytes. The spe-
cific capacitance of prepared composite electrode was observed 
to be 132.1 mFcm−2at current density of 1.0 mAcm−2 with capac-
itance retention of 95.9% after 20,000 GCD cycles [76]. A new 
type of vanadium-based V2NTx (Tx = F, O as surface terminating 
groups) composite was prepared by Venkateshalu et al. via etch-
ing process of Al layer from V2AlN precursor. It was found that 
V2NTx electrode showed a high power density of 3748.4 Wkg−1 
and energy density of 15.66 Whkg−1. They reported that the spe-
cific capacitance of V2NTx electrode was 113 Fg–1 at the current 
density of 1.85 mA cm–2, with excellent capacitance retention 
of 96% after 10,000 cycles [77].

Xu and co-workers prepared a composite of iron nitride and 
ordered mesoporous carbon (Fe2N@OMC-2) by nanocasting 

Figure 2:   (a, b) SEM images of Co3O4-SnO@SnO2, (c) GCD curves of SnO2, SnO@SnO2, Co3O4-SnO2, Co3O4-SnO@SnO2 electrodes at 1 mA cm2. (Reprinted 
with permission from ref. [38]) (d & e) SEM morphologies of NiCo2O4@NiMoO4/PANI/CC composite at different magnification, (f ) curve between 
capacitance retention and charge/discharge cycle number of NiCo2O4/CC (a), NiCo2O4@NiMoO4/CC (b), and NiCo2O4@NiMoO4/PANI/CC (c) at 
0.1 mA cm−2 current density. (Reprinted with permission from ref. [49]).
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method along with ammonia calcination. The morphology of 
the as-synthesized electrode was observed to homogeneously 
dispersed. This composite was used as a negative electrode 
material for supercapacitors, which showed impressive specific 
capacitance of 547 F.g−1 at 1mVs−1 with capacitance retention 
of 85%. The capacitance of prepared composite was found to be 
two times higher than bare iron nitride sample. It was reported 
that OMC significantly enhanced the electrochemical perfor-
mance of bare Fe2N because it provided more active sites [78]. 
To achieve excellent capacitance of 507 Fg−1 at 0.5 Ag−1, a com-
posite of Fe2N@activated carbon was prepared via hydrothermal 
method by Sliwak and co-workers. It was noticed in this study 
that carbon material supported the bare material to increase 
the porosity. The great capacitance was achieved by good pseu-
docapacitance of iron nitride material and porous behavior of 
activated carbon [79]. Ishaq et al. prepared a hybrid electrode 
of nickel–cobalt–iron nitride nanoparticles on Ni-foam sup-
ported with fluorinated grapheme by using thermal nitrogeni-
zation treatment. The prepared electrode demonstrated specific 
capacitance of 2110 Fg−1 at 1Ag−1 with capacitance retention 
of 97.6% after 5000 cycles. They used the as-synthesized mate-
rial as electrode in supercapacitors because it exhibited high 
energy density of 56.3 Wh/kg at 374.6 W/kg and power density 
of 7484.2 Wkg−1 at 39.5 Whkg−1 [80]. Ouldhamadouche et al. 
used a DC magnetron technique to prepare a composite of vana-
dium nitride and CNT which showed the 3D nanotree-like mor-
phology. The electrochemical study of the prepared composite 
revealed the high areal capacitance of 37.5 mFcm−2 at a scan rate 
of 2 mVs−1 [81]. Zhang et al. synthesized a composite electrode 
of vanadium nitride and carbon via simple adsorption of VO3−. 
At the current density of 0.5 Ag−1, the specific capacitance of 
prepared electrode was reported to be 260 Fg−1 and the capaci-
tance retention was reported to be 91.1% after 1000 cycles. The 
energy and power density delivered by prepared composite was 
found to be 40.5 Whkg−1 and 3760.7 Wkg−1, respectively [82]. 
To achieve a better electrochemical performance, Salman and 
co-workers fabricated a hybrid of tungsten nitride and reduced 
graphene fiber. The hybrid material electrode showed the spe-
cific capacitance of 16.29 Fcm−3 at 0.05 Acm−3, which is higher 
than individual reduced graphene oxide fiber as well as tung-
sten oxide/rGO. The capacitance retention rate of nitride-based 
hybrid electrode was noted to be 87% after 10,000 cycles [83].

Transition metal sulfide (TMS)
Transition metal sulfides like MoS, CoS, NiS, MnS, FeS, etc., 
have attracted tremendous interest as potential electrode materi-
als for electrochemical cells due to their high specific capacity, 
low cost, high abundance, and stress-free production [84, 85]. 
The electrochemical characteristic of transition metal sulfides is 
much better than the transition metal oxides. Hence, the use of 

sulfur instead of oxygen as an element with lower electronegativ-
ity increases performance compared to transition metal oxides 
[86, 87]. The unique properties of transition metal sulfides are 
related to their specific forms and structures with exceptional 
surface morphology, exhibiting unique shapes such as nano-
flowers, nanorods, nanowires, nanohoneycomb like results their 
extraordinary electrical performance [88].

It was reported that dendritic crystal structures were found 
to be suitable for supercapacitor applications because of their 
widespread structure in which they have a stem and many side 
branches grow out with primary, secondary, tertiary, and even 
high-order branches. These structures provide a large specific 
surface area and short diffusion path for electrons and ions, 
result enhancing their electrochemical properties. Keeping this 
in view, Zhang et al. studied a hierarchical three-dimensional 
(3D) Ni3S2 dendritic structure as a supercapacitor electrode 
material using 1 M KOH as an electrolyte. They have synthe-
sized three nickel sulfides via hydrothermal method at various 
temperatures. Schematic illustration of the formation process 
of Ni3S2 3D hierarchical dendrites can be seen from Fig. 3(a). 
They mentioned three nickel sulfides as Ni3S2-120, Ni3S2-150 
and Ni3S2-180. Figure 3(b) represents the surface morphology 
of 3D dendritic Ni3S2, synthesized via hydrothermal at 120℃ 
over 6 h. The obtained 3D network structure provided more 
active sites as well as facilitated the ion charge transfer. They 
reported that the length of the dendrite decreases as the reaction 
temperature increases and thickness increases upon increasing 
reaction time. The Ni3S2-120 samples were found to have the 
largest specific capacitance of 626.1 Fg−1 at 5 Ag−1 and was sta-
ble, even after 2,000 cycles [Fig. 3(c), (d)] [89].

