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                 Advances in scanning transmission electron 
microscopy 
 Materials underpin civilization, ranging from structural materi-
als used to build higher buildings and faster, longer-lived, 
and multifunctional machines, to the batteries and fuel cells 
that power them, and from the semiconductors that constitute 
modern electronics, to biomaterials that promise to open new 
chapters in medicine and biotechnology. Correspondingly, 
making materials better and cheaper and developing materi-
als with new functionalities are central tasks for the aspiring 
materials scientist. Similarly, explosive growth in quantum 
materials and devices and approaching the limits of Moore’s 
Law in electronics (where the number of transistors incorpo-
rated in a chip will approximately double every two years) in 
the last several years has started to lower the barriers between 

top-down and bottom-up synthesis approaches, with the size 
of classical semiconductor electronics approaching the single-
digit nanometer length scales of large clusters, and single 
atom and single defect qubits and devices becoming a rapidly 
developing technological paradigm. 

 Progress in materials science is inseparable from the devel-
opment of new methods and ideas. Materials science emerged 
as a result of the gradual cross-pollination between classical 
19th century disciplines, such as ceramics, metallurgy, and 
glass science, and condensed-matter physics of the mid-20th 
century.  1   Much of this progress was aided by the development 
of imaging tools, notably electron and scanning probe micro-
scopes, which provided deep insights into microstructures 
and mechanisms responsible for materials functionalities. 
Examples as diverse as dislocation dynamics during plastic 
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deformation, ferroelectric domain dynamics during switching, 
formation of nanoscale phase separated states in relaxors, 
superconductors, and metal–insulator systems have provided 
insight into the associated functionalities and have stimulated 
new generations of theory (or pointed to the need of new mod-
els beyond macroscopic theories). However, until now, both 
scanning probe microscopy (SPM) and electron microscopy 
communities have been heavily focused on instrument devel-
opment and qualitative interpretations.2

Yet, at certain junctions, the normally slow progress in 
instrumentation is interspersed with revolutions, giving rise to 
fundamentally new concepts and opportunities. In scanning 
transmission electron microscopy (STEM), the practical  
realization of aberration correction by Krivanek et al.3 (and 
by Haider et al. in the TEM4) has given rise to a cascade of 
developments, the impact of which is only now being fully 
appreciated.

Briefly, the fundamental principles of electron optics 
impose a limit on achievable resolution for the electron 
beam—provided that the beam is cylindrically symmetric. 
This limitation can be circumvented by breaking rotation-
al symmetry, as was proposed more than 50 years ago by 
Scherzer.5 However, the practical realization of aberration 
correction had to wait for the development of sufficiently 
powerful computers, capable of performing the automatic tun-
ing of tens of lens elements.6 Once implemented, however, 
aberration correction opened a treasure trove of high-resolution 
observation data. Perhaps the key benefit being that for com-
mon medium-energy (40–300 keV) electron microscopes, the 
“typical” resolution advanced from slightly worse to notice-
ably better than atomic resolution.

The structures of objects such as grain boundaries in 
SrTiO3 and superconductors, and quasicrystals, were sudden-
ly available for exploration in detail, providing high-clarity 
images where once only poorly resolved images had been 
available.7 Within less than a decade, this opened the pathway 
for quantitative studies of the physics of solids. These devel-
opments further led to advances in associated spectroscopic 
techniques, in particular electron energy-loss spectroscopy. 
Advances in sensitivity and spatial resolution have enabled 
single-atom spectroscopy8 and have further enabled nearly  
routine probing of chemical composition, electronic proper-
ties, and oxidation states in a broad range of materials. This, 
in turn, enabled quantitative studies of coupled physical and 
electrochemical processes in multiple materials (e.g., oxide 
interfaces, batteries, fuel cells, and even ferroelectric domain 
walls). The addition of monochromation has further pushed 
the energy resolution to the ∼meV regime,9 opening the  
vibrational properties of solids and molecular structures for 
exploration.

