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The development of high-speed nanoindentation has enabled the acquisition of mechanical property 
maps over square millimeters of area with micron-scale resolution in reasonable amounts of time. This 
provides rich datasets which contain morphological and statistical data on the variation of mechanical 
properties in a microstructure. However, the influences of the indentation size and the deconvolution 
method employed on the extracted phase properties remain unclear. In this work, a range of depth/
spacing increments was explored on two different materials systems, an Al-Cu eutectic alloy and a 
duplex stainless steel, representing an ‘easy’ and a ‘hard’ case for statistical deconvolution, respectively. 
A total of ~ 500,000 indentations were performed. A variety of statistical analyses were then employed 
and compared: the 1D analysis of Ulm et al. using 2 and 3 phases, a 2D rotated Gaussian fit, K-means 
clustering, and a visual comparison to 2D histograms. This revealed several different sensitivities of the 
deconvolution methods to various types of error in phase identification.

Introduction
The development of instrumented nanoindentation coupled 
with the Oliver and Pharr analysis [1] in the 1990s allowed 
a new era of automated, local mechanical property measure-
ment. Over the last 30 years, numerous applications of this 
technique have been developed, and many new scientific dis-
coveries have been enabled as a consequence, e.g., the inden-
tation size effect (ISE) [2]. Two of the developed applications 
for nanoindentation are mapping [3] and statistical property 
extraction [4]. Both of these techniques use large grids of 
indentations, but they consider the data in different ways. 
Indentation mapping, or cartography, considers the variation 
of the measured properties over a two-dimensional surface, 
whereas statistical extraction assumes a number of discrete 
phases and fits their distributions within a property space to 
determine the fraction, average value, and variation of each 
separate, constitutive phase while ignoring the positions of 
the indents in the Cartesian surface.

Initially, both of these techniques required a significant 
amount of experimental time due to the large numbers of 
indents required. However, advances in instrumentation and 
electronics have now enabled the speed of indentation to be 
increased approximately 100 times, such that many thousands of 
indentations can now easily be performed within an hour [5–7]. 
This makes both techniques simultaneously more accessible and 
thus more popular with numerous applications emerging in the 
recent literature on a variety of materials: cements [8, 9], hard-
metals [6, 10, 11], Ni–Fe meteorites [12], titanium [13], duplex 
[14] and tool steels [15], and thermal barrier coatings [16].

The increasing popularity of high-speed indentation map-
ping makes the analysis methods for the large volumes of data 
emerging from the technique increasingly important. Primarily, 
this has been conducted using the statistical property analysis 
technique proposed by Ulm et al. [4, 17–19]. However, some 
additional techniques have also recently been applied: K-means 
cluster analysis [16] and machine learning [20, 21]. Both of 
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these techniques also allow the spatial positions of the indents 
to be considered as an additional dimension during the analy-
sis allowing visualizing of the clusters within the maps. Cor-
relative techniques combining nanoindentation mapping with 
analytical electron microscopy have also recently been demon-
strated using energy-dispersive X-ray spectroscopy (EDX) on 
meteorites [12] and electron back-scattered diffraction (EBSD) 
on titanium [13]. These correlative techniques also allow extra 
dimensions to be added to the dataset, enriching it, and allowing 
easier discrimination between either discrete phases or smooth 
orientation/compositional gradients. However, these correlative 
techniques are still emerging and have not yet achieved wide-
spread adoption.

In this work, we investigate the influence of indentation size 
and spacing on the statistical analysis of high-speed nanoin-
dentation maps on two different two-phase materials: an Al–Cu 
eutectic alloy and a duplex stainless steel (DSS). These present 
two distinctly different challenges for the deconvolution. The 
phases in Al–Cu eutectic have strongly varying mechanical 
properties but a finely mixed microstructure, and the DSS has 
only slightly different mechanical properties but a more dis-
crete microstructure. Thus, both systems produce convoluted 
statistical responses with overlapping property distributions but 
in different ways. These both represent greater deconvolution 
challenges than the previous investigation using K-means by 
Vignesh et al. [16] on superalloy bond coat phases which dis-
played a wide disparity in mechanical properties and discrete 
phase boundaries. We explore these differences in each system 
using indentation maps of 40,000 indentations performed with 
four different target indentation depths (100, 200, 350, and 
500 nm), while maintaining the suggested [22] indentation 
spacing/depth ratio of 10, to observe the resulting variation in 
property distributions. These are then analyzed using the 1D 
analysis of Ulm et al. [4], multivariate K-means cluster analysis 
[23], and a 2D Gaussian peak fitting method to compare and 
contrast the different deconvolution methods. Previous works 
in the literature have only used a single deconvolution method, 
rather than several. The authors believe this work to be the first 
to compare the effectiveness of the various deconvolution meth-
ods and the first to systematically perform multiphase maps at a 
range of indentation depths and spacings.

Results
Conventional nanoindentation

Conventional nanoindentation testing was performed on each 
individual phase (detected by EBSD) of the investigated samples. 
The continuous stiffness measurement (CSM) method was used 
so that the elastic modulus (E) and hardness (H) could be con-
tinuously determined at each indentation depth (h) up to the 

maximum applied load (P). The obtained results of both studied 
samples are shown in Fig. 1. P–h curves of different imprints 
(performed on each constitutive phase), as well as their corre-
sponding H and E curves are plotted as a function of depth for 
both the Al-Cu eutectic and the DSS samples.

The obtained P–h curves of individual phases within the 
Al–Cu eutectic sample demonstrate distinct mechanical 
responses. The mechanical properties of the theta (Al2Cu) and 
aluminum phase are show significantly different magnitudes, 
with the hardness values showing greater disparity compared 
with E curves. These results are consistent with those recently 
observed on an Al–Cu diffusion couple investigated by the 
same methods [24]. The hardness and elastic modulus values 
as a function of indentation depth show stable behavior during 
indentation for both phases. Indicating that there is no signifi-
cant indentation size effect in this material, which is unsurpris-
ing given its complex, constrained microstructure. In materi-
als like nanocrystalline metals or the fine-structured dendritic 
Al-Cu eutectic tested here, the internal length scale is already 
quite small, so the external size of the indentation has a relatively 
small effect [25].

The obtained P–h curves from nanoindentations performed 
on austenite (γ) and ferrite (α) phase display rather different 
behavior from the eutectic alloy: they almost completely overlap. 
This reveals the high degree of similarity in the micromechanical 
response of the phases within this DSS samples. However, the 
elastic modulus vs. depth curves for individual phases of DSS 
clearly indicate a higher elastic modulus for the α ferrite phase 
compared with the γ austenite phase. In terms of hardness, the 
obtained results are quite close for the first 200 nm, while the 
austenite phase is slightly harder than ferrite phase. Thereaf-
ter, no clear difference can be discerned between phases, and 
the curves converge at higher penetration depth. Moreover, a 
notable ISE emerges clearly in hardness curves for all imprints 
before ⁓ 300 nm penetration depth.

Mechanical phase maps

Conventional indentation testing provides us with a clear 
impression of the mechanical properties of each phase at 
different penetration depths. With the mechanical property 
evolution with penetration depth shown in Fig. 1 in mind, 
indentation mapping was performed using the NanoBlitz tech-
nique using a range of target loads and indentation spacings 
on both Al-Cu eutectic and DSS samples. A full description of 
the testing method and choice of applied loads and indenta-
tion spacings are provided in “Nanoindentation” section. In 
short, the applied loads were chosen to ensure that indenta-
tions depths were close to or below a target value (10% of 
the spacing increment) to prevent overlapping indentations. 
These maps provide us information about the mechanical 
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properties (H and E) of each constitutive phase at depths ≤ the 
target value. Moreover, the influence of spacing and ISE can be 
analyzed by observing the resulting map morphologies and by 
implementing statistical analysis on the resulting data, which 
will be discussed in detail later. Figure 2 shows the obtained 
H and E maps at different spacings for both studied samples.

The indentation maps performed on Al-Cu eutectic sam-
ple show very strong differentiation between the two phases. 
As expected from the individual CSM indentation data, the 
H map shows better distinction between theta and aluminum 
phases. However, the resolution of maps decreases with the 
increase in spacing increment (or step size) between imprints. 
In this case, the step size is roughly the size of the indentation 
plastic zone in the softer phase, so that the resolution is the 
maximum allowed for the indentation depth [22]. Regard-
ing the E maps, an apparent increase in the elastic modulus 
values of the aluminum phase is observed for the maps per-
formed at 3.5 and 5 µm spacings. This phenomenon might be 
attributed to the neighboring/overlapping effect of fine theta 

phase dendrites on elastic modulus of aluminum phase at high 
penetration depth.

In the case of the DSS sample, in general, the elastic modulus 
maps present better visual distinction between austenite and 
ferrite phases than the H maps at all spacing increments. Their 
values are similar to those obtained from individual indentations 
on each phase obtained by the CSM technique, but a general 
increase in E map values with indentation spacing/depth is nota-
ble in this sample. This is possibly due to the influence of pile-up 
around indentations. However, in the hardness H maps, it can be 
seen that austenite and ferrite phases can be best distinguished 
in the map performed at 2 μm spacing between imprints. The 
obtained hardness maps also clearly display an ISE, where H 
values decrease with increasing penetration depth. A similar 
but slightly stronger trend can also be observed in the E maps 
with increasing spacings. Furthermore, in agreement with CSM 
indentations, the austenite (γ) phase displays higher hardness 
and lower elastic modulus compared with the ferrite (α) phase. 
More information about the correlation between the mechanical 

Figure 1:   Representative load–displacement curves acquired during CSM indentation to 50 and 45 mN loads on Al-Cu eutectic and DSS samples, 
respectively. Corresponding elastic modulus and hardness curves are presented above.
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properties and the phases in DSS materials at different process-
ing steps is provided elsewhere [14].

Figure 3 displays secondary electron micrographs of the 
regions mapped with a 1 µm spacing on both samples. The 
micrograph of the Al-Cu eutectic displays excellent visual cor-
relation with its corresponding H and E maps in Fig. 2, due to 
strong contrast between the Al metal and Al2Cu intermetallic 
phases. The difference in indentation depth in these soft and 
hard phases is also readily visible, with the ~ 4 × harder Al2Cu 
phase relatively faint impressions. By comparison, the DSS sam-
ple shows little contrast between the austenite and ferrite phases, 
as expected in this imaging mode, with only some slight grain 
contrast and the topology of the indentation grid visible.

As shown in this section, mechanical property maps might 
be considered as an effective way to mechanically distinguish the 
phases in complex microstructures. However, the functionality 
of mechanical property maps of this type is dependent on sev-
eral factors: surface roughness, disparity in mechanical proper-
ties of probed phases, penetration depth, and spacing between 
imprints. Moreover, mechanical property maps might mainly 
be considered as a qualitative, visual method to mechanically 
distinguish the individual phases of multiphase materials to pro-
vide guidance for subsequent analytical investigations. In order 
to achieve a quantitative evaluation of the mechanical properties 
of individual constitutive phases, statistical deconvolution of the 
massive indentation datasets must be performed.

Figure 2:   H and E maps obtained from performed indentations maps (40,000 per condition) on Al-Cu eutectic and DSS samples at different spacing 
increments.
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Discussion
H/E ratio maps

The mechanical property maps presented and discussed in the 
previous section (“Mechanical phase maps” section) demon-
strate the ability of these types of maps to differentiate between 
different phases. The results for the Al–Cu eutectic alloy sample 
are particularly crisp and distinct representations of the beauti-
ful dendritic microstructure. However, in the case of DSS, the 
austenite and ferrite phases could be only somewhat distin-
guished in the H and E maps (Fig. 2).

Indentation hardness is a hybrid measure of the reversible 
(elastic) and irreversible (plastic) deformation and the indenter 

geometry [26]. This implies the hardness maps are intrinsically 
convoluted with the modulus maps, so it is desirable to extract 
a parameter which more purely describes the plasticity of the 
material. The H/E ratio is such a measure, which describes the 
resistance of a material to irreversible deformation. High hard-
ness materials with low stiffness (high H/E) are more likely to 
deform purely elastically, while soft materials with high stiffness 
(low H/E) are more likely to behave purely plastically. The H/E 
ratio is often used to describe a “plasticity index” in the fields 
of tribology and fracture mechanics [27]. Using dimensional 
analysis and finite element calculations, Cheng and Cheng [28] 
were able to demonstrate a strong relationship between the H/E 
ratio and the plastic fraction of the total energy of indentation. 
In short, the H/E ratio is a measure of how plastic an indentation 
is with the influence of its modulus removed.

Therefore, as a preliminary analysis step, in addition to H 
and E maps, H/E ratio maps were plotted for each condition. 
As shown in Fig. 4 and in previous work [12], H/E ratio maps 
provide superior contrast between phases for both samples. The 
difference between the H/E ratio and the H and E maps is more 
pronounced for the DSS sample. Therefore, it can be derived 
that, although H and E represent different mechanical phenom-
ena, they are interrelated in such a way that the corresponding 
H/E ratio for each phase reveals more reliable and comparable 
values [29], similar to S2/P. Hence, H/E ratio offers better resolu-
tion to discriminate the mechanical response of the constitutive 
phases of DSSs, in which the austenitic phase demonstrates a 
higher H/E ratio compared with the ferritic phase.

2D histograms and statistical analysis of Al–Cu 
Eutectic indentation maps

In order to further develop the concepts of the interrelation-
ship between H and E values, 2D histogram plots are utilized 
to display the relative magnitudes of the obtained H and E val-
ues over the entire mapped region simultaneously. Figures 5 
and 6 display the 2D histograms for the eutectic Al-Cu and the 
duplex stainless steel, respectively, at each spacing increment. 
The color of each pixel represents the number of indentations 
that are included within a range of H and E, which is defined 
as a 2D bin size. Values of only 1 indent are shown in light gray 
to minimize the visual impact of outliers, and higher indenta-
tion numbers are shown with a shaded gradient from darker 
red tones to yellow-white peaks at the highest values in each 
histogram. These are therefore arbitrary units, depending on the 
number of total indentations performed. In this study, 40,000 
indentations were performed at each spacing/depth increment, 
so typical peak values for the histograms are between 75 and 
200 indentations. These figures offer a simple visual method to 
evaluate ‘hot spots’ in the indentation property space which sta-
tistically correspond to individual phases. As shown in previous 

Figure 3:   Secondary electron micrographs of the 200 × 200 indentation 
grids performed with a 1 µm spacing on the Al–Cu eutectic and duplex 
stainless steel.
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work [14], these ‘peaks’ in the 2D histograms often take the form 
of elliptical, normal distributions which are elongated along the 
direction of the H/E ratio.

Figure 5 displays the 2D histograms measured on the Al–Cu 
eutectic sample. At least two populations can be easily distin-
guished in all conditions, corresponding to the aluminum and 
Al2Cu, or Theta (θ), phases and mixtures of the two. As observed 
in the literature and Fig. 1, the Theta phase has significantly higher 
hardness corresponding to the upper peak, while aluminum and 
mixed Al + Al2Cu regions correspond to the lower hardness peak/
cluster. The positions and shapes of these peaks are observed to 
shift significantly with the variation in indentation spacing and 
depth. At the shallowest depths and closest spacing (1 µm), the 
two phases are relatively discrete and show strong peaks at val-
ues corresponding relatively well to the values of the individual 
phases. This suggests this indentation depth range corresponds to 
a plastic zone which is similarly scaled or smaller than the smallest 
microstructural length scale. This is further shown by the excel-
lent clarity of the features resolved at this spacing in Figs. 2 and 4.

Similar behavior is seen in the histogram from the 2 µm 
spacing map. On further increase to 3.5 µm spacing, the peak 
corresponding to the aluminum phase almost disappears, as it 
is overwhelmed by the diffuse cloud corresponding to mixed 
phase indentations which contain both Al and Al2Cu. Similar 
behavior is seen in the histogram from the largest, 5 µm spacing 
increment. This results from the indentation depth range and 
corresponding plastic zone being too large to fit between the 
fine Al2Cu dendrites, such that a statistical majority of indenta-
tions in the Al-rich portion of the microstructure deform both 
Al and Al2Cu.

Although 2D histograms provide a direct, visual method to 
qualitatively evaluate the mechanically distinct phases, quanti-
tative evaluation of the local mechanical properties of constitu-
tive phases of multiphase materials has always been challeng-
ing. In this regard, several different statistical methods have 
been proposed in the literature to deconvolute the intrinsic 
properties (H and E) of constitutive phases of studied materi-
als. In this work, we applied both of the most popular meth-
ods, the 1D Gaussian fitting method of Ulm et al. [4, 17–19] 
and K-means clustering [23], and we propose an additional 
method, 2D Gaussian fitting. The details of these methods are 
provided in “Deconvolution methods of mechanical proper-
ties” section. The results of these deconvolutions are summa-
rized in Table 1. Standard deviations for 1D and 2D Gaussian 
methods are extracted from the full-width half maxima of the 
fitted peaks. However, for K-means clustering, only the aver-
age distance from the cluster center could be extracted. As 
this parameter is an average of deviation in both H and E, it 
was omitted from Table 1 as it does not truly compare to the 
individual deviations in H or E in the other methods. The peak 
locations or cluster centers corresponding to the mean values 
of hardness and modulus extracted by each method are plotted 
on the 2D histograms in Fig. 5.

In the cases of strong peaks in the 2D histograms, all 
methods agree quite closely and appear to closely correspond 
to the visually observed peak in the histogram. However, there 
are some exceptions. In histograms from both 1 and 2 µm 
spacings, the K-means clustering correctly identifies the Al2Cu 
phase peak, but it centers the second cluster in between the 
‘tail’ of the Al2Cu peak and the Al peak. This suggests that 

Figure 4:   H/E ratio maps obtained from nanoindentation maps performed on Al–Cu eutectic and duplex stainless steel samples at different spacing 
increments.
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the algorithm simply took the average value of the lower half 
of the results and centered the cluster in the middle. This is 
similar to what is observed for the ‘mixed’ phase fit by the 1D 
Gaussian—3-phase method. Since the 1D Gaussian method 
only considers each property separately, it overlooks the cou-
pled relationship between H and E. Trends in the results pro-
jected in only the H dimension fail to capture variation in the 
E dimension and vice versa. This results in fits which appear 
to be of high quality by 1D statistical metrics but correspond 
to no real features in the 2D distribution of results observed 
in the histogram. This is observed for the ‘mixed’ peak in all 
spacing/depth increments, as it appears to be centered in the 
middle of all the data rather than in the ‘tail’ or ‘saddle’ con-
necting the Al and Al2Cu peaks. This highlights the power of 
the 2D histogram visualization for this method and illustrates 
the need for analysis methods which incorporate 2 or more 
dimensions of the data.

The weaker, irregular cluster of data in the histograms from 
the 3.5 and 5 µm spacings presented a challenge to all the methods. 
The clusters of data show several subpeaks or lobes which corre-
spond to the Al phase and Al + Al2Cu mixed regions. At the 3.5 µm 
spacing, the 2D Gaussian method still identifies the Al peak, while 
the 1D Gaussian method indicates the center of the mixed region. 
The 2-phase 1D Gaussian more closely indicates the center than 
the 3-phase version. Similar behavior is observed in the histograms 
from the 5 µm spacing, but the 2D Gaussian method now also 
indicates the center of the mixed region.

2D histograms and statistical analysis of duplex 
stainless steel indentation maps

The analysis and deconvolution of the phase properties of the 
duplex stainless steel presents several of the same challenges as 
the Al-Cu eutectic alloy. However, the deconvolution is more 

Figure 5:   2D histograms of hardness and elastic modulus data on the Al–Cu eutectic sample from each mapping spacing increment with the locations 
of the fitting centers from each method labeled.
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difficult in the DSS, as the indentation properties of the two 
alloys show significant overlap. This can be observed in the rela-
tively low contrast and lack of sharp boundaries between the 
phases in the maps shown in Fig. 2, an even in the H/E ratio 
map in Fig. 4. This overlap is most clearly illustrated in Fig. 6, 
where the property distributions can be seen to overlap to such 
an extent that they present the appearance of a single, irregu-
larly shaped peak in most of the 2D histograms. As such, this 
presents one of the biggest challenges for statistical deconvolu-
tion methods. With correlative analytical methods, particularly 
EBSD in this case, it is a relatively simple matter to separate the 
two phases and obtain their individual properties. Indeed, good 
correlation between H/E ratio maps and EBSD phase maps has 
already been obtained on this material [14]. However, the focus 
of this work is to determine the relative effectiveness of various 
statistical methods alone.

If we examine the morphological evolution of the 2D histo-
gram distributions in Fig. 6 as a function of indentation spacing, 
only slight changes can be observed. At first, we see a single 
elliptical distribution for the histogram at the finest spacing of 
1 µm, which is elongated at a roughly constant hardness level of 
4.5 GPa, that displays a significant tail towards the origin. This 
type of tail has been observed before in previous works [14, 24] 
to correspond to the influence of roughness or porosity on the 
hardness results. However, in this work, the high-level vibro-
polishing that the DSS sample underwent suggests that rough-
ness is likely not a factor here. Instead, this tail, which originates 
from both phases according to the H maps in Fig. 2, may arise 
from some grain orientations which favor sink-in or an effect 
from pop-in displacements at this low indentation depth. At 
2 µm spacing, a slight remnant of this tail can still be seen in 
the histogram, but the tail mostly disappears in the histograms 

Figure 6:   2D histograms of hardness and elastic modulus data on the duplex stainless steel sample from each mapping spacing/depth increment with 
the locations of the fitting centers from each method labeled.
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TABLE 1:   Summary of parameters extracted from indentation maps on Al–Cu eutectic and duplex stainless steel samples using conventional indenta-
tion (CSM) and various statistical methods.

Merged cells indicate when a technique was unable to discriminate between the phases.

Spacing Method

Al-Cu eutectic Duplex stainless steel

Phase

Mechanical property

Phase

Mechanical property

H Std. Dev E Std. Dev H Std. Dev E Std. Dev

1 µm CSM Al 1.87 0.08 84.8 2.4 α 4.94 0.15 253.2 6.1

Θ 6.81 0.23 128.6 2.5 γ 4.71 0.03 213.3 7.2

1D Gaussian—2 phases Al 1.34 0.33 75.6 10 α 3.71 0.43 200.2 14

Θ 5.15 1.01 94.8 6 γ 4.45 0.21 183.2 14.8

1D Gaussian—3 phases Al 1.28 0.23 74.8 9 α 3.6 0.36 204.4 11

Mixed 3.11 1.27 83.1 15 Mixed 4.43 0.36 185.9 9.2

Θ 5.49 0.69 94.5 6 γ 4.43 0.39 173.1 14.2

2D Gaussian Al 1.29 0.44 71.1 17 α 4.46 0.19 199 14.5

Θ 5.4 0.85 92.1 19 γ 4.15 0.38 179.4 12.2

K-means clustering Al 2.1 – 71.2 – α 4.13 – 204.4 –

θ 5.12 – 93.8 – γ 4.49 – 177.5 –

2 µm CSM Al 1.75 0.01 86.9 0.1 α 4.32 0.17 231.9 6.1

Θ 6.8 0.28 131 2.2 γ 4.17 0.14 209.3 5.1

1D Gaussian—2 phases Al 1.39 0.29 73.5 8 α 3.66 0.27 222 7.9

Θ 4.84 1 95.5 9 γ 4.11 0.19 203.1 11.6

1D Gaussian—3 phases Al 1.33 0.22 74 8 α 3.72 0.26 217.6 9.3

Mixed 2.66 0.74 94.5 7 Mixed 4.17 0.28 202 7.6

Θ 4.95 0.89 96.5 10 γ 4.09 0.13 193.9 10.2

2D Gaussian Al 1.35 0.49 73.9 16 α 4.13 0.12 220.1 8.2

Θ 4.89 0.87 94.6 24 γ 4.1 0.21 201.3 9.5

K-means clustering Al 2.43 – 74.6 – α 4.03 – 218.2 –

Θ 5.06 – 98.1 – γ 4.19 – 196.2 –

3.5 µm CSM Al 1.64 0.06 86.5 1.4 α 3.93 0.16 223.4 3.9

Θ 6.64 0.07 130.2 2.6 γ 3.98 0.14 208.2 4

1D Gaussian—2 phases Al 2.33 0.78 94.3 13 α 3.78 0.12 219.1 10.7

Θ 6.38 0.63 112.2 6 γ 3.83 0.27 208.9 10.9

1D Gaussian—3 phases Al 2.08 0.59 84.1 9 α 3.65 0.23 219.2 9.9

Mixed 3.42 0.91 99.1 7 Mixed 3.91 0.26 207.9 7.9

Θ 6.46 0.56 112.8 6 γ 3.78 0.13 196.9 8.4

2D Gaussian Al 1.35 4.97 92 28 α 3.84 0.21 225.5 6.9

Θ 6.45 0.54 112 14 γ 3.8 0.08 213.1 11.3

K-means clustering Al 4.13 – 99.7 – α 3.79 – 223 –

Θ γ 3.86 – 2.3.8 –

5 µm CSM Al 1.62 0.05 86.4 1.1 α 3.8 0.08 220.1 2.5

Θ 6.62 0.06 131.7 5.1 γ 3.85 0.03 202.5 4.2

1D Gaussian—2 phases Al 2.31 0.65 96.4 12 α 3.77 0.25 220.7 10.5

Θ 6.46 0.52 114.7 4 γ 3.65 0.12 220.7 11.3

1D Gaussian—3 phases Al 2.21 0.56 87.2 9 α 3.65 0.11 226.6 9.2

Mixed 4.12 0.75 101.5 8 Mixed 3.67 0.21 216.4 11.2

Θ 6.56 0.41 115.1 4 γ 3.89 0.23 216 7.7

2D Gaussian Al 2.1 1.38 100 28 α 3.66 0.17 228.5 8.3

Θ 6.6 0.44 115 10 γ 3.79 0.11 216 8.4

K-means clustering Al 4.1 – 101.1 – α 3.72 – 220.6 –

Θ γ
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from higher depth indentations. The irregular shape of the dis-
tribution is also observed to change in the histogram from 2 µm 
spacing from a horizontal ellipsoid to a convolution of two, tilted 
elliptical distributions corresponding to the austenite and ferrite 
phases. The austenite, γ, phase is the larger and rounder of the 
two and is located in the upper left, corresponding to its higher 
hardness and lower modulus [14]. As noted previously, rounder 
distributions correspond to more isotropic phases, which is in 
accord with the FCC structure of the austenite phase. The ferrite, 
α, phase corresponds to the lobe which protrudes (particularly 
at higher depth indentation map histograms) in the lower right, 
corresponding to its higher modulus and lower hardness. This 
lobe can be seen to be strongly tilted along its H/E ratio, which 
is in agreement with previous observations of anisotropic phases 
[12, 24].

Comparing the effectiveness of the statistical methods to a 
visual evaluation of the 2D histograms, we see a strong influ-
ence of the tails in the 1 and 2 µm spacing histograms on the 
1D Gaussian evaluation methods. The 2-phase version mistak-
enly identifies the tail as a phase and fits the second phase peak 
between the two-phase regions, while the 3-phase version iden-
tifies the tail as the mixed phase and correctly finds the peaks 
of the α and γ phases. The 2D Gaussian and K-means methods 
both also fit a single peak to the center of the convolution of the 
α and γ phases and fit the other peak to a region corresponding 
to the tail. In the histogram from the 2 µm spacing maps, other 
than the 1D Gaussian methods issue with the tail, all methods 
broadly identify the peaks of the two phases correctly with 
varying degrees of accuracy with 1D Gaussian—3-phase and 
2D Gaussian methods giving the closest visual approximations. 
Similar trends are observed in the 3.5 µm spacing histogram. All 
methods give reasonable approximations of the α and γ phase 
peaks, though the third phase peak at low modulus values iden-
tified by the 1D Gaussian—3-phase method appears to corre-
spond to nothing. At the highest depths, the histogram presents 
a very narrow distribution with significant overlap of the two 
phases, though the ferrite lobe is still prominent. This caused 
difficult for most methods. K-means only identified one joint 
peak for both α and γ phases and placed the other minor peak 
outside the distribution. Both 1D Gaussian methods identified 
two closely spaced peaks near the center of the distribution, but 
the 3-phase version identified another point in the upper right of 
the distribution which is close to the 2D Gaussian value for the 
ferrite phase. Now, this point highlights the difficulty of inter-
preting two sets of 1D results in 2D space. The 1D Gaussian—
3-phase method identifies 3 values for H and E each, but it is 
blind to the relation between the two. Therefore, six different 
sets of X,Y (in this case, E,H) coordinates could be determined 
from the output of the method with no indication as to which is 
correct! Without considering the data in two dimensions using 
a coupled analysis, a 2D histogram for visualization, or prior 

knowledge from conventional indentations or a correlative 
technique, it is impossible to guess the correct order. Using the 
2D Gaussian method, which considers both dimensions, what 
appears to be the correct peak positions for the α and γ phases 
can be identified.

Conclusions
The influence of indentation size and statistical deconvolution 
methods on the extracted phase properties of Al-Cu eutectic 
and DSS samples have been studied. This is the first such com-
parison between deconvolution methods for high-speed nanoin-
dentation data. In doing so, several different statistical analyses 
were implemented on a large dataset (500,000 imprints in total) 
obtained using high-speed nanoindentation mapping. The fol-
lowing conclusions could be drawn from this work.

•	 2D histograms of hardness and elastic modulus values are an 
effective visual method of evaluation for qualitative interpre-
tation of the mechanical properties of multiphase materials.

•	 Good agreement is generally observed between conventional 
nanoindentation results and indentation mapping results 
at most depth/spacing increments, excepting modulus on 
the DSS sample, including the indentation size effect in the 
duplex stainless steel. However, some disparity is still noted 
at shallow depths.

•	 The resolution of the different spacing/depth increment used 
in the mapping with respect to the individual phase proper-
ties was highlighted by the different microstructural length 
scales of the two materials tested. From the mechanical 
property maps and 2D histograms for Al-Cu eutectic sample, 
only the results from the 1 um spacing increment were able 
to resolve the fine-scale aluminum phase within the Al2Cu 
dendrites. At all other spacings, only a mixed Al + Al2Cu 
response could be measured, whereas in the duplex stainless 
steel, both phases could be clearly observed in the mechani-
cal property maps at all investigation spacing/depth incre-
ments.

•	 The 1D Gaussian method achieved best results when incor-
porating a third phase to account for mixed phase inden-
tations and other sources of error. However, a significant 
difficulty arises when combining fits for both H and E in 
2D property space, as there is no way to interpret which of 
the three phases in one dimension corresponds to those in 
the other – without prior knowledge from another source, 
such as a 2D histogram or CSM indent in a known single-
phase region.

•	 The rotated 2D Gaussian method was shown to be one of the 
more effective methods to determine the mechanical prop-
erties of each phase. However, this method demonstrated 
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high sensitivity to the morphology of the samples (rough-
ness and/or porosities). This might be remedied by fixing 
the rotation angles 2D Gaussian curves to peaks in the H/E 
histogram.

•	 The K-mean clustering method was observed to be relatively 
ineffective when using only two fitting dimensions (H and 
E), resulting in simple partitions of the data. Additional 
parameters must be utilized to enhance the accuracy of the 
method. It is suggested that 2D histogram plots also be used 
in parallel for quality control of the clustering algorithm. 
This method displays high sensitivity to error induced by 
surface roughness and mixed phase indentations.

Materials and methods
Studied materials and sample preparation

An Al-Cu eutectic alloy and a duplex stainless steel were investi-
gated in this study. The Al-Cu eutectic alloy with a composition 
of Al-33 wt% Cu was prepared from Al and Cu pure metals 
with purity of 99.95% (Zhongnuo New Materials Ltd.). The pure 
metals were melted using vacuum arc melting and then solidi-
fied in water-cooled copper crucible. The sample was then sec-
tioned and metallographically prepared using standard methods 
described below.

The duplex stainless steel is a commercial EN 1.4462 DSS 
alloy, equivalent to AISI S31803, supplied by UGINE & ALZ 
(ArcelorMittal Group, Luxembourg C, Luxembourg). It was pro-
vided in the form of plates of 300 × 400 mm with 6 mm thick-
ness, after an industrial hot rolling process. Detailed informa-
tion about the chemical compositions and industrial hot rolling 
processing can be found elsewhere [14].

In order to perform massive indentation technique, having 
a flat and parallel surface is required. In doing so, the specimens 
were hot mounted using Bakelite powder, in order to acquire 
a plan parallel surface. Consequently, samples were precisely 
polished by chemo-mechanical polishing process with diamond 
paste down to 1 µm. Finally, in order to diminish the roughness 
and devalue the work hardening induced under polishing pro-
cess, DSS sample was polished using a vibratory polisher unit 
(VibroMet 2, Buehler, USA) for 4 h with 0.03 silica solution.

Microstructural characterization

A field emission scanning electron microscope (FESEM, 7100F 
model, JEOL, Tokyo, Japan) equipped with electron backscatter 
diffraction (EBSD) camera was used to characterize the micro-
structures of studied samples. A phase map was obtained using 
a step size fixed at 250 nm at an acceleration voltage of 20 kV 
and probe current of 9 nA. Volume fraction and grain size of 

each phase were determined using Channel 5.0 software (Oxford 
instruments PLC, Abingdon, UK).

Nanoindentation

Nanoindentation testing was carried out using iNano® system 
(KLA Instruments, Milpitas, CA, USA). A diamond Berkovich 
tip was calibrated using a standard fused silica sample. The Nano-
Blitz® 3D technique was used for mapping. It offers rapid indent-
ing process, wherein each indentation (positioning the indenter, 
reaching the surface, apply the load and retraction) would take 
less than 1 s. NanoBlitz® 3D technique performs the indentations 
under load control. Therefore, the applied load has to be adjusted 
somehow to achieve the desired penetration depth for each sample. 
Accordingly, decreasing grids using the target decrement feature 
were performed on both samples to establish load–depth relation-
ships to determine what load at which to perform the indentation 
maps to achieve the correct depth for desired indentation spac-
ing, based on the softer phase behavior. The necessity for choosing 
the softer phase’s behavior for the load selection is highlighted in 
Fig. 7, where large disparity can be seen in the penetration depths 
between different phases. If only the average depth was used, rather 
than the softest, then indentations in the softer phases would over-
lap. This also implies that indentations in the harder phases will 
be performed to much shallower depths than the softer indents. 
Once the corresponding load for indentations for depths ≤ the 
target depth was determined, four grids of 200 × 200 indentations 
(⁓ 40,000 indentations each) were carried out on each sample. 
For the Al-Cu eutectic sample, the grids were performed with 
applied loads of 0.4, 1.4, 4, and 8 mN for grid spacings of 1, 2, 
3.5, and 5 μm, respectively. For the duplex stainless steel, the grids 
were performed with applied loads of 1.25, 4, 10, and 20 mN for 
grid spacings of 1, 2, 3.5, and 5 μm, respectively. This produced 
grids where the depth over the minimum indent spacing ratio 
was as follows: < 500 nm/5 μm, < 350 nm/3.5 μm, < 200 nm/2 μm, 
and < 100 nm/1 μm for different matrices. These chosen ratios were 
fixed at minimum value of 10, as suggested by Phani et al. [22], in 
order to prevent any overlapping/neighboring indent effects. Con-
sequently, hardness (H) and elastic modulus (E) of each indenta-
tion were calculated using Oliver and Pharr method [1, 30].

Furthermore, the iNano® system is equipped with continu-
ous stiffness measurement (CSM) module. This feature could 
provide various information such as penetration depth, stiffness, 
hardness, and elastic modulus, during loading–unloading pro-
cess for a single test. A minimum of 4 CSM indentations were 
performed in each constitutive phases of both samples. These 
sets of indentations provide us information on the evolution of 
mechanical properties (H and E) as a function of penetration 
depth for each phase.
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Deconvolution methods of mechanical properties

In the current study, the mechanical properties of each constitu-
tive phases of investigated multiphase materials were evaluated 
using several statistical methods. The intrinsic H and E values of 
each phase were deconvoluted using different statistical analysis 
from the indentation maps performed at various depth/spacing 
increments. As follows, three different deconvolution methods 
were implemented on the indentation data.

1D Gaussian fitting—Ulm and Constantinides’ method

This methodology determines the single indentation properties 
(H and E) of the constitutive phases of multiphase materials 
using the statistical method (proposed by Ulm et al. [4, 17–19]) 
implemented on a data from large indentations arrays. In decon-
volution process of indentation results, it is assumed that the 
distribution (pi) of intrinsic mechanical properties follows a 
Gaussian distribution described by Eq. 1.

where σi is standard deviation and µi is the arithmetic mean 
value of desired property (H or E) for all indentation, Ni, in the 
phase i. Mean values of µi and σi can be acquired from fitting 
cumulative distribution function using a sigmoid shape error 
function, written as Eq. 2.

where fi is defined as the relative fraction occupied by each 
constitutive phase. In order to acquire reliable values, several 
restrictions need to be programmed during the deconvolution 

(1)pi =
1

√

2πσ 2
i

exp

(

− (x−µi)
2

2σ2i

)

(2)CDF =
∑

i

1

2
fierf

(

x − xi√
2σi

)

process. In this regard, the total volume fraction of constitutive 
phase was fixed at 1, while the fitting process is set to finalize 
when the chi-square (χ2) tolerance was less than 10−15, with an 
ultimate coefficient of determination (R2) of 0.9998.

This statistical analysis has been successfully implemented 
for a variety of multiphase materials, which have heterogeneous 
phase distributions [6, 11, 14, 24, 31].

K‑means cluster analysis

K-means clustering is an algorithm which tends to partition ‘n’ 
observations into ‘k’ clusters, in which each observation pertains 
to a cluster with the closest mean, functioning as a prototype of 
the cluster. Each point of observation can only pertain to one 
cluster. The number of clusters (K) can be considered as the 
number of phases in case of known multiphase systems. If the 
number of phases is unidentified, the optimum K can be deter-
mined by iterating the algorithm for different K number and 
choosing the best number with minimized error. K-means is 
an iterative refinement technique which initiates by generating 
random K cluster center points, accordingly each data point will 
be assigned to the cluster with smallest Euclidean distance. It is 
important to note that this distance is evaluated purely numeri-
cally, so values (such as E) with larger numerical values would 
receive greater weighting if each dimension is not normalized 
to a similar numerical range. The algorithm iterates by switch-
ing the position of cluster center to a new spot, correspondingly 
the intra-cluster sum of squares of distances (Euclidean distance 
of points) will be minimized in each iteration. This procedure 
iterates until the cluster center is not updatable and intra-cluster 
distances cannot be reduced further. In this case, all experimen-
tal data ‘n’ (mechanical properties obtained by massive inden-
tations) are segmented and assigned to a predetermined ‘K’ 

Figure 7:   Load versus penetration depth plots obtained from decreasing grid of indentations performed on (a) DSS and (b) Al-Cu eutectic samples.
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number of cluster once the K-means algorithm has converged. 
Several different dimensions can be used for this clustering (H, 
E, X, or Y position, depth, etc.), but for the most direct compari-
son with the other methods, only H and E were clustered in this 
work. However, Vignesh et al. [16] appears to have been able to 
successfully segment their data using only their H values, since 
there was a significant spread in this property between their 
various phases. The current work highlights that the K-means 
technique is effectively material-dependent in that it can easily 
segment materials with quite different properties and no data 
overlap, but the algorithm struggles to segment phases with 
values can overlap. Actually, the K-means algorithm does not 
allow clusters to overlap and instead partitions the data at the 
midpoint between the cluster centers, which effectively shifts 
the cluster centers apart from the ‘true’ center. More informa-
tion about the algorithm and the functionalities can be found 
in Refs. [16, 23, 32, 33].

2D Gaussian fitting

Unlike above-mentioned methodologies which were relatively 
complicated, 2D Gaussian fitting can be considered as a simpler 
and discernable method to distinguish the mechanical proper-
ties of multiphase systems. It is well known that although H 
and E represent different mechanical phenomena, these two 
properties are interrelated for each constitutive phase and share 
similar anisotropy considering their parent crystal structure. 
Accordingly, by plotting both H and E values of each individual 
imprints, obtained from massive indentation testing as a 2D his-
togram of hardness against elastic modulus, both parameters 
can be fitted simultaneously. In doing so, a rotated, multivariate 
Gaussian function (Eq. 3) was implemented to fit the 2D histo-
gram data for both investigated samples. For these two materi-
als, two independent 2D Gaussians were iteratively fitted to the 
data using

where n is the number of indentations in a given 2D histogram 
bin, n0 is an offset chosen to be 1 in this case to reduce the influ-
ence of outliers on the fitting, A is the peak amplitude, Ec and 
Hc are the center values for modulus and hardness of Gaussian 
peak, wE and wH are the widths (standard deviation) of the peak 
in modulus and hardness values, and θ is the angle of rotation 
in radians or arctan(H/E) of the peak. If the H/E ratios for each 
phase were previously determined by some method, for exam-
ple, using Ulm et al.’s method on H/E values for the dataset, the 
values for θ could be fixed to expedite the fitting process. How-
ever, this was not done in this case. The Gaussian distribution 
rotation was allowed to rotate freely during iterations until the 
best fit was achieved.

(3)
n = n0 + A · e

− 1
2

{

[

(E−Ec) cos θ−(H−Hc) sin θ
wE

]2
+
[

(E−Ec) sin θ+(H−Hc) cos θ
wH

]2
}

In obtained 2D histograms (Figs. 5, 6), the color of each 
pixel represents the number of indentations that contained 
within a range of H and E, which is defined as a 2D bin size. 
Intense shade bins correspond to a higher number of imprints 
contained within the bin. The clusters formed by accumulation 
of these intense bins could be related to each phase with different 
properties. Furthermore, some other parameters such as iso-
tropic/anisotropic behavior of phases, roughness, and porosity 
can be evaluated through 2D histogram maps of H vs E. This 2D 
histogram method has been validated for different multiphase 
system, as reported elsewhere [12, 14, 24], but this is the first 
known application of 2D Gaussian fitting to nanoindentation 
mapping data.
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