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The elastic interactions and reactions of dislocations lead to the formation of complex dislocation 
substructures, which is critical to the strain hardening and fatigue failure. Phase field dislocation 
dynamics simulations are conducted as a first step to understand the elastic interactions between 
dislocation loops. When the interloop spacing is small, the elastic interactions with neighboring loops 
become strong, rendering the edge segments strongly pinned, while allowing for the screw segments to 
propagate more easily. The interactions are found to result in an anisotropic stress distribution around 
the dislocation loops, leading to the formation of arrays of long, straight edge dislocations that could 
act as barriers to subsequent slip. Furthermore, the effect of initial loop size and applied strain rate on 
the elastic interaction‑induced anisotropic pinning effect is investigated and discussed. The results 
are important for coarse‑graining dislocation substructures formation into continuum level models of 
deformation in crystalline solids.

Introduction
Plasticity determines the strength and ductility of structural 
metals and alloys. Macroscopic plasticity is, microscopically, 
mediated by the evolution of crystalline defects, among which 
dislocations play a key role. In response to mechanical load-
ing, the density of dislocations increases rapidly as a result of 
the growth of existing dislocations and the nucleation of new 
dislocations. In a structure with high dislocation density, dis-
locations often form complex patterns and substructures, such 
as walls [1, 2], cells [3], labyrinth structures [4], and disloca-
tion subgrain boundaries [5], under both monotonic and cyclic 
loading [4–6]. The impact of these dislocation substructures on 
further plastic deformation is twofold: they can exert a back 
stress and thus increase the activation stress and eventually halt 
dislocation nucleation from Frank-Read sources; they can also 
directly impede the gliding of other dislocations. As a result, the 
strength of metals is known to increase with the density of dis-
locations, which is embodied by the classical Taylor’s equation 
[7]. On the other hand, dislocation substructures such as the 
persistent slip bands naturally appear under cycling loading, and 
they are precursor to fatigue failure [4, 6]. Despite its importance 

in the stress–strain response [8–10] and fatigue failure [4, 6], our 
understanding of the formation mechanism of the dislocation 
substructures is still very limited [11–14].

Previous experimental studies focused on the effect of load-
ing conditions, grain orientations, and correlating the forma-
tion of dislocation substructures to stress–strain curves [15, 16]. 
Meanwhile, many computational efforts using both micro/meso-
scopic and continuum level models successfully simulated the 
dislocation substructure formation [13, 17–24]. In particular, 
dislocation cross slip was found to be a necessary condition for 
the formation of dislocation substructures by both discrete dis-
location dynamics [25–27] and dislocation density based simu-
lations [28]. In contrast, in the absence of cross slip, dislocation 
patterning was predicted in single slip simulations adopting 
discrete dislocation dynamics simulations [29] and continuum 
dislocation plasticity simulations [30], highlighting the impor-
tance of long-range elastic interactions between dislocations. 
The objective of this work is to study the elastic interactions of 
curved dislocations using 3D phase field dislocation dynamics 
(PFDD) simulations. We simulate the growth of an array of dis-
location loops, which have been reported in fatigued material 
[31] and irradiated materials [32], on parallel planes and find 
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that the elastic interaction between the loops results in pinning 
of the edge segments. Understanding the origin and evolution 
of such dislocation interactions is important for coarse-graining 
the effects of dislocation substructures into continuum level 
models of deformation in crystalline solids [30, 33]. Particularly, 
we aim to gain an in-depth understanding of the interactions 
between the stress fields that cause the formation of the disloca-
tion wall structures that is critical for straining hardening and 
ductility of materials. Though it is known that the elastic interac-
tions between dislocations generally increases as the interloop 
spacing decreases, no one has reported how, quantitatively, the 
interactions impact the morphology of growing loops.

PFDD tracks the evolution of phase field variables, of which 
an integer jump represents the location of an individual disloca-
tion. A unique feature of the PFDD model is that it is energy-
based, such that the evolution of dislocations (i.e., the phase 
field variables) is driven by the minimization of the total system 
energy [34]. This allows PFDD to naturally incorporate informa-
tion such as the material γ-surface, which is the energy required 
as atoms shift due to translations along a slip plane [35, 36]. This 
is particularly advantageous for modeling partial dislocations 
and stacking faults, which critically influence the plasticity of 
nanostructured metals. Consequently, PFDD has been applied 
to model many aspects of plasticity in face-centered cubic (fcc) 
nanocrystalline metals and thin films [37, 38]. For example, 
Hunter et al. used PFDD simulations to construct the relation-
ship between the unstable stacking fault energy, shear modulus, 
and the equilibrium stacking fault width among various fcc met-
als [39]. Adopting the similar approach, Cao et al. studied the 
effect of grain size [40] and strain rate [41] on the competition 
between partial dislocations and full dislocations in nanostruc-
tured fcc metals. Furthermore, significant progress has been 
made in modeling the interactions between dislocations and 
grain boundaries using the PFDD model. Grain boundaries can 
be modeled as regions with a high density of sessile dislocations, 
and thus the interaction between grain boundaries and lattice 
dislocations are mediated by the elastic interaction and disloca-
tion reaction among them [40]. In particular, Cao et al. demon-
strated the nucleation of dislocation loops from grain bound-
ary regions and the subsequent transmission of the loop into 
neighboring grains, which is in good agreement with atomistic 
simulations [40]. Besides polycrystals, Hunter et al. have suc-
cessfully predicted the transmission of lattice dislocations across 
the bi-metal interfaces [42]. More recently, PFDD model has 
been extended to other material systems, such as body-centered 
cubic metals [43–45], high entropy alloys [46], and hexagonal 
closed packed metals [47]. Finally, we emphasize that PFDD has 
the advantage over other dislocation dynamics methods in that 
it naturally handles the dissociated core structure and interac-
tion with grain boundaries and precipitates, thus allowing us to 
explore dislocation patterning in regimes that are not accessible 

to other methods. One particular scenario where PFDD excels is 
to model the formation of dislocation substructure considering 
precipitates. Therefore, the PFDD method has the potential to 
inform the design of material microstructure toward favorable 
mechanical properties.

This paper is organized as follows: In “Results and discus-
sion” section, we present the effect of the interloop spacing, ini-
tial loop size, and strain rate on the elastic interactions between 
dislocation loops and the corresponding pinning of the edge 
segments, as obtained from the PFDD simulations. We con-
clude this paper in “Conclusions” section. The formulation of 
the PFDD model and the setup of our simulations are detailed 
in “Methods” section.

Results and discussion
The effect of the interloop spacing

First, we simulate the growth of dislocation loops that have an 
initial radius of r = 5b and an interloop spacing (d) that varies 
from 4 to 64b. In Fig. 1, we take a cross-section of the simulation 
cell, looking down along the slip plane normal onto one active 
slip plane and plot the phase field variable (ξ), in which the jump 
in ξ represents the location of the dislocation line.

For the largest interloop spacing of d = 64b (Fig. 1a), both the 
screw and edge segments of the dislocation loop grow signifi-
cantly in response to the applied strain. As the interloop spac-
ing decreases (Fig. 1b–e), we observe distinctively different loop 
shapes as the loops expand. In particular, for the smallest inter-
loop spacing of d = 4b, the screw segments propagate ∼ 60b and 
reach the boundary of the simulation domain, while the edge 
segments only propagate ∼ 7b, when the applied strain reaches 
0.088. The fast propagation of the screw segment continues to 
deposit new dislocation segments of edge-type, leading to the 
formation of a lens-shaped dislocation loop with extremely long 
edge segments (Fig. 1e).

It is known that dislocations with edge and screw characters 
in fcc materials have similar mobility. Therefore, the initially 
circular dislocation loop is expected to maintain a circular shape 
as it expands over time without the impedance of other defects, 
such as obstacles, junctions, or free surfaces. This can indeed 
be seen from the case of d = 64b (Fig. 1a). The initially circular 
loop evolves to have a slight oval shape, in which the slightly 
longer screw segment than edge segment is due to the lower self-
energy of the former than the latter [48]. We have also simulated 
larger interloop spacing (d ≥ 64b), and no difference was seen 
in the loop morphology in comparison to the case of d = 64b. 
Hence, we can assume that the long-range elastic interaction 
between dislocation loops on different slip planes is weak when 
the interloop spacing is larger than 64b, and the case of d = 64b is 
representative of a single isolated dislocation loop. We also note 
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that the oval shape becomes a bit more pronounced as the loop 
approaches the simulation cell boundaries and begins to interact 
(attract) with its periodic images. On the other hand, the lens-
shaped loop for smaller interloop spacing is surprising, espe-
cially as the applied loading is homogeneous. Only observed for 
small interloop spacing (d = 4b and 8b), the lens shape may be 
caused by the occurrence of strong elastic interactions between 
dislocation loops positioned close together. To study the elas-
tic interactions between loops, we examine the local stress field 

around the dislocation loop at zero applied loading. Based on 
the Peach–Koehler equation, the shear stress τ = σzx provides the 
driving force for loop growth, and its contour plot for different 
interloop spacings is shown in Fig. 2.

As discussed previously, the case of d = 64b can be consid-
ered representative of a single isolated dislocation loop [49]. 
As expected, the stress field in this case decays moving away 
from the dislocation line (Fig. 2a). For d = 32b (Fig. 2b), the 
stress distribution is very similar to that seen in the d = 64b 

Figure 1:  Growth of one dislocation loop within an array under increasing applied strain. The dislocation loop has an initial radius of r = 5b. The 
interloop spacing d varies between 4 and 64b, significantly affecting the morphology of the dislocation loop as it expands. The loop lies on the 
X–Y plane, and the segment of the dislocation loop that is perpendicular (parallel) to the vector b represents the pure edge (pure screw) segment. 
Schematics of the pure edge (and pure screw) segments of a dislocation loop and Burger’s vector with reference to the coordinate system are provided 
on the lower right corner of the panel.

Figure 2:  Contour plot of the normalized shear stress τ = σzx around the dislocation loop with r = 5 b at zero strain predicted by the PFDD simulations. 
The stress inside the loop is removed for clarity. In a pure edge (perpendicular to Burger’s vector b) and pure screw (parallel to b) segments of the 
dislocation loop are shown.
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case. As such, for larger interloop spacing (d = 32b or 64b), the 
stress distribution and thus, the loop morphology (Fig. 1a and 
b) are close to the case of a single, isolated dislocation loop. As 
the interloop spacing becomes smaller and the elastic interac-
tion becomes stronger, the stress distribution around the loop 
becomes distinctively different from the previous cases. Spe-
cifically, for d = 8b and 4b (Fig. 2d, e), the stress distribution 
shows a highly anisotropic pattern: positive τ near the screw-
type loop segments and negative τ near the edge-type loop 
segments. According to the Peach-Koehler equation, the loop 
will expand when τ > 0 and collapse when τ < 0. Therefore, at 
zero applied loading, the edge segment is under a stress state 
in favor of loop collapse, while the screw segment is under a 
stress state in favor of loop growth, for d = 8b and 4b.

After unveiling the elastic interaction-induced anisotropic 
stress distribution around the dislocation loop, we can now 
explain the anisotropic loop expansion presented in Fig. 1d 
and e. Upon the application of homogeneous loading, the edge 
segment first remains sessile until the applied loading over-
comes the elastic interaction-induced negative stress fields 
near the edge segments. In contrast, the screw segment begins 
to glide earlier, which is assisted by the elastic interaction-
induced positive stress near the screw segment. Thus, the 
Peach-Koehler force at the screw-type portions of the loop is 
always much larger than at edge-type segments. As a result, 
the screw segment propagates much faster than the edge seg-
ment, resulting in elongated edge segments. In other words, 
the elastic interaction between loops on different slip planes 
becomes stronger with decreasing interloop spacing, resulting 
in local stress fields that significantly differ from the applied 
loading and strongly “pin” the edge segments.