Recent developments that are capturing the attention of the 
STEM community include vortex beams10 capable of probing 
local magnetism, ferrotoroid properties, orbital orderings, and 
four-dimensional (4D) STEM based on subatomic diffrac-
tion imaging.11 Most recently, groups at Oak Ridge National 

Laboratory (ORNL) and the University of Vienna have exper-
imentally demonstrated that the electron beam in a STEM can 
be used to manipulate single atoms and assemble structures 
atom by atom,12,13 similar to scanning tunneling microscopy 
(STM) three decades ago.14 The impact of these developments 
is amplified by the availability of hundreds of commercial 
microscopes that can now operate as small imaging facilities 
in academia, national labs, and industry and are available for 
broad communities via user centers.

The impact of these developments has propelled the 
STEM beyond being a mere imaging tool, settling the dis-
cussions for the need for high-resolution machines that start-
ed since the days of Gabor and have continued recently.15 
Currently, STEM is becoming a quantitative tool capable of 
probing atomic coordinates with picometer precision, pro-
viding high veracity information on electronic, plasmonic, 
and vibrational properties, and even allowing for controllable 
modification of solid structures. Correspondingly, a new set 
of questions has emerged:
 1.  What can we do with these data?
 2.  How can we use them for making better materials?
 3.  Can we understand fundamental physics, including quanti-

fying known interactions and mechanisms and discovering 
new ones, based on these data?

 4.  Ultimately, can we transition from imaging to manipulation 
of matter at the atomic limit?

Challenges for STEM
The challenges facing researchers in the STEM, materials, and con-
densed-matter physics communities are fourfold (Figure 1).16,17  
The first challenge is whether materials-specific information 
(e.g., atomic coordinates from STEM, scattering potentials 
from 4D STEM) can be obtained from microscopy data, at 
which level of confidence, and how this knowledge is affected 
by and can be improved from knowledge of an imaging sys-
tem (e.g., classical beam parameters, resolution function, all 
the way to full imaging system modeling) and knowledge of 
the material. Note that a significant advantage of Z-contrast 
STEM is that the contrast is more directly associated with 
the position of atomic nuclei, as compared to the consider-
ably more complex contrast formation mechanisms in con-
ventional TEM and atomically resolved SPM. It is largely this 
ease of interpretation that attracted the attention of physicists 
and materials scientists to this instrument, and, significantly, 
which may no longer be the case for the interpretation of 4D 
STEM and vortex beams.

The second challenge is whether materials-specific infor-
mation with uncertainties determined by incomplete knowl-
edge of the imaging system or intrinsic limitations of the 
imaging process can be used to infer physics and chemistry, 
via either correlative models or recovery of generative physics 
(force fields, exchange integrals). Assuming that we possess 
information on the position of all (or a significant number of) 
atoms in a given volume of material, what conclusions can we 
derive on the physics and chemistry of the material? Similarly, 
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if certain types of responses are associated with particular 
structural elements, what does this tell us about the material?

The third challenge is whether the determined materials 
information, either correlative or causative, can be used to 
reconstruct materials behaviors (phase dia-
grams, properties) in the broader parameter 
space (e.g., for temperatures and concentra-
tions different to the specific sample studied) 
and to determine how the reliability of such 
predictions depends on position in parameter 
space. In other words, how far can we gener-
alize from the information we derive?

The fourth challenge is whether we can harness 
the data stream from the microscope to engender 
real-time feedback (e.g., for autonomous experi-
mentation and atomic manipulation).

The first of these challenges lies firmly in 
the domain of the instrumental STEM commu-
nity and provides the impetus for the continu-
ous development of microscopic tools and data  
analysis methods. Instrument development and 
forward modeling are being undertaken by mul-
tiple research centers and commercial entities 
worldwide and are generally well underway. 
What is often missing is the uncertainty quanti-
fication in data interpretation (i.e., what are the 
instrument-imposed uncertainties in materials 
properties—for example, atomic coordinates—
obtained from the data)? This knowledge is 

necessary since physics is often related to the 
subtle details of symmetry breaking or local 
responses. Although for macroscopically uni-
form systems, scattering methods often will 
provide the missing or corroborative infor-
mation, the primary application for imaging 
methods are physics and chemistry of local 
phenomena, where such verification can be 
impossible.

Image recognition tools and 
machine learning
At this stage, machine learning and image rec-
ognition tools can be of immense utility. For 
example, a typical task that underpins virtually 
all materials-specific analysis is the conversion 
of a STEM image or movie into a set of atomic 
coordinates or trajectories. A large number of 
approaches have been suggested for this, rang-
ing from Fourier-based methods to local con-
trast enhancement, to more sophisticated tools 
based on Hough transforms and local clustering. 
However, most of these techniques demon-
strate performance roughly comparable to the 
visual recognition by a trained operator. As in 
many areas, the introduction of deep-learning 

methods based on the convolutional neural networks has dem-
onstrated uncanny efficiency in these tasks, as illustrated in 
Figure 2, as well as in ancillary tasks such as drift correction 
and denoising. Currently, intensive research is underway to 

Figure 1. The four challenges for atomically resolved imaging. (a) Starting with data flow 

from the detector and (b) using (partial) knowledge of the imaging system and material  

(in this example, graphene with impurities), we aim to obtain material-specific information 

(e.g., type and positions of individual atoms).16 (c) From this (partial) materials-specific 

information, we aim to generate correlative or causative knowledge about materials behavior 

(e.g., defect libraries or constitutive equations describing materials behavior).16 (d) With this 

information in hand, we can predict materials functionalities in the broad parameter space 

or use it as feedback during microscope operation.17 Shown for illustrative purposes in  

(c) are the bipartite lattice Hamiltonian (with a†/a being creation/annihilation operators of spin 

σ (σ = ↑↓) at site i of the sublattice A and t being the nearest neighbor hopping energy) and 

force field (with k being a force constant, and l and θ being bonds and angles, respectively) 

equations, while the exact form of modeling equations may be different for different 

systems and applications.

Figure 2. Application of deep-learning networks for feature finding and image inversion. 

(a) Scanning transmission electron microscope image of Si adatoms on graphene in the 

presence of contaminants. Scale bar = 1 nm. The data show graphene lattice (darker 

regions with periodic pattern), amorphous SiC regions (larger brighter regions), and 

point Si dopants in graphene lattice (isolated bright spots). (b) Deep-learning analytics of 

the image in (a). Green corresponds to Si atoms, red to carbon. The output represents 

the probability density that a certain pixel belongs to a particular atom type. Note the 

robustness of the network to noise, when the locations of carbon atoms are identified 

above the human eye perception. The open codes for these analyses are available on the 

PyCroscopy domain on GitHub.20 Data courtesy of O. Dyck.



LAB ON A BEAM—BIG DATA AND ARTIFICIAL INTELLIGENCE IN SCANNING TRANSMISSION ELECTRON MICROSCOPY

568 MRS BULLETIN • VOLUME 44 • JULY 2019 • www.mrs.org/bulletin 

establish whether these approaches can be used for more com-
plex tasks (e.g., inversion of 4D STEM data to details of the pro-
jected scattering potential or to recover 3D atomic coordinates).

Notably, this conversion of image data to materials-specific 
information can be greatly assisted by partial knowledge of the 
materials structure. For example, Fourier methods explicitly rely 
on the periodicity of the material and implicitly assume that they 
are not affected by the presence of point defects (they often fail 
where the periodicity is piecewise continuous, necessitating 
the development of appropriate segmentation 
methods). Most local contrast analyses rely 
on the knowledge that contrast maxima cor-
respond to atomic features, and the features 
have certain characteristic sizes and spac-
ing. These assumptions can be quantified via 
the use of corresponding Bayesian methods, 
as demonstrated recently for STEM18 and 
STM.19 In deep-learning methods, the choice 
of the training set allows one to encode prior 
knowledge of possible materials structures, 
imposing a form of regularization on the fea-
ture finding process. As shown by Ziatdinov20 
(Figure 3),21,22 a deep-learning network trained 
to find “dogs and cats” would still find them 
even in atomically resolved images of 2D 
materials. At the same time, a neural net 
trained to recognize atomic defects or atomic 
species can perform better and far faster than a 
human operator and in a robust and automated 
fashion.23–26 This performance, when combined 
with new open-source software (such as Nion 
Swift27), allows these networks to be deployed 
as real-time analysis tools.

The availability of large volumes of struc-
tural information enabled by automatic image 
processing will allow us to considerably expand 
our knowledge of materials. For example, 
observations of point and extended defects in 
layered materials, for the equilibrium structure 
of the material, as well as those emerging as 
a result of electron irradiation, have recently 
been achieved.28 Analysis of large volumes of 
such data enable the creation of defect libraries 
that contain information on the types and popu-
lations of the individual defects and potentially 
their properties and interactions. Naturally, 
defect populations in solids are fundamentally 
linked to the thermodynamics and kinetics of 
solid-state (electro) chemistry, providing atom-
istic insights into the latter.

Rajan et al.29 demonstrated a method for 
creating a theoretical library of nano-sized pore 
defects in 2D materials and exploring their 
energetics. Knowledge of defect populations 
opens the pathway for cross-correlative studies 

(i.e., via imaging by complementary techniques). Ziatdinov 
et al.30 recently demonstrated the creation of a defect library for 
Si atoms in graphene and predicted the electronic signatures of 
defects via density functional modeling, further verifying STM 
observations of the same material. These images are now saved 
in an open data repository on a Citrination platform.31

Perhaps the most interesting challenge facing the microsco-
py and physics communities is what information on materials 
physics can be obtained from such data? Indeed, observations 

Figure 3. Illustration of the potential pitfall of deep-learning analytics of experimental 

images. (a) The pretrained (on the standard image collection) Visual Geometry Group 

(VGG)-1921 deep-learning network can immediately identify the dog in the photo  

(Pit Bull-Shepherd-Collie mix) and even establish its breed as Staffordshire bull terrier 

(43%), American pit bull terrier (23%), and Basenji (11%). The neural network achieves 

this by learning features directly from the raw data. It first locates an object by finding 

its contours and then learns finer features associated in this case with the dog’s body 

structure and the shape of its ears, nose, etc., which allows a network to identify the 

dog’s breed. (b) Some of the feature maps learned by the inner layers of VGG neural 

network. These feature maps can provide some insight into how a network learns 

that there is a dog in the image. However, the use of this network for the atomically 

resolved images such as (c) a scanning transmission electron microscope experiment  

on WS2 yielded spurious identification as (d) wool (6.3%), chain mail, or velvet , simply 

because the network was not trained on such images. It also becomes quite obvious 

that a network trained on a standard set of images deals with experimental noise poorly 

(despite being a powerful feature extractor, it cannot extract meaningful features of an 

atomic lattice as can be seen from (d). Correspondingly, choice of the proper training  

set representing possible materials microstructures and microscope parameter uncertainties 

become the primary issue in successful applications of deep learning in image analytics. 

The feature maps in (b) and (d) are obtained from the eighth layer of the VGG-19 network 

(the total number of feature maps in this layer is 256, and then it becomes 512 in the 

next one). Notice that because the image size is reduced by a factor of 2 multiple times 

as it moves through a network, the feature maps in the next layers become too small 

for meaningful (to humans) visualization. (c) Scale bar = 1 nm. Image of dog Duffy is 

courtesy of M. Ziatdinov. Readers can perform this analysis themselves (with their own 

images and their own experimental data) using our notebook (see Reference 22).
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of near-surface relaxations and ferroic orderings on multiple 
materials have been reported, showing broad variability of 
behaviors due to the interplay among physical, chemical, and 
morphological effects. Yet the underpinning physics often can  
be represented in terms of low-dimensional depictions, such as 
characteristic energies and interaction potentials and force fields. 
The question is whether such generalizable low-dimensional 
representations can be extracted from observations of multiple 
spatially resolved degrees of freedom. A pertinent comparison in 
this case is with the field of astronomy, where (due to the 
obvious and perhaps fortuitous lack of experimental capabilities) 
involved models of the universe are obtained from observations 
rather than large-scale experiments.

This challenge can be further understood from the follow-
ing example. Often the macroscopic physics of solids is illus-
trated by simplified schemes, as for the case of ferroelectric 
materials in Figure 4. Here, the energy of the system is rep-
resented as a function of a certain collective variable (order 
parameter) that determines the free energy of the system and 
can be unambiguously related to the structural properties and 
symmetry changes across the phase transition. However, the 
macroscopic (and even microscopic) volumes contain large 
numbers of atomic units, and the representations, such as in 
Figure 4, demonstrate the collective effects of multiple units.

Phase-field theories based on the free-energy expansion in 
powers of order parameters are a powerful tool to describe 
materials properties and structure, topological defects, and 
emergence of new functionalities. Yet while bulk components 
are often well understood, the nature of the terms defining 
order parameter behaviors at interfaces and surfaces (boundary 

conditions) and gradient terms are often unknown and cannot 
be determined from the mesoscopic theory. Similarly, for mate-
rials possessing frustrated ground states (i.e., due to competing 
symmetry-incompatible interactions) or large disorder, the appro-
priateness of order parameter-based descriptions is contin-
uously debated. These include ferroelectric relaxors, materials 
at the morphotropic phase boundaries, Kitaev spin liquids,32 and 
phase-separated oxides. Naturally, these are the materials of a 
strong interest to the materials community, both due to the fun-
damental physics challenges they offer and to the unique func-
tional properties they possess (e.g., giant magnetoresistance in 
manganites or giant electromechanical coupling in relaxors).

Materials properties from observations
One approach for extracting materials-specific properties from 
atomically resolved data is based on matching to mesoscopic 
models. For materials with well-known (from macroscopic meas-
urements) free-energy functional and unknown forms of bound-
ary conditions at surfaces, interfaces, and defects, analytical 
solutions for order parameter profiles can be derived and  
further fitted to experimental data. This approach was used for 
describing antiphase boundaries in vacancy-ordered brown-
millerites (materials having a structure of brownmillerite 
Ca2(Al,Fe)2O5)33 and flexoelectric coupling from the shape of 
vortex defects in lead titanate.34 Multiple solutions for domain 
walls and other topological defects are available, allowing fur-
ther extension of this approach to cases where only numerical 
solutions are available (i.e., due to complex geometries). This 
approach can also be used in more complex cases, where ana-
lytical solutions using numerical schemes are absent.

Similar analyses can be performed for dynamic observa-
tions. Many observations of dynamic processes, including 
electrochemistry of batteries and dendrite formation, have 
been reported. However, of interest is the extraction of the 
relevant mesoscopic descriptors (e.g., reaction and diffu-
sion rates, orientation-dependent free energies). Recently, 
such an approach was demonstrated for electrochemical depo-
sition, where matching of the experimentally observed parti-
cle growth rates with those calculated from the experimental 
geometry was used to determine the reaction and diffusion 
rates.35 Similar approaches can be used for other dynamics 
processes, including ferroelectric domain growth.

The analysis of materials properties can be performed 
on a deeper level by directly analyzing atomically resolved 
degrees of freedom to extract pairwise interactions (Figure 5).  
For example, many physical descriptors of solids rely on lattice-
based models, where individual degrees of freedom of atoms 
in the lattice are represented by “spins” interacting with each 
other via local interactions and are affected by macroscopic 
fields. The simplest example of such a model is the Ising model, 
where spins have up and down states; there are more complex 
models including the Heisenberg and Potts models.36 Despite 
their apparent simplicity, many of these models can give rise 
to complex phase diagrams and behaviors, making them a tra-
ditional object of study for condensed-matter physics.

Figure 4. Physics of ferroelectric materials is often illustrated 

via the concept of double well potential, with potential energy 

minima corresponding to antiparallel polarization orientations. 

This picture naturally presents the switching process via the 

addition of an extra PE term (P is polarization and E is electric 

field) representing the coupling with the external field. However, 

while the vertical axis has a straightforward meaning, the 

horizontal axis is a collective variable representing collective 

dynamics of all unit cells within the material. Inset shows (left) 

a high symmetry unpolled state and (right) lower symmetry 

poled state of a BiTeO3 ferroelectric material.
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Of interest is how the relationship between specific materi-
als and the corresponding lattice model is established. In most 
cases, theorists explore the behavior of a specific model,  
including phase diagrams in parameter space (e.g., tempera-
ture, field, strength of individual interactions) and macro-
scopic responses such as susceptibilities and heat capacities. 

From the experimental side, similar proper-
ties can be measured experimentally via mac-
roscopic measurements and structural probes. 
Establishing the proper model for a specific 
material can be controversial. However, once 
the model is selected, the comparison of mac-
roscopic observables allows determination 
of the local interactions, with the underlying 
assumption that there is a unique correspon-
dence of a certain class of local structures to 
the global macroscopic observables. Moreover, 
it implies that many macroscopic measure-
ments need to be made to explore the full phase 
diagram, generally leading to community-wide 
efforts that span years, especially for complex 
systems (such as manganites).

Local observations
In the context of STEM and other atomically 
resolved imaging methods, the local degrees of 
freedom are directly amenable for observation. 

Correspondingