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The extreme thinness of graphene combined with its tensile strength made it a material 
appealing for discussing and even making complex cut-kirigami or folded-only origami. In the 
case of origami, its stability is mainly defined by the positive energy of the single- or double-fold 
curvature deformation counterbalanced by the energy reduction due to favorable van der Waals 
contacts. These opposite sign contributions also have notably different scaling with the size L 
of the construction, the contacts contributing in proportion to area ~ L2, single folds as ~ L, and 
highly strained double-fold corners as only ~ L0 = const. Computational analysis with realistic 
atomistic-elastic representation of graphene allows one to quantify these energy contributions 
and to establish the length scale, where a single fold is favored (7 nm < L < 21 nm) or a double 
fold becomes sustainable (L > 21 nm), defining the size of the smallest possible complex origami 
designs as L ≫ 21 nm.
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Introduction
Graphene, a two-dimensional monolayer in 
the form of a honeycomb lattice, has sparked 
an avalanche of research activities due to a 
series of outstanding properties and poten-
tial applications. It is considered among the 
strongest materials ever reported, with an  
in-plane stiffness C = 345 N/m equivalent to 
1 TPa1,2 and tensile strength of more than  
100 GPa.3–6 On the other hand, graphene 
is flexible against out-of-plane deforma-
tion because of its low bending stiffness 
of ~1.5 eV.1,7,8 The unique combination of 
the extremely high in-plane stiffness with 
small out-of-plane bending modulus sug-
gests graphene as a unique building mate-
rial component for fabricating origami 

mechanologic in flexible electronics9 as well 
as in nanoelectromechanical devices.10

Recently, an experimental work shows 
that graphene can act as a paper, suitable 
for folding nontrivial origami structures, 
which allows the use of graphene to build 
3D microscopic structures with tunable 
mechanical properties and designed func-
tionalities.11 In the produced origami struc-
tures, graphene unavoidably undergoes 
various deformations, such as stretching and 
bending. In particular, the bending deforma-
tions have a rich variety of forms and are 
crucial to the stability of graphene origami, 
a pre-designed or arbitrarily crumpled 
3D object made of planar 2D sheet-mate-
rial, confined within a volume ~ L3. First, 
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The flexibility and foldability of 
graphene are some of its attractive 
properties inspiring the designs of 
origami structures with potential 
use in flexible electronics and 
electromechanical nanodevices. 
The aesthetics, precision, and ease 
of folding and stability, however, 
have limitations at the nanoscale. 
Here, by means of large-scale 
atomistic calculations and contin-
uum models, it is quantified how 
the dimensions determine the rela-
tive robustness of the elementary 
folds of graphene (a single fold 
and a double-folded graphene 
forming a single order-four ver-
tex), thereby mapping the spatial 
resolution limits and providing 
important guidance for graphene 
nano-origami realizations.
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folding graphene inevitably needs to overcome the bending 
energy concentrated in the folds-ridges (bilayer edges12) of 
length scale ~ L. The stabilization of such folded graphene is 
by energy gain from van der Waals (vdW) attraction in the 
contact-stacking regions, scaling as ~ –L2. Since the vdW 
energy is proportional to the folded area, there should exist 
a critical size of graphene above which the energy change 
(const × L – const′ × L2) turns negative, and folded structures 
can be thermodynamically favorable or at least metastable. 
To the best of our knowledge, the question of what this criti-
cal size is remains unanswered. Second, the construction of 
more complicated origami structures often requires more than 
single folding of graphene. A double fold involves much more 
mechanical distortion when formed, and there will be an addi-
tional energy cost for the four-layer folding corner, or vertex 
(circle in Figure 1b), which is positive and tends to destabilize 
the double-folded structure. Although the contribution of such 
corners scales as only ~ L0, their energy is quite high and can-
not be overlooked. Similarly, it contributes in a generic ori-
gami structure such as origami waterbomb, whose bistability 
is central for mechanologic.9 Evaluating the smallest length 
scale from graphene’s physical properties should in turn define 
the memory or other origami-associated functionality spatial 
density, or “spatial resolution” ~ L of the smallest features in 
any complex origami sustained mechanically.

A question arises as to how to quantify the contributions of 
different scaling with the size L, and, in particular, what is the 
energy cost of the double-fold corners/vertices? To shed light 
on this problem, it is necessary to perform extensive computa-
tions, due to dimensions involved much larger than atomic, for 
energy analysis on the folded graphene structure, and construct 
a comprehensive map of the size-dependent folding. Here we 
combine atomistic computations with 
a continuum model to evaluate the 
feasibility of folding a graphene sheet. 
Our result shows that a single fold is 
not favorable when the size is below 
67 Å, and only when the size is more 
than 210 Å is the double fold more 
favorable. Overall, it puts the length 
scale of the smallest origamis into L 
≳ 25–30 nm.

Results and discussion
Our origami-like elementary struc-
tures are made from a square-shaped 
graphene sheet, as shown in Figure 1a. 
We define the edge in the AC-direc-
tion to be along the x-axis, and that 
in the ZZ-direction to be along the 
y-axis. Note that x, y can be along any 
orthogonal directions, because from a 
linear elasticity standpoint, graphene 
is an isotropic material.14 The edge 

along y has a length of L = 5na, and that along the x-direction 
is set to be 3√3na, which is equal to 3√3/5 L ≃1.04 L. Here n 
is the number of repeated units along the x- or y-direction, and 
a = 2.42 Å is the lattice constant of graphene.

By folding this graphene sheet in half along the middle line 
in the y-direction (the so-called valley fold), and then further 
folding it at the middle along the x-direction (Figure 1a), we 
obtain the double-folded origami structure. It is a key element 
(Figure 1b) in more complex origami. It represents the sim-
plest possible order-4 vertex,15 where three valley folds meet 
with a single mountain fold (in accordance with Maekawa’s 
theorem for flat-foldable origami16,17).

The double-folded origami consists of four layers, with 
four edges that have highly different morphologies and ter-
minations. Two adjacent edges are free, and the other two are 
folded. The optimized (relaxed to minimal energy) geometry 
of double-folded graphene origami is shown in Figure 1b. 
Notably, the two free edges are not straight, as expected. 
One of the edges has the two inner layers protrude outward 
with respect to the two outer (top and bottom) layers. An 
analogous but weaker effect occurs for the other free edge, 
where the two middle layers appear to be pulled slightly 
inward in vicinity of the free AC|ZZ free corner. This is due 
to the asymmetry of the edges, especially the presence of a 
double-folded edge and two single-folded edges. As for the 
two folded edges, one can be created from a folded bilayer 
origami (Figure 1b, bottom), yet the bending along this edge 
is coupled with a minor structural buckling attributed to the 
compressive strain in the inner graphene layer; the other 
is two folded single-layer graphene sheets stacked together 
(Figure 1b, right).
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Figure 1.   (a) The schematic figure of the flat square-shaped graphene used to construct the 
origami structure. The x- and y-directions are along armchair (AC) and zigzag (ZZ) edges. 
The number of units in the x-direction is 3n, and a is the lattice constant of graphene; I and II 
indicate the folding sequence. The crease pattern is shown as dashed lines for valley folds, 
and dashed-dotted lines for mountain fold, with a cartoon of the final folded origami shown 
in the inset. (b) The optimized atomic structure of double-folded origami: top view (upper 
left), side view along x (right), and side view along y (bottom), respectively, with free edges 
highlighted:13 AC, red; ZZ, blue. r1 (r2) represents the curvature radius of the bent single-layer 
graphene edge (the middle plane of the bent bilayer graphene edge). The circle marks the 
folding vertex.
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The single-folded origami structures are created using the 
same set of graphene sheets. By valley-folding the graphene 
sheet in half along the middle line in the y-direction, we obtain 
the single-folded origami. This hairpin-like bilayer structure 
has three free edges, and the other edge is folded; a representa-
tive optimized geometry is shown in Figure 2a. Details of the 
computational setup are given in the Methods section.

The deformation energy of double-folded origami has three 
contributions. One is the bending energy from the two folded 
edges, which manifests as two folded single-layer graphene 
sheets stacked together, and one folded bilayer graphene sheet, 
respectively. The bending energy should be proportional to L. 
Another term is the energy gain due to vdW attraction between 
layers, which is proportional to the stacked surface area, thus 
scaling as –L2. The third one is the energy cost of forming the 
origami vertex (the circled corner in Figure 1b), which should 
be a constant. Adding up these contributions, the deformation 
energy can be tentatively written as a quadratic function of L:

The deformation energies calculated as the total energies 
of an origami geometry relative to that of the respective flat 
square graphene patch are shown as data points in Figure 3 
and indeed display an inverted parabolic dependence on L. 
The second-order polynomial in Equation 1 provides an excel-
lent fit, resulting in a = –0.0157 eV/Å2, b = 1.88 eV/Å, and 
c = 7.9 eV. In the formal limit L → 0, Equation 1 should give 
the energy cost of the origami vertex (or corner) cc together 
with energy (negative) at the triple tip-contacts, evaluated 
below c′ (i.e., together is c = cc + 3c′ = 7.9  eV). Note that 
c ≫ kBT but is roughly equivalent in magnitude to the energy 
of just a single covalent carbon–carbon triple bond and seems 
to be optimistic, not too prohibitive, for fabricating double-
folded origami structures.

(1)Edeform = aL2 + bL+ c.

We further analyze Edeform by breaking it 
into more specific contributions, not only by 
different scaling in Equation 1. Analytically, 
the deformation energy of a double-folded 
graphene origami can be written as

where Ebend1 is the bending energy of the two 
stacked folded single-layer graphene, Ebend2 
is the bending energy corresponding to the 
folded bilayer graphene edge, EvdW is the 
overall interfacial energy due to vdW inter-
action between layers (total 4, that is 3 vdW 
interfaces), and E0 is the energy of the folding 
corner. Ebend1 can be expressed as

where kb is the bending stiffness of graphene 
that can be determined by calculating the bend-
ing energy in straight carbon nanotubes (CNTs), 
see the Methods section. The bending energy 

of a CNT as a function of r−2 is plotted in the inset of Figure 3. 
By fitting the LAMMPS results, we obtain kb = 0.95 eV for both 
zigzag and armchair CNTs, very close to previous empirical-
potential values ranging from 0.83 eV to 1.17 eV.18,19 S is the 
equivalent area of the bending section at the edge. Specifically, 
we take this area as two 3/4 cylinder surfaces with a curvature 
radius of r1 ≃ 5 Å and a length of L/2 (Figure 1b). Thus, S can be 
expressed as S ≃ ¾ · 2πr1L. Similarly, Ebend2 can be expressed as

where k′b is the bending stiffness of the folded bilayer gra-
phene, whose value cannot be written immediately but can 
be obtained later by comparing it with the fitting, and S′ is 
the area of 3/4 cylinder surface. Here we take the curvature 
radius r2 ≃ 8.5 Å as the value in the middle plane of the bent 
bilayer graphene, and the length of S′ is equal to 1.04L/2 (Fig-
ure 1b). Thus S ′ ≃ 3/4 · 2πr2 · 1.04

2 L . On the other hand, there 
are stacked four layers of square graphene of size L2 ×1.04 L/2. 
Edge corrections need to be considered due to the aforemen-
tioned protrusion of the two inner layers with respect to the 
two outer layers. The area of the protruded bilayer is in the 
shape of an acute isosceles triangle with an apex angle of ≃5°. 
Therefore, the overall interfacial energy can be expressed as

where γ is interfacial energy per unit area, which is –18.7 meV/
Å2 by our calculation. By inserting Equations 3–5 into Equa-
tion 2, we analytically obtain the deformation energy of the 
double-folded origami structure as

(2)Edeform = Ebend1 + Ebend2 + EvdW + E0,

(3)Ebend1 = 1/2kbr−2
1 S,

(4)Ebend2 = 1/2k ′br
−2
2 S ′,

(5)EvdW =

[

3
L
2
1.04L
2

+ 2
(

1.04L
2

)2
sin 5◦

]

γ ,

(6)
Eadeform = −0.0154L2 +

(

0.448 + 0.144k ′b
)

L + E0.

Figure 2.   (a) The optimized single-folded origami geometry. L stands for the length 
in the y-direction, and r′ represents the curvature radius of the bent single-folded 
armchair (AC) edge. (b) Computed deformation energy Edeform (symbols) of single-
folded origami structures as a function of the size L. The dotted line is a polynomial 
fit to the calculated data points according to Equation 7.
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The coefficient of the quadratic term (–0.0154) agrees very 
well with the direct fitting result above (a = –0.0157), support-
ing the validity of the aforementioned fitting. If we assume 
the same coefficient of the linear term and the constant term 
(i.e., 0.448 + 0.144 k′b = 1.88 eV/Å), we would even obtain 
k′b = 9.94 eV specifically for the bilayer, and again E0 = 7.9 eV. 
The calculated k′b is about 10 times higher than kb. It is rea-
sonable because k′b is supposed to be larger than kb due to 
the increased thickness, but smaller than the no-slip bending 
stiffness of bilayer graphene (exceeding kb by ~ 100 times20), 
since in our case of origami folding, the two layers can slip 
relative to each other.

Besides the double-folded origami element, we have also 
evaluated the energetics of single-fold structures, for com-
parison purposes. Similarly, the energy cost comes from the 
bending energy of the folded edge, the energy gain originat-
ing from the vdW interaction between the two layers, and 
possibly nonscalable (with L) contribution from the still inter-
acting corner-tips of graphene, c′. The deformation energy of 
single-folded origami can be written as

Calculated results for the left-hand side of Equation 7 are 
shown in Figure 2b and display a parabolic dependence on 
L. Fitting using the quadratic function as the right-hand side 
of Equation 7 gives a′ = –0.0097 eV/Å2, b′ = 0.69 eV/Å, and 
2c′ = –3.5 eV. The latter negative value of intercept implies 
that the edge corner-tips of graphene attract each other, caus-
ing some reduction in energy relative to its planar form.

To verify the numerical results, we perform further analy-
sis of E′deform. The deformation energy of a single-folded gra-
phene origami can be analytically expressed as

(7)Edeform = a′L2 + b′L + 2c′.

where E′bend is the bending energy of the folded single-layer 
graphene, E′vdW is the overall interfacial energy due to vdW 
interaction between layers, and E′0 is the energy result from 
the coupling of bending to the edge stress. E′bend can be 
expressed as

where kb = 0.95 eV, r′ ≃ 3.5 Å, S′ ≃ (3/4 2π 3.5 Å)×L, and 
therefore E′bend = 0.64 eV/Å × L. The interfacial energy due to 
vdW interaction can be written as

hence, the deformation energy can be expressed as

The coefficient of the quadratic term (–0.0097) and the 
linear term (0.64) agrees perfectly with the fitting result 
(a′ = –0.0097 eV/Å2, b′ = 0.69 eV/Å). Apparently, E′0 = –3.5 eV. 
With negative energy associated with the two corner-tip con-
tacts (2c′ = –0 3.5 eV), we can now recover the energy of the 
double-fold corner as cc = c – 3c′ ≃ 13 eV.

Combining the energy analysis of single- and double-
folded graphene structures together, one is able to construct a 
“phase” diagram, a morphology preference map, as shown in 
Figure 4, which describes at which size the L form is energeti-
cally preferred: flat-planar, single-folded, or double-folded. 
The purple and green curves are the fitted deformation ener-
gies for single-folded and double-folded origami elements, 
respectively. This diagram reveals a strong size dependence 
of graphene folding feasibility. We find that all the graphene 
origamis with different folding multiplicity are energetically 
stable only when the size of the graphene sheet is larger than 

(8)

(9)E′bend = 1/2kbr′−2S ′,

(10)

(11)Ea
′

deform = −0.0097L2 + 0.64L+ E′0.
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the critical value. When L > 210 Å, the double-folded origami 
structure is the most energetically favorable. While within 
67 Å < L < 210 Å, single-folded, but not higher, origami struc-
tures are most stable. For L < 67 Å, not even the simplest 
folded origami structure can form; the graphene energy is 
dominated by elasticity, and it remains flat. We note that all 
the numerical results obtained are based on AIREBO poten-
tial, which is known to underestimate the stiffness,21 kb. From 
more realistic density-functional theory (DFT) calculations, 
it is approximately twice as large (also somewhat varying, 
depending on the exchange–correlation functionals used). 
Consequently, the length scale in the map of Figure 4 can 
be larger, toward L > 10 nm for a single fold and L > 35 nm 
for the double fold, an element definitive for any nontrivial 
origami design.

In the previous analysis, we have only discussed pristine, 
ideal (single-crystal) graphene at zero temperature (finite 
temperature and geometry effects on graphene conforma-
tion have been studied, for example, in22). These results 
can be extended to a more general case considering that the 
stability of origami increases with the strength of the vdW 
interaction and decreases with the bending stiffness. Since 
increasing the temperature reduces the effective interlayer 
contact area but tends to increase the effective bending stiff-
ness of graphene,23 the origami becomes overall less stable at 
a higher temperature. Similarly, polycrystallinity in graphene 
would disfavor the effective interlayer contact and increase 
the bending stiffness, thereby lowering the overall stability. 
It is worth noting that compared to the typical paper origami 
that are created through irreversible plastic deformation, the 
graphene origami is entirely different in that they are folded 
by the ubiquitous vdW adhesion. Therefore, a graphene ori-
gami can revert to a perfect graphene sheet upon unfolding.

Conclusion
We found that for nano-origami from graphene, its very 
name could only be justified to some degree since there is the 
lower bound, as previously revealed. At too small a length 
scale, determined by inherent material properties (mostly 
bending stiffness and surface energy), even the simplest ori-
gami element cannot be achieved. We have determined the 
threshold size for forming single- and double-folded gra-
phene origami elements by large-scale simulations using the 
AIREBO potential. In particular, the additional energy cost 
for the folding corner in double-folded origami is estimated 
to be ≃13 eV (for comparison, this value is nearly twice the 
energy of a covalent C≡C triple bond). Since the repeated 
controlled folding of graphene along arbitrary directions 
appears to be feasible in practice (e.g., by the tip of a scan-
ning tunneling microscope24), the obtained size-dependent 
stability domains of graphene origami opens a possibility 
to guide the formation of origami structures in experiment 
and invites similar analysis for graphene-derivative-based 
origami as well.25,26

Methods
All geometry optimization and energy calculations are per-
formed in LAMMPS27 using the AIREBO potential.28 The 
latter has been shown to accurately capture the bonded 
interactions between carbon atoms. For the long-range Len-
nard–Jones term, a cutoff scale factor of 3.0 is used. All struc-
tures are fully relaxed using the conjugate gradient method 
until the force on each atom is less than 10–15 eV/Å. We set 
the vacuum region to adjacent images in periodic boundary 
conditions to be over 30 Å to avoid any spurious interactions. 
For constructing the origami, we used large graphene square 
patches, as shown in Figure 1a. To test the influence of the 
edge termination on the energetics, we have compared gra-
phene sheets with pristine bare edges and hydrogen-termi-
nated edges, finding no quantitative changes in the results. 
Therefore, we focus on results obtained by using graphene 
with bare, unpassivated edges. For calculating the bending 
stiffness, single-walled CNTs with different diameters are rou-
tinely used,1,19 with periodic images laterally separated by a 
vacuum region of over 30 Å. Although the bending stiffness 
may exhibit some anisotropy in empirical-potential calcula-
tions (differing for armchair and zigzag directions),29 the rel-
evant curvatures in this work are deemed too small to cause 
any nontrivial effect.
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