Next, we will examine the elastic interaction-induced 
shear stress in a loop array analytically to validate our obser-
vation of the pinning effect. While the stress fields surround-
ing straight dislocation lines are well known, that for a curved 
dislocation loop is complicated and the explicit form was only 
derived recently [50]. Equation (1) shows the analytical shear 
stress exerted by a dislocation loop,

(1)

σzx =

(

bµ

(

− EllipticK

[

−
4rro

z2 + (r − ro)2

]

(z2 + (r + ro)
2)
(

r2(z4 − r4(−2+ ν)− z4ν + 5z2r2o − 2z2νr2o + 2r4o − νr4o + r2(3z2 − 2z2ν − 4r2o + 2νr2o))

+ cos[2θ ]
(

r6ν + r4z2(3+ 4ν)+ 2(z2 + r2o)
2(z2 + z2ν + νr2o)+ r2(5z4 + 5z4ν − 5z2r2o + 2z2νr2o − 3νr4o

))

+ EllipticE

[

−
4rro

z2 + (r − ro)2

]

(

r2(−r6(−2+ ν)

+r4(5z2 − 3z2ν − 6r2o + 3νr2o)+ r2(4z4 − 3z4ν − 10z2r2o + 2z2νr2o + 6r4o − 3νr4o )+ (z2 + r2o)(z
4
− z4ν + 7z2r2o − 2r4o + νr4o ))

+ cos[2θ ]
(

r8ν + r6(3z4 + 5z2ν − 5νr2o)+ 2(z2 + r2o)
3(z2 + z2ν + νr2o)− r2(z2 + r2o)(−7z4 − 7z4ν + 9z2r2o + 7νr4o )+ r4(8z4 + 9z4ν + 4z2r2o − 6z2νr2o + 9νr4o

))

))

/

(

4πr2(−1+ ν)(z2 + (r − ro)
2)3/2(z2 + (r + ro)

2)2
)

,

loop in the cylindrical coordinates. First, the shear stress caused 
by each dislocation loop in the array is calculated using Eq. (1). 
Then, the superposition of these stresses equals the elastic inter-
action-induced shear stress in a loop array. Specifically, the num-
ber of loops in the array was chosen to be 10 because the stress 
profile does not change if we include more loops.

The calculated interaction stress, τinter around one disloca-
tion loop within the array is shown in Fig. 3. The shear stress is 
shown for various interloop spacings as a function of the angle 
(θ) between the Burgers vector and the dislocation line sense, 
i.e., θ = 0°, 180° for screw character and θ = 90°, 270° for edge 
character. Notably, the anisotropic stress pattern predicted by 
the PFDD simulations (see contours in Fig. 2) is also observed 
in the analytical stress field: τinter becomes negative at the edge 
segments and positive at the screw segments for d = 4b and 8b. 
Furthermore, Fig. 3 clearly demonstrates that the elastic interac-
tions are strong for d = 4b and 8b, but become weaker for d ≥ 16b, 
validating the elastic interaction-induced pinning of the edge 
segments observed in our PFDD simulations.

Figure 3:  Distribution of the shear stress τinter around the dislocation loop 
at zero applied strain calculated with the superposed analytical solution 
describing the stress caused by elastic interactions between loops.

where ν is Poisson’s ratio and µ is the shear modulus, r0 is the 
radius of the dislocation loop. r, θ and z represent the position of 
the reference point with respect to the center of the dislocation 

The effect of the dislocation loop size

So far, we have demonstrated that the elastic interaction-induced 
pinning effect results in long edge segments for interloop 
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spacings of d = 4b or 8b, which is roughly smaller than the initial 
loop size (2r = 10b). In this section, we investigate the effect of 
the initial loop size as realistic dislocation loops can be orders of 
magnitude larger than the case considered previously (r = 5b). As 
such, we compare the growth of loop arrays with initial radii of 
r = 5b, 10b, and 25b and demonstrate the evolution of one dislo-
cation loop within the array in Fig. 4, in which different colors 
indicate increasing applied strains. As expected, for smaller 
interloop spacings (i.e., d = 4b and 8b), we observe the pinning 
effect on the edge segment for all three loop sizes. With further 
examination of the interloop spacing d = 16b, we find that loops 
with the initial size of r = 25b or 10b also have longer edge seg-
ments than screw segments (Fig. 4b, c), while the loops with the 
initial size of r = 5b (Fig. 4a) remain close to a circular shape. In 
other words, the elastic interaction-induced pinning effect is 
slightly more prominent for larger dislocation loops.

To further demonstrate the size effect, we plot the evolu-
tion of the aspect ratio of the dislocation loops for an inter-
loop spacing of d = 32b in Fig. 5. The aspect ratio is defined 
as the ratio between the major and minor axes of the loop in 
Fig. 4 such that the major axis of the loop is always between 
the two screw-type dislocation segments. In other words, an 
aspect ratio greater than unity corresponds to the pinning of 
the edge segments, while an aspect ratio less than unity cor-
responds to negligible pinning effect. Until a critical amount 
of strain is reached, the circular loop will not grow, thus the 
aspect ratio remains at one initially. For a loop with an initial 

radius of r = 5b, the aspect ratio decreases to around 0.8 over 
time, and the initially circular loop becomes an oval-shaped 
one as shown in the inset of Fig. 5. As mentioned earlier in 
the discussion of Fig. 1, this is because the screw segments 
of the loop have lower self-energy, and thus it becomes ener-
getically favorable for the loop to maximize these segments 
as it expands. For a larger initial loop size of r = 10b, the loop 
grows symmetrically, and the aspect ratio remains one over 

Figure 4:  Growth of a dislocation loop within an array where the initial dislocation loop has a radius of (a) r = 5b, (b) 10b, or (c) 25b. The interloop 
spacing d varies between 64 and 4b. Light gray, gray, and red colored loops represent the loop configurations at the initial (at ϵ  = 0), intermediate (at ϵ 
≈ 0.038), and final (at ϵ  = 0.076) strain, respectively.

Figure 5:  Evolution of the aspect ratio of a dislocation loop within an 
array over time under increasing applied strain with an initial radius 
of r = 5b, 10b, or 25b, and a loop spacing of d = 32b. The aspect ratio is 
defined as the major axis over the minor axis, where the major axis is 
taken as the spacing between the screw segments of the loop.



 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 
 V

ol
um

e 
36

  
 I

ss
ue

 1
7 

 S
ep

te
m

be
r 2

02
1 

 w
w

w
.m

rs
.o

rg
/jm

r

Invited Paper

© The Author(s), under exclusive licence to The Materials Research Society 2021 3431

the entire deformation process. Finally, for the largest initial 
loop size of r = 25b, the aspect ratio keeps increasing once the 
dislocation loop starts to grow indicating that long edge-type 
dislocation segments are evolving as the loop grows. Evidently, 
the elastic interactions have a stronger effect on larger disloca-
tion loops, leading to the higher aspect ratio for larger loops 
shown in Fig. 5.

Figure 6 presents a diagram that illustrates the transition 
of a strong pinning effect between dislocation loops to a weak/
negligible pinning effect as a function of the interloop spac-
ing and loop size. In particular, pinning of the edge segments 
is identified when the aspect ratio of the dislocation loop is 
greater than one. Our simulations show that the critical inter-
loop spacing at which the elastic interaction-induced pinning 
effect dominates increases with increasing dislocation loop 
radius. This may be due to the fact that larger initial dislo-
cation loops will also have longer pure edge and pure screw 
segments and, thus, the elastic interactions between longer 
initial pure edge segments would be expected to be stronger 
than the interactions between the relatively short pure edge 
segments in the smallest dislocation loops (i.e., r = 5b). This 
could cause a strong pinning effect in larger initial dislocation 
loops at larger interloop spacings as observed in our PFDD 
simulations.

The effect of the strain rate

Finally, we study the strain rate effect by comparing loop 
growth at two different strain rates. In particular, we signifi-
cantly decrease the strain rate (to 0.2 ε̇ ) with respect to simu-
lations discussed in previous sections (which were run at ε̇ ). 
Figure 7 shows the evolution of the loop aspect ratio at these two 
strain rates for a loop with an initial size of r = 10b and for two 
interloop spacings of d = 8b and 32b. For an interloop spacing 

of d = 32b, the aspect ratio remains constant at one under high 
strain rate, while the aspect ratio slightly increases to a value 
larger than one under low strain rate loading. For the d = 8b 
case, the aspect ratio is notably greater than one when loaded at 
a low strain rate, ending at an aspect ratio nearly twice what is 
achieved with the higher strain rate loading condition. Overall, 
the aspect ratio is in general higher at lower strain rates, i.e., 
the pinning effect becomes stronger at a lower strain rate. This 
can be understood from the competition between the homoge-
neous applied loading and the elastic interactions. Specifically, 
when the strain rate is lower, the elastic interactions dominate 
and result in the pinning of the edge segments. When the strain 
rate is higher, the homogeneous applied loading dominates and 
results in a weaker pinning effect between the edge-type disloca-
tion segments.

Last but not least, it should be noted that the strain rate 
in PFDD simulations (∼  106/s) is orders of magnitudes larger 
than experimental conditions  (10−3/s–103/s), and the disloca-
tion loops simulated in this work are significantly smaller than 
those observed in experiments. Since our simulations revealed 
that slower strain rates and larger dislocation loop sizes are in 
favor of a stronger pinning effect on the edge segments, it can 
be expected that the elastic interaction-induced pinning effect 
under experimental conditions can result in loops with aspect 
ratios considerably higher than the aspect ratios predicted by 
the aforementioned simulations. We suspect that it is possible 
that the length of the edge segment could be one order of mag-
nitude larger than the screw segment, resulting in the forma-
tion of dislocation walls that may impede subsequent dislocation 
motion. This might also contribute to the fact that extended edge 
dislocations are often observed in fcc metals [1, 2], which was 

Figure 6:  Diagram showing the transition of a strong pinning effect 
between dislocation loops to a weak/negligible pinning effect as a 
function of the loop radius and interloop spacing. A filled red circle 
indicates pinning of the edge segments was observed, and an open 
black circle indicates no-pinning effect was observed.

Figure 7:  Evolution of the aspect ratio of a dislocation loop within 
an array with respect to strain at low (open symbols) and high (solid 
symbols) strain rates. Lower strain rate loading leads to longer edge 
segments. The loops have an initial radius of r = 10b and the interloop 
spacing is 8b (red) and 32b (blue).
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traditionally attributed to the easy cross slip and annihilation of 
the screw segments.

Conclusions
In summary, we performed phase field dislocation dynamics 
(PFDD) simulations to study the evolution of an array of disloca-
tion loops for various interloop spacings, loop sizes, and strain 
rates. We found that as the interloop spacing between glide planes 
decreases, the stress fields change significantly due to elastic 
interactions between dislocation loops on neighboring planes. At 
interloop spacings of 4b and 8b (and initial loop radius of r = 5b), 
edge-type dislocation segments experience a strong negative shear 
stress (σzx) that encourages loop collapse. Conversely, this stress 
surrounding the screw-type segments remains positive, encour-
aging loop expansion. This stress state results in anisotropic loop 
growth under homogeneous applied strain, where the screw-type 
segments move quickly creating a lens-shaped loop. This creates 
long, straight edge segments, which remain pinned in place, and 
relatively short screw segments. These long edge segment arrays 
could act as dislocation walls, impeding further dislocation 
motion.

Furthermore, the effect of the initial dislocation loop size and 
the applied strain rate on this pinning behavior was also inves-
tigated with PFDD. Interestingly, larger initial dislocation loop 
arrays exhibited the pinning of edge segments at larger interloop 
spacings. For the largest loop radius tested, r = 25b, the pinning 
effect was observed at all interloop spacings tested (ranging from 4 
to 64b). Lower strain rates were found to also enhance the pinning 
effect. Overall, elastic interactions, such as those observed in these 
PFDD simulation, could be an underlying formation mechanism 
for dislocation patterning and subgrain boundary formation.

Methods
Phase field dislocation dynamics

In PFDD, active phase field variables are defined over the entire 
simulation domain and represent the plastic slip in the unit of 
a perfect dislocation Burgers vector. Accordingly, any integer 
jump in the phase field variable indicates the location of a perfect 
dislocation.

The plastic strain ( εpij(r) ) is related to the phase field variables 
(ξ(r)) as [34]

where N is the number of active slip systems, mα is the slip plane 
normal, bα is the Burgers vector, and δα is a Dirac delta function 
that confines the slip on the slip plane, all for the slip system α. 
In this work, we consider the dislocation interactions in one 

(2)ε
p
ij =

N
∑

α

1

2
ξα(r)

(

bαi m
α
j + bαj m

α
i

)

δα

active slip system (N= 1) in Cu and, therefore, the normalized 
slip plane normal (m) and Burgers vector (b) are 1/

√
3[1, 1, 1] 

and 1/2[1, 1, 0], respectively. The local strain can be calculated 
using the isotropic elastic Green’s function, G(r), as [34, 40, 51]

where the “,” in the subscript indicates partial derivative, Cklmn 
is the elastic tensor, and “ * ” represents convolution. εij is the 
homogeneous part of the strain and equals the applied strain 
εapplied under the strain-controlled loading condition adopted 
here. The local stress can be calculated as [51]

The evolution of the phase field variables is governed by 
energy minimization through a time-dependent Ginzburg–Lan-
dau equation [34],

where L is the kinetic coefficient that determines dislocation 
velocity. The total energy (E) contains the elastic strain energy 
(Estrain) and the dislocation core energy (Ecore). The former can 
be calculated as

where ^ denotes the Fourier transform, k is the wave number 
vector in Fourier space, * in the superscript indicates complex 
conjugate, and Âijkl(k) = Cijkl − CijuvCmnklĜum(k)kvkn.

The core energy is calculated by integrating the pla-
nar energy density functional ( �n ) over the slip plane, 
Ecore = ∫�nd

2r . This energy density functional �n is mate-
rial dependent, and can even be slip system dependent and/or 
dependent on the dislocation type (i.e., edge, screw, or mixed) 
[44, 47]. Various functional forms have been used previously 
including piece wise quadratic [34], sinusoidal [48], tabular 
forms [52], and complex Fourier series [9, 39], and these forms 
are dependent on one or more phase field variables on a given 
slip plane. Here, our interest lies with fcc Cu and perfect disloca-
tions from one active slip system. Therefore, a simple sinusoi-
dal function [49, 53–55] is adopted, �n = A  sin2(πξ), where the 
coefficient A is the unstable stacking fault energy. Specifically, 
material parameters calculated with density functional theory 
are adopted, with an unstable stacking fault energy and shear 

(3)εij(r) = εij − Cklmnε
p
mn,l(r) ∗

1

2

(

Gik,j(r)+ Gjk,i(r)
)

(4)σij(r) = Cijkl

(

εkl(r)− ε
p
kl(r)

)

(5)
∂ξα(r)

∂t
= −L

δE

δξα(r)

(6)

Estrain =
1

2

∫

Cijkl

(

εij(r)− ε
p
ij(r)

)(

εkl(r)− ε
p
kl(r)

)

d3r

=
V

2
Cijklεijεkl − Cijklεij

∑

α

∫ ξα(r)bαk m
α
l d

3r

+
1

2

∫

d3k

(2π)3
Âijkl(k)

∑
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ξ̂ α1 (k)b
α1
i m

α1
j

∑
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∗
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α2
k m
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modulus of 163.7 mJ/m2 [56] and 54.5 GPa, respectively, and 
the Poisson’s ratio is 0.325.

Simulation setup

As shown in Fig. 8, the initial dislocation array contains 
circular dislocation loops on parallel slip planes that are 
separated by an interloop spacing d. The dislocation loops 
belong to the same slip system with the Burgers vector b 
along the x-axis and the slip plane normal along the z-axis. 
An increasing shear strain εzx with the incremental step 
of  �εzx = 0.002, is applied to drive the dislocation loop 
growth. The simulation domain has a size of 128 × 128 × 128 
b3, where b is the grid size and corresponds to the Burg-
ers vector magnitude of Cu, b = 0.24 nm. Periodic bound-
ary conditions are applied in all three directions. A series 
of simulations are conducted for three initial loop radii 
(5b, 10b, and 25b) and multiple interloop spacing varying 
between 4 and 64b. Two different strain rates are adopted 
in “The effect of the strain rate” section. In particular, fol-
lowing each strain increment, the structure is allowed to 
relax for five times longer in the low strain rate case than 
the high strain rate case, which qualitatively represents the 
strain rate effect.
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