Kim et al. fabricated Ni3S2 electrodes for supercapacitor 
applications via electrodepositing Ni3S2 on a Ni surface using 
3 M NaCl as an electrolyte. The resulting Ni3S2 samples were 
found to have the specific capacitance of 786.5 C g−1 at a cur-
rent density of 10 mA cm−2 with cycling stability of 93.9% even 
after 6,000 cycles [90]. It was reported that the electrochemical 
properties depend on porosity and surface area of the materials 
because high porosity and high specific surface area provide 
more electroactive sites, resulting in better ion transportation 
for electrochemical reactions. Chen et al. used a one-pot hydro-
thermal method to synthesize a new 2D/3D/Ni/Ni3S4 composite 
in which 3D microspheres progressively grew in or were secured 
by interconnected 2D nanosheets. The obtained composite pos-
sesses high specific surface and unique interconnected 2D struc-
ture which provided more active sites as well as highway for 
electron transfer. It was observed that the composite had a high 
specific capacitance of 1,796 Fg−1 at a current density of 1 Ag−1, 
and retained 80.5% of its initial capacitance even after 1,000 
charge/discharge cycles [91]. Several nanostructured electrode 
materials based on CoS have been developed for energy stor-
age and supercapacitors applications [92]. It was reported that 
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synthesized porous and hollow CoS2 nanocubes can be used 
for supercapacitor applications because of their high specific 
surface area (113.9 m2g−1) and mesoporous structure with the 
average pore size of 6.3278 nm. The as-prepared CoS2 hollow 
nanocubes showed high specific capacitance of 936 Fg−1 at a 
current density of 1 Ag−1, with good cycling stability of 83% even 
after 5,000 cycles at 5 Ag−1 [93]. Jia et al. synthesized quadruple-
shelled hollow CoS2 dodecahedrons via two-step process. First, 
they prepared uniform yolk-shell Co3O4 dodecahedron from 
zeolitic imidazolate framework-67and then they did sulfuration 
of Co3O4 with sulfur powder to obtain quadruple-shelled CoS2 
hollow dodecahedrons. This type of structure provided short 
ions and electron diffusion length balanced the electrolyte uti-
lization which enhanced the structural stability. It was reported 
that the resulting sample have surface area of 51.8 m2 g−1 and 
high specific capacitance of 375.2 Fg−1with significant reten-
tion rate [94]. FeS2 nanoellipsoid for supercapacitor applica-
tions were synthesized via simple microwave assist method. The 
obtained nanoellipsoid morphology was beneficial to enhance 
the surface area of FeS2 which provided more active sites for 
electrochemical reactions. It was reported that FeS2 electrodes 
possesses wide working potential ranging -1.2 to 0 V and fairly 
high SCs of 515 Cg−1 and 355 Cg−1 at current densities of 1 
Ag−1 and 20 A g−1, respectively, with high energy density of 64 
Whkg−1 at 271.2 Wkg−1 and 91% of its original capacity reten-
tion even after 5,000 cycles [95]. Deli and co-workers used 
Mn3[Fe(CN)6]2microcubes as a template and Mn source to 

synthesize two-dimensional MnS nanoplates via self-template-
etched method. The as-prepared γ-MnS showed 2D nanoplate-
like morphology and delivered good specific capacitance of 378 
F g−1 at a current density of 0.2 Ag−1, with 90% retention of their 
capacitance even after 4,000 cycles at 1.0 Ag−1. The improved 
electrochemical performances were reported due to the special 
2D structure, as 2D γ-MnS nanoplate possess higher electron 
conductivity and charge transfer ability [96].

Several investigations have been carried out to improve the 
electrochemical activities of tin sulfides (SnS and SnS2) using 
variety of approaches. These include metal or non-metal ion 
doping, the use of carbon matrices, and material engineering 
of nanostructured forms of tin sulfide, and their nanocompos-
ites [97]. Parveen et al. recently synthesized SnS2 in a variety of 
forms, including ellipsoid-like tin sulfide, flower-like tin sulfide 
and sheet-like tin sulfide via solvothermal method using differ-
ent types of solvents. It was observed that flower-like tin sulfide 
has better capacitive performance which means that the mor-
phology has significant effect on the electrochemical reaction. 
It was noticed that flower-like SnS2 have higher surface area 
because of its small pore size and provided more active sites for 
the intercalation of ions, resulting in a high specific capacitance 
of 432 Fg−1 at current density of 1 Ag−1. Various SnS2 nanostruc-
tures were reported to have good cycling stability at 5 A g−1 with 
capacitance retention of 90%, 82%, and 80% for the flower-like 
SnS2, ellipsoid-like SnS2, and sheet-like SnS2, respectively, even 
after 2,000 cycles [98].

Figure 3:   (a) Schematic representation of NMS and OAMS techniques and microstructure of as-deposited thin films, (b) CV curves at various scan rates, 
(c) GCD curves at various current densities, (d) Cycling performance at a current density of 2.0 mA cm−2 for 20,000 cycles with first 10 cycles of charge–
discharge curves (inset). (Reprinted with permission from ref. [70]).
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It was reported that mixed metal sulfides (MMSs) and 
hybrid metal sulfides (HMSs) have larger electrochemical capac-
itances than non-metallic sulfides, because of their strong elec-
trochemical redox potentials and superior electronic conductiv-
ity. Yu and co-workers have synthesized a mixed metal sulfide 
(NiCo2S4) for hybrid supercapacitors (HSCs). They reported that 
NiCo2S4 had a substantially higher specific capacitance than the 
non-metallic sulfides NiS and CoS. The electrical conductivity 
of NiCo2S4 was reported to be around 100 times as of NiCo2O4 
[99]. Xu et al. reported that the NiCo2S4/NiS hollow nano-
spheres nanocomposite were grown directly on the nickel foam 
via simple hydrothermal method. The obtained unique hollow 
nanosphere enhanced the specific area, improved productiv-
ity, and provided more electroactive sites. They used NiCo2S4/
NiS hollow nanospheres as positive electrodes and the porous 
activated carbon as negative electrode to make an asymmetric 
supercapacitor, the NiCo2S4/NiS electrode exhibits an outstand-
ing specific capacitance of 1947.5 Fg−1 at 3 mA cm−2 [100]. Guan 
et al. [101] described the synthesis of onion-like NiCo2S4 with 
hollow structured shells via a sequential exchange method. 
They first transformed onion-like Co3O4 particles into onion-
like Co4S3 particles with hollow structured shells by an anion-
exchange reaction between Co3O4 and S2 ions; afterward these 
onion-like Co4S3 particles converted into NiCo2S4 particles via a 
second cation-exchange reaction with Ni2+ ions. It was observed 
that the onion-like NiCo2S4 sample have multi-shelled struc-
ture with each shell being hollow. This type of seven-layered 
onion-like structure was believed to be more structurally stable 
which was beneficial for the enhanced electrochemical stability 
for supercapacitors. The resulted onion-like NiCo2S4/activated 
carbon sample exhibited high energy density of 42.7 Whkg−1 at a 
power density of 1583 Wkg−1, with good cycling stability of 87% 
even after 10,000 cycles at a current density of 10 Ag−1. Govin-
dasamy et al. fabricated hybrid NiCo2S4@CoS2 nanostructures 
on a piece of carbon cloth via hydrothermal method [Fig. 4(a)]. 
It was concluded from the surface morphology of NiCo2S4@
CoS2@carbon cloth that NiCo2S4 ultrathin nanosheets cover 
CoS2 nanowires, resulting in 3D interconnected porous network. 
This type of porous network allowed facile electrolyte ion access 
for fast and reversible redox reactions. It was observed that the 
prepared NiCo2S4@CoS2 have a strong specific capacitance of 
1565Fg−1at a current density of 1 Ag−1 [Fig. 4(b), (c)], with 91% 
specific capacitance retention even after 8000 cycles as displayed 
in Fig. 4(d). Also, the maximum energy density was found to be 
as 17 Whkg−1 at a power density of 242.8 Wkg−1 [102].

Iron sulfide is inexpensive, exhibits very good electri-
cal conductivity, and has an excessive active site. Iron sulfide 
(FeS2) has attracted the attention of numerous researchers for 
its potential use in energy storage applications [103]. Several 
different forms of FeS2-based composites with various interest-
ing morphologies and structures have been prepared for super 

capacitor applications. It was reported that the electrochemical 
performances of pure metal sulfides can be improved by mak-
ing its hybrid material with rGO. It may be due to improved 
electrical conductivity, high surface area, and enhanced electron 
and ion transfer mechanism of the hybrid materials compared 
to their pure form. Balakrishnan and co-workers synthesized 
hybrid microsphere of FeS2 and reduced graphene oxide(rGO) 
via superficial hydrothermal method for supercapacitor appli-
cations. The obtained rGO-FeS2 hybrid material possess better 
electrochemical performance due to the synergetic effects of the 
higher active surface area of rGO and the redox property of 
the FeS2 microspheres. The specific capacitance of hybrid mate-
rial was reported as 112.41 mFcm−2, with specific capacitance 
retention of 90% after 10,000 cycles, which was substantially 
much higher than that of pure iron sulfide (70.98 mFcm−2) at 
5 mVs−1 [104]. Zardkhoshoui et al. used a simple hydrother-
mal method for the synthesis of graphene wrapped NiCo2Se4 
microspheres and petal-like FeS2 on a nickel foam substrate. The 
specific surface area of the graphene wrapped NiCo2Se4 micro-
spheres sample was estimated to be around 75.5 m2g−1. They 
reported that the resulting petal-like FeS2 with unique structure 
and highly porous texture exhibited maximum specific capaci-
tance of 321.30 Fg−1 at 2 Ag−1. They also used graphene wrapped 
NiCo2Se4 as the positive electrode and petal-like FeS2 as the 
negative electrode to create a flexible and an asymmetric solid 
supercapacitor, which showed maximum specific capacitance 
of 2112.30 Fg−1 at 1 Ag−1 and its energy density was reported as 
78.68 Whkg−1 [105]. Naveen et al. coated Ni-foam with 0.2 mg 
reduced graphene oxide (rGO) via dip coating method and 
then used rGO coated Ni-foam for electrodeposition of MnS. 
It was observed that the electrodeposited MnS@rGO/Ni-foam 
composite showed a high specific capacitance of 2,220 Fg−1 at 
0.5 Ag−1, with good cycling stability of 94.6% even after 1,000 
cycles at 20 Ag−1 [106]. Xu et al. synthesize MnS/rGO com-
posite via simultaneous growth of MnS and reduced graphene 
oxide (RGO) on Ni-foam (MnS/rGO@Ni-foam) using one-pot 
hydrothermal method. They used MnS/rGO@Ni-foam as posi-
tive electrode and activated carbon (AC) generated from walnut 
shells as negative electrode to create MnS/rGO@Ni-foam/AC 
hybrid supercapacitor, which exhibit maximum energy density 
of 37.9 Whkg−1 and a maximum power density of 1,500 Wkg−1 
and retain the energy density of 21.3 Whkg−1 at a high power 
density of 3750 Wkg−1 [107]. Rasmita et al. synthesized stan-
nous sulfide (SnS) nanoparticles via hydrothermal method and 
later stannous sulfide-carbon black (CB) composite via mill-
ing process. They found that the electrochemical performance 
was increased when carbon black was combined with SnS in 
the ratio of 4:1 (SnS:CB). The resulting sample SnS-CB (carbon 
black) exhibited maximum specific capacitance of 201 Fg−1 with 
cycling stability of 88% even after 1,000 cycles. The resulting 
sample suggested that the stannous sulfide with carbon black 
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was a promising electrode material which exhibits excellent 
supercapacitor behavior [108].

Transition metal diselenides (TMDSe)
Transition metal diselenides exhibits characteristics comparable 
to transition metal sulfides as selenium is located in the same 
group as sulfur. The volume energy density and rate capability 
of transition metal diselenides as cathode materials might be 
higher than those of transition metal sulfides because of rela-
tively higher density and electrical conductivity of selenium. 
Recently, transition metal diselenides(NiSe2, CoSe2 and MnSe2) 
were found to be promising materials for application to electro-
chemical energy storage devices. In transition metal diselenides, 
a sandwich structure is always observed with the metal atom at 
the center of two selenide layers. The atoms in these three layers 
are covalently linked via weak Vander Waal forces between the 
individual sheets. The later force is weak enough for other atoms 
to easily and reversibly intercalate into the interchain space and 
form an intercalation compounds or intercalates, enabling 
energy to be stored in the layered conductors [109, 110].

Nickel and selenium can be combined to make a variety 
of nickel diselenides including nonstoichiometric compounds 
with composition, microstructure, and morphologies, affecting 
the compounds properties. Penroseite nickel diselenide (NiSe2) 

is a Pauli magnetic metal with a pyrite-type cubic structure and 
a resistivity below 10–3 Ω cm, making it a promising electrode 
material for supercapacitors. Arul et al. successfully synthe-
sized hexapod-like 2D transition metal dichalcogenide (TMD) 
NiSe2 structures via hydrothermal method and studied its elec-
trochemical properties as a supercapacitor for the first time. 
It was observed that the structural and compositional results 
confirmed the presence of orthorhombic phase of NiSe2 in the 
synthesized hexapod-like NiSe2 structures. The electrochemical 
studies revealed that the fabricated hexapod-like NiSe2 exhib-
ited specific capacitance of 75 Fg−1and retained 94% of its initial 
capacitance at a current density of 1 mA cm−2 even after 5000 
charge/discharge cycles [111]. Gu et al. successfully fabricated 
NiSe2nanoarrays with white beech mushroom-like structure via 
hydrothermal method. The as-prepared NiSe2nanoarrays belong 
to the cubic phase having stem diameter ranging 50-70 nm, 
length about 500 nm and the diameter of the umbrella cover 
about 50 nm. The obtained unique mushroom-like structure 
possesses large surface area and enhanced the electrochemi-
cal active sites. The controlled experiment revealed that this 
mushroom-like NiSe2nanoarrays exhibited high specific capac-
itance of 262 mAhg−1with cyclic stability of 83.4% even after 
8,000 cycles. Subsequently, mushroom-like NiSe2nanoarrays 
and activated carbon were further assembled as hybrid super-
capacitors. They used mushroom-like NiSe2 nanoarrays as 

Figure 4:   (a) Schematic illustration of synthesis process, (b) SEM image of the Ni3S2 3D hierarchical dendrites obtained at 120 °C for 6 h (c) GCD curves 
for Ni3S2 hierarchical dendrites at different current densities (2, 4, 6, 8, 10, 12, 14Ag−1), and (d) cycle life of Ni3S2 prepared at different temperatures. 
(Reprinted with permission from ref. [89]).
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positive electrode and activate carbon as negative electrode to 
make hybrid supercapacitors, exhibiting an energy density of 33 
Whkg−1 with 90.3% retention of its initial capacitance. They also 
reported that the mushroom-like NiSe2 nanoarrays not only a 
promising electrode materials but also provides a new candidate 
for the field of flexible, smart and portable devices [112]. Pazha-
malai et al. successfully fabricated 2H-MoSe2nanosheets via 
hydrothermal method. The cyclic voltammetric studies revealed 
that MoSe2 symmetric supercapacitor delivered a specific capac-
itance of 25.13 Fg−1 at scan rate of 5mVs−1and charge/discharge 
results revealed that the MoSe2 symmetric supercapacitor have 
specific capacitance of 16.25 Fg−1 at current density of 0.75 Ag−1 
with power density of 7.5 kWkg−1at 5 Ag−1 and 87% specific 
capacitance retention after 10,000 cycles. They further reported 
that nanosheet-like structure were the main reason behind this 
improvement in electrochemical performance because MoSe2 
exhibited high surface area with a wide range of pore size which 
facilitated more active sites for intercalation [113].

Gu et al. successfully synthesized N-doped reduced gra-
phene oxide/NiSe2compositesvia simple two-step process 
which contains hydrothermal preparation of Ni(OH)2 precur-
sor and then solvothermal synthesis of N-rGO/NiSe2 composites 
with different amount of rGO (reduced graphene oxide). They 
reported that the as-synthesized N-rGO act as a supporter of 
NiSe2 nanoparticles to prevent them from aggregation which 
leads to the increase in specific surface area and electrical con-
ductivity of material. It was reported that N-rGO/NiSe2 com-
posite electrodes delivered high specific capacitance of 2451.4 
Fg−1 at a current density of 1 Ag−1 using 3 M KOH as electro-
lyte. The maximum energy density of N-rGO/NiSe2 composite 
electrodes were reported as 40.5 Whkg−1 at a power density of 
841.5 Wkg−1, with 85.1% retention of its initial capacitance after 
10,000 cycles at 5Ag−1. The higher specific capacitance and cyclic 
stability was due to enhancement of surface area and conductiv-
ity of electrode materials [114]. Gopalkrishnan et al. success-
fully fabricated unique binder-free polyaniline (PANI) sheathed 
3D crumpled CoSe2 nanoparticles on Ni-foam (PANI/CoSe2/
NF) electrode via simple electrodeposition method. The PANI/
CoSe2/NF electrode exhibited excellent electrochemical per-
formance in supercapacitor applications due to its high surface 
area, synergistic effects between CoSe2 nanostructures and PANI 
sheets, high electrical conductivity, and hydrophilic functional 
groups of PANI, which contribute to lower internal resistance 
and effective diffusion of ions. It was observed that the PANI/
CoSe2/NF as supercapacitor electrode delivered high specific 
capacitance of 1980 Fg−1 or 3825 Fg−1 and a specific capacity of 
792 Cg−1 at 2 Ag−1 in a three-electrode cell arrangement [115].

Miao et  al. successfully synthesized CoSe2/rGO nano-
composites via low-cost microwave method [Fig. 5(a)], they 
investigated the impact of rGO content on crystalline struc-
ture, microstructure [Fig. 5(b), (c)], and energy storage devices 

performance. It was observed that the CoSe2/rGO sample with 
35.2% rGO exhibited excellent specific capacitance of 761 Fg−1 
as well as extraordinary durability with 8% capacity drops even 
after 10,000 cycles as displayed in [Fig. 5(d)–(f)]. It was noticed 
that all solid-state hybrid supercapacitor CoSe2/rGO/active 
carbon were used to expand the voltage window, resulting in a 
higher energy density of 43.1 Whkg−1 as the hybrid device pre-
sented a remarkable durability of 90% retention even after 10,000 
cycles [116]. Metal organic framework (MOF) derived CoSe2 
nanoparticles embedded into an N-doped carbon nanosheets 
(CoSe2/NC) were successfully synthesized via one-step deriva-
tion and selenylation, as selenylation was an effective method to 
enhance the electrochemical properties of electrode materials. 
The obtained triangular nanosheets facilitated the full contact of 
electroactive materials and the electrolyte, improving the produc-
tivity of electrode material and CoSe2/NC composite provided 
excellent electronic conductivity. It was observed that the CoSe2/
NC composite were directly grown on Ni-foam as nanosheets 
rather than on other materials as powders, the results revealed 
that the CoSe2/NC sample exhibited high specific capacity of 
120.2 mA hg−1 at 1 Ag−1, with good cyclic ability of 92% even 
after 10,000 cycles. Furthermore, an asymmetric supercapaci-
tor CoSe2/NC-400/AC exhibited maximum energy density of 
40.9 Whkg−1 at 980 Wkg−1. These findings revealed that the as-
synthesized CoSe2/NC-400/AC electrodes acquired potential for 
use in supercapacitor applications [117]. Gopi et al. successfully 
fabricated WSe2/rGO composite via one-step hydrothermal 
method in which WSe2 nanosheets were implanted with the rGO 
sheets. The obtained sample possess mesoporous structure with 
large surface area which was beneficial for better electrochemical 
performances. It was found that the WSe2/rGO-based superca-
pacitor electrode exhibited maximum specific capacitance of 389 
Fg−1 at 1 Ag−1, a maximum energy density of 34.5 Whkg−1 and 
a maximum power density of 400 Wkg−1 as well as long cycling 
stability of 98.7% after 3000 cycles at 7 A g−1 [118]. Marri et al. 
successfully fabricated VSe2/rGO hybrids of highest quality at 
different concentrations of graphene oxide via one-step hydro-
thermal method. It was observed that the supercapacitor perfor-
mance was enhanced in the case of the hybrid obtained at 0.3% of 
graphene oxide due to synergistic effect. They reported that the 
resulting VSe2/rGO sample exhibited high specific capacitance of 
680 Fg−1 at 1 Ag−1 which was found to be ~ 6 and ~ 5 times higher 
than bare VSe2 and bare rGO, respectively, high energy density 
of 212 Whkg−1, power density of 3.3 kWkg−1 and retained 81% 
of initial capacitance even after 10,000 cycles [119].

Transition metal phosphides (TMP)
Recently, transition metal phosphides (TMPs) were found to be 
promising materials for various applications such as electroca-
talysis, lithium-ion batteries, supercapacitors, and photocatalysis 
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[120]. Compared to the transition metal oxides/hydroxides and 
conducting polymers, transition metal phosphides have excel-
lent electrical conductivity which led to fast electron transport, 
resulting to provide high power density in supercapacitor appli-
cations [121]. The electrochemical performance of the transi-
tion metal phosphides as electrode materials for supercapacitor 
application depends upon surface structures, chemical composi-
tion and the metal to phosphorus ratio [122].

Recently, researchers explored various transition metal 
phosphides for their electrochemical performance. The Copper 
(I) phosphide (Cu3P) nanostructure with tube-like morphology 
has been directly synthesized on copper foil via two-step process 
of electro-oxidation and phosphidation. The Cu3P electrodes 
were used as a negative electrode for supercapacitor applications 
and showed specific capacitance of 300.9 Fg−1 with energy den-
sity of 44.6 Whkg−1 and power density of 17,045.7 Wkg−1. They 
also reported that electrodes were found to be stable after 5000 
cycles with 81.9% of their initial capacitance at current density 
of 10 mAcm−2 [123].

The cheap transition metal (e.g., Nickel, Cobalt or Iron) 
phosphides owing to their metalloid characteristics and 
superior electrical conductivity have emerged as appreci-
able substitute for transition metal oxides and hydroxides 
which are kinetically unfavorable for fast electron transport 
required for high power density in supercapacitors [124]. 

Liang and co-workers have synthesized Cobalt phosphide 
(Co2P) nanoshuttles via microwave-assisted hydrothermal 
treatment using cobalt chloride and yellow phosphorus as 
precursors. The synthesized Co2P showed excellent electro-
chemical behavior with high specific capacity of 246 Fg−1 at 1 
Ag−1and high retention capacity of 72% after 1000 cycles. They 
have reported that the novel one-dimensional nanostructure 
of Co2P provided a larger ion accessible area and effectively 
avoided agglomeration among active particles resulting in bet-
ter electrochemical performance [124]. It was reported that 
CoP can be used as a promising material for negative electrode 
material for high-performance supercapacitor applications. 
The three-dimensional cobalt phosphide (CoP) nanowire 
arrays have been synthesized on carbon cloth by a hydrother-
mal method, followed by low-temperature phosphidation. 
These CoP nanowire arrays were used as a negative electrode 
and MnO2 nanowire arrays were used as positive electrode 
in an asymmetric supercapacitor, which showed high specific 
capacitance of 571.3 mFcm−2 at a current density of 1 mAcm−2. 
The energy density of 0.69 mWhcm−3 was obtained at power 
density of 114.2 mWcm−3 with 82% of initial capacitance after 
5000 charge/discharge cycles. This outstanding electrochemi-
cal performance of the CoP nanowire arrays was stated to be 
because of three main aspects, “first, the superior electrical 
conductivity of CoP facilitated electron transfer within the 

Figure 5:   (a) Schematic of the fabrication procedure to synthesis the flexible hybrid NiCo2S4@CoS2 nanostructures on carbon cloth (CC), (b) (a) CV 
curves of (a’) CC, (b’) Co3O4@CC, (c’) CoS2@CC, and NiCo2S4@CoS2@CC (d’) hybrid electrodes at a 5 mVs−1 scan rate in 2 M KOH., (c) GCD curves of the 
NiCo2S4@CoS2@CC hybrid electrode at various current 10 densities (1 to 5 Ag−1) (d) specific capacitance retention of the NiCo2S4@CoS2@CC 4 hybrid 
electrode at current density of 1 Ag−1. (Reprinted with permission from ref. [102]).
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electrode. Second, the 3D configuration of the CoP nanowire 
arrays offered a large surface area as well as the short ionic and 
electronic paths. Last, the direct growth of the CoP nanowire 
arrays on carbon cloth provided robust mechanical adhesion 
and good electrical contact” [125]. The Mn-doped cobalt clus-
ter arrays on Ni-foam (Mn-CoP/NF) have been successfully 
fabricated via hydrothermal process with a fine morphology. 
The asymmetric supercapacitor was fabricated using Mn-CoP/
NF electrodes as anode and activated carbon as cathode. It 
was reported that the fabricated supercapacitor showed  spe-
cific capacitance of  8.66 F cm−2 at 1 mAcm–2with high energy 
densities of  35.21Whkg−1and 30.87 Whkg−1 at power densities 
of 193 Wkg−1and 1939 Wkg−1, respectively, and this appreci-
able electrochemical performance can be attributed to lower 
diffusion resistance of Mn-CoP/NF electrode material [126].

The 3D porous Ni2P nanoarrays have been synthesized on a 
Ni-foam (Ni2P/NF) using the hydrothermal process. Afterward, 
nanocarbon has been embedded on Ni2P@NF (Ni2P–C/NF) by 
ethylene gas using a dielectric discharge. The Ni2P–C/NF were 
employed as the positive electrode, while porous activated car-
bon acted as the negative electrode in the hybrid supercapaci-
tor which provided a high areal and gravimetric capacitance of 
318.8 μAhcm− 2 and 106.2 mAhg− 1, respectively, at 1 Ag −1. The 
positive synergistic effect and nanoflake structure, which had 
provided more active surface sites were responsible for high 
electrochemical performance of Ni2P–C/NF [127]. 1D inter-
connected porous nickel cobalt phosphide nanowires have been 
synthesized via hydrothermal method and subsequent phospho-
rization treatment. The obtained bimetallic phosphides exhibit 
higher specific capacitance of 1395 F g−1 than the monometallic 
nickel phosphide (920 Fg−1) and cobalt phosphide (568 Fg−1) 
at 1 Ag−1, with an energy density of 53.31 Whkg−1and a power 
density of 46.53 kWkg−1 along with the capacitance retention of 
83.04% after 20,000 cycles. It was reported that the as-prepared 
NCP nanowire has displayed better performance owing to the 
rich exposed redox active sites and fast charge transport path-
way [128].

The bimetallic phosphides stimulate manifold valence states 
for more redox reactions and hence show higher specific capaci-
ties and catalytic activities than monometallic phosphides. Shou 
et al. synthesized self-assembled three-dimensional Ni–Fe–P 
nanosheet array on the Ni-foam via hydrothermal method 
followed by phosphidation. It was reported that Ni–Fe–P/Ni 
electrode showed excellent specific capacitance of 1358 C g−1 at 
5 mA cm−2 with an outstanding energy density of 50.2 Whkg−1 
at the power density of 800 Wkg−1. The electrodes were found 
to maintain 91.5% initial specific capacitance after 10,000 cycles. 
It was reported that this remarkable performance is ascribed to 
the porous structure, the increased specific surface area, active 
sites and binder-free construction of Ni–Fe–P electrodes [129]. 
The zinc nickel phosphide nanosheet (Zn–Ni–P) arrays has been 

fabricated by adopting a simple and cost-effective hydrother-
mal and subsequent effective phosphorization technique and 
showed specific capacitance of 384 mAh g−1 at a current density 
of 2 mA cm−2. Moreover, Zn–Ni–P electrodes showed excel-
lent energy density of 90.12 Whkg−1 at a power density of 611 
Wkg−1 and extraordinary cycling stability of 93.05% of initial 
capacity after 20,000 cycles at a current density of 15 mAcm−2. 
It was further reported that these outstanding electrochemical 
performances were attributed to the 3D hierarchical nanostruc-
tures, porous nanonetworks, improved conductivity, and syner-
gistic interaction between the active components of Zn–Ni–P 
nanosheet arrays [130].

Though the single and binary metallic phosphides emerged 
as impressive electrode materials, the ternary metallic phos-
phides perform better than their single and binary counterparts. 
The 3D flower-like ternary metallic manganese–nickel–cobalt 
phosphides (MNCPs) with different metal proportions have 
been prepared using electrodeposition followed by low-temper-
ature PH 3 plasma treatment with various morphologies. The 
MNCP electrodes showed an ultra-high capacity of 1690 C g −1 
in the three-electrode system. The authors reported that besides 
the positive synergistic effect of combining the three transition 
metals, the outstanding performance is ascribed to the intrigu-
ing architecture with 3D networks and porous nanosheets which 
enhances the capacity performance by facilitating fast electrolyte 
transport and active sites and hence demonstrated MNCP as a 
suitable SC electrode material [131].

Ternary transition metal ferrites
Iron-based materials are being used for a wide range of appli-
cations such as medical [132], memory devices [133], energy 
storage devices [134], sensing devices [135], catalyst [136], 
biomedical [137], and magnetic resonance imaging [138]. Iron 
is the fourth most abundant elements on the earth, non-toxic, 
and cost-effective compared to other transition metals. The fer-
rites are significant magnetic materials classified as spinel with 
general formula MFe2O4 (M = Mn, Fe, Co, Ni, Co, Zn, etc.) or 
a garnet represented as M3Fe5O12 (M = rare-earth cations) or a 
hexaferrite (SrFe12O19 and BaFe12O19) or an orthoferrite with 
general formula MFeO3 (M = rare-earth cations) on the basis of 
their magnetic properties and crystal structures. Among these 
groups, the ternary transition metal ferrites or spinel ferrites 
(MFe2O4) with M2+ and Fe3+ occupying the tetrahedral and 
octahedral sites are captivating because of their impressive mag-
netic, electrical, and optical properties as well as their ability to 
exhibit different redox states and electrochemical stability [139, 
140]. These materials are found to be suitable for energy storage 
devices [141], electrochemical applications [142], environmental 
applications [143], and biological applications [144].
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The ternary transition metal ferrites may also consist of a 
mixture of two divalent metal ions, in which the ratio of these 
divalent ions may vary, and they are referred to as mixed ternary 
transition metal ferrites. In the challenging field of supercapaci-
tors, the reports on these mixed ternary transition metal ferrites 
with general formula AxB1−xFe2O4 are really fascinating [140].

These ternary transition metal ferrites show remarkable 
electrochemical properties, owing to the multiple oxidation 
states of the metal ions which make them suitable for electrode 
materials in supercapacitor application. The multiple valences 
of the metal cations and their complex chemical composition 
enhance the electrochemical behavior of supercapacitors[145].

Ferrite nanostructures with tunable sizes and morphologies 
including nanocrystals [146], hollow spheres [147], nanorods/
nanowires [148], and nanotubes [149] have been successfully 
synthesized using various synthetic techniques, such as hydro-
thermal/solvothermal [150], thermolysis [151], template-based 
[152], sol–gel [153], co-precipitation [154], and electrochemical 
synthesis [155].

The MnFe2O4 nanoparticles have been successfully synthe-
sized via co-precipitation method. The synthesized particles 
were reported to be spherical in shape with diameter between 20 
and 50 nm. It was further reported that MnFe2O4 nanoparticles 
electrodes showed a maximum specific capacitance of 430 Fg−1 
using 1 M Li3PO4 electrolyte [156]. The ZnFe2O4 nanoparticles 
were synthesized using a weak ultrasonic irradiation technique. 
The specific capacitance of these nanoparticle electrodes was 712 
Fg−1 at scan rate of 2 mVs−1, with 96.6% retention after 2000 
cycles [157].

It was reported that the morphology of the nanoparticles 
depends upon the molarity of the precipitating agent. The mono-
dispersed CuFe2O4 nanoparticles have been synthesized via sol-
vothermal method at various molarity of the precipitating agent 
KOH. It was found that the size of spherical monodispersed 
CuFe2O4 nanoparticles reduces upon increasing the molarity of 
KOH. Further, the maximum specific capacitance was found for 
the electrodes prepared using CuFe2O4 nanoparticles synthesized 
at 10 M KOH which was 189.2 F/g at current density of 0.5 Ag−1 
with 84% initial capacitance retention after 1000 cycles [158].

Kennaz and co-workers have synthesized CoFe2O4 nano-
particles by co-precipitation method and hydrothermal method, 
using various precursor such as nitrates, chlorides, and acetates. 
It was reported that the optimized condition for the co-precip-
itation method was for using nitrate-based precursors under 
80 °C reaction temperature and there was no noticeable dif-
ference observed in hydrothermally prepared samples. The size 
of single-phase nanoplatelet-shaped CoFe2O4 particles were 
between 11 and 26 nm. They further reported that hydrother-
mally prepared samples showed specific capacitance of 429 F/g 
at a current density of 0.5 Ag−1, with excellent capacitance reten-
tion of 98.8% after 6000 cycles at 10 Ag−1 [159].

It was reported that the cyclic stability and rate performances 
can be improved by the doping of rare-earth (RE) elements. For 
the first time, Ghulam et al. synthesized cerium-doped cobalt 
spinel ferrite (CexCo2Fe2-xO4 (x = 0, 0.3, 0.5)) nanoparticles via 
hydrothermal method for supercapacitor application as illus-
trated in Fig. 6(a). They reported that Ce doping has a strong 
effect on the structural, optical, and electrochemical properties of 
the cobalt ferrite nanostructure. They found that Ce0.3CoFe1.7O4 
has particle size range from 40 to 220 nm with maximum num-
ber of particles lying in the range of 120–140 nm, whereas 
Ce0.5CoFe1.5O4 has particle size range is from 40–180  nm 
with the maximum number of particles laying in the range of 
80–100 nm [Fig. 6(b)]. They concluded that reduction of par-
ticle size upon increasing the Ce concentration was because Ce 
replace Fe at octahedral site of the cubic crystal of CexCo2Fe2-xO4. 
Further, the highest specific capacitance of 937.50 Fg−1 was 
obtained for Ce0.5Co2Fe1.5O4 at a current density of 0.5 Ag−1 
[Fig. 6(c)] with 82.3% of initial capacitance retention after 4000 
cycles. They also reported that the high specific capacitance of 
the doped samples was because of the two main reasons, “first, 
CeO goes on the interstitial sites of the cobalt ferrite lattice and 
enhances the chemical activities of the electrode material and 
secondly the ionic radii of Fe3+ and Ce3+ are 69 pm and 115 pm, 
respectively, and due to its higher ionic radius, Ce3+ forms the 
local distortion in the crystal lattice of CoFe2O4, the diffusion 
rate of protons increases because exchange reaction and electron 
can escape from CoFe2O4 more easily”. Figure 6(d) represents the 
graph between specific capacitance and scan rate [160].

Sethi and co-workers have synthesized NiFe2O4 nanoparti-
cles via solvothermal method. It was reported that the spheri-
cal nanoparticles were uniformly distributed and of the size 
ranging from 13–17 nm. They reported that electrochemical 
performance has revealed the specific capacitance to be 368 
Fg−1 at a current density of 1 Ag−1 with energy density of 10.4 
Whkg−1 and power density of 225.8 Wkg−1 at the current density 
of 1 Ag−1. They also reported that the superior electrochemi-
cal performance of the nanoparticles is mainly ascribed to the 
nanoscale morphology with high surface area and high porosity 
providing substantial electroactive sites for the electrolyte ions 
insertion/de-insertion apart from sustaining its mechanical sta-
bility during the electrochemical process [161]. It was reported 
that nanocrystallites of pure and mixed ternary ferrites such as 
NiFe2O4, CuFe2O4, CoFe2O4, Ni0.5Cu0.5Fe2O4, Ni0.5Co0.5Fe2O4, 
and Cu0.5Co0.5Fe2O4 can be synthesized via self-combustion 
method. The as-synthesized samples were reported to exhibit 
a pure spinal crystal structure with the crystallite sizes ranged 
from 12–47 nm. The capacitance values for these ferrites were 
reported in the order as CuCoF > NiCoF > CoF > NiCuF > C
uF > NiF, with the highest specific capacitance of 220 F/g for 
Cu0.5Co0.5Fe2O4, with an energy density of 34.7 Whkg−1 and 
power density of 605 Wkg−1 [162].
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In order to find a suitable material for supercapacitor appli-
cations, the Ni0.5Zn0.5Fe2O4 nanomaterial were synthesized as 
active materials (NZF) and directly on to Ni-foam (NZF@NF) 
via hydrothermal techniques. The synthesized materials were 
reported to have thin hexagonal platelets like morphology 
with the particle size ranging between 27–49 nm. The NZF 
and NZF@NF electrode delivered a high specific capacity of 
151.1 Fg−1 and 504 Fg−1, respectively, at a current density of 1 
Ag−1. This superior performance was ascribed to the increase 
in electroactive area due to the mesh structure of the nickel 
foam and the higher capacity of NZF@NF can be attributed to 
the higher electrical conductivity and porous structure of the 
nickel foam that facilitate the diffusion of ions and electrons 
[163] (Fig. 7).

Conclusions, challenges, and future 
perspectives
In summary, this review insights into the recent develop-
ments, challenges and future perspectives of various transition 
metal-based nanomaterials including oxides, sulfides, sele-
nides, nitrides, ferrites, phosphides, and their derivatives for 
their application in supercapacitors. Transition metal-based 
nanomaterials owing to their unique properties and architec-
tures led great development in the field of electrochemical 

energy storage. The advantages of transition metals such as 
exclusive d-electron configurations, cost-effectiveness, syn-
ergistic effect of multi-metal atoms, outstanding stability are 
mainly advantageous for the electrochemical supercapacitors. 
Various morphologies including nanorod, nanotubes, nano-
flowers and nanospheres are pre-requisite to obtaining good 
electrochemical properties. These specific nanostructures 
deliver large surface area and minimize the diffusion paths 
of electrolyte ions and electrons, resulting into plenty of free 
spaces for buffering the large volume change of active mate-
rials throughout the charge/discharge processes. Moreover, 
insertion of additional elements provides more redox reac-
tion active sites in the electrode materials. Over recent years 
research is going on the transition metal oxides, and they have 
great advantages in terms of abundant resource and cost-
effectiveness. Also, their higher specific capacitance in com-
parison to carbon-based materials and conductive polymers as 
well as relatively mature production technology enable them 
frequently used candidate in the commercial field. However, 
relatively low electrical conductivity restricts their large-scale 
commercial applications by limiting high charge/discharge 
kinetics of the electrode material. To overcome this issue, lots 
of effort are focused on synthesis of nanostructured electrode 
material having large surface area and their heterostructures/
composites with synergistic effect. Transition metal sulfides, 

Figure 6:   (a) Schematic diagram of fabrication process for CoSe2/rGO composites, (b) & (c) SEM images of CoSe2/RGO-3 at different magnifications (d) 
CV curves of CoSe2/RGO-3 (e) GCD curve, (f ) Durability test. (Reprinted with permission from ref. [116]).
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selenides are also considered potential electrode material 
due to their intrinsic enhanced electrical conductivity and 
electrochemical activity. Sulfur has lesser electronegativity 
than that of oxygen which facilitates easy electron transfer 
in the metal sulfide structure than that in the metal oxide. 
However, their capacitance and energy density still need to be 
improved; therefore synthesis process and effective control of 
structure along with production cost needs further explora-
tion. Moreover, transition metal nitrides are also promising 
active electrode material for supercapacitor application due to 
their low cost, environment friendly nature and higher volu-
metric energy densities. Nitride formation also undergo some 
issues due to thermodynamic barrier that includes the forma-
tion and deformation of triple bond between nitrogen atoms. 
Hybrid heterostructures of these materials with carbonaceous 
compounds led improvement in the specific capacitance and 
energy density of the transition metal nitride-based superca-
pacitors. The abundance of oxygen vacancies and remarkable 
conductivity enables transition metal ferrites to hold extraor-
dinary energy densities. Volume fluctuations through charge 
and discharge process and low cycling stability are some issues 
which need to be focused on transition metal ferrites. Design-
ing ferrites with large surface areas, huge porosity, making 
composites with carbonaceous materials and conducting poly-
mers that reduce the irreversible capacity loss are essential to 
overcome these issues. Various studies on both simple and 
complex transition metal phosphides suggests them desirable 

candidate for electrodes material in hybrid supercapacitors 
in comparison with their corresponding oxides, sulfides, and 
selenides counterpart. The major bottleneck of this category 
material is their sluggish reaction kinetics and volumetric 
expansion during charge discharge process, resulting into 
deterring the rate capability and cycling stability of transition 
metal phosphide-based supercapacitors. Doping and design-
ing composites are some of the approaches that can be used 
for the enhanced electrochemical performance. Some insights 
in future perspectives are highlighted in order to achieve 
high electrochemical performance of transition metal-based 
nanomaterials.

(1)	 Optimization of the design and fabrication of these 
nanomaterials for specifically, supercapacitor applica-
tion by systematic theoretical and experimental investi-
gations are necessary.

(2)	 Selection of dopant, making composites/heterojunc-
tions, core shell structures for further improvement in 
the performance of transition metal-based nanomate-
rials. We may emphasize on making nanocomposites 
using various novel materials such as carbonaceous 
materials, oxides and conducting polymers that offers 
more active sites for particular application.

(3)	 The structure and morphological control along with 
different strategies such as tailoring and engineering 
for in-depth understanding are essential for practical 
implementation of electrochemical devices.

Figure 7:   (a) Schematic of synthesis process of pure and Ce-doped CoFe2O4, (b) SEM image of CexCoFex−2 O4 (x = 0.5), (c) CV curves of CexCoFex−2 O4 
(x = 0.5) and (d) Plot between specific capacitance and scan rate. (Reprinted with permission from Ref. [160]).
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(4)	 Synthesis of electroactive nanomaterials having high 
conductivity and porous structure that provide a large 
specific area, shorter diffusion length for electrolyte ions 
with low cost and environment friendly production.

(5)	 It is also important to significantly improve the research 
for the flexible, lightweight, high energy supercapaci-
tors, to practically fulfill the demand of consumer.

(6)	 It is also necessary to focus on simplifying the synthesis 
methods and strategies for large-scale and low-cost 
production.

Now a days, researchers have attained very high values of 
energy and power densities for transition metal-based super-
capacitors by utilizing various creative approaches. However, 
further improvements and inventions are still required to meet 
out the current energy demand of the society. Therefore, the 
progress in the transition metal-based nanomaterials paves 
a way for bright and exciting future and further reform the 
future of energy storage industry.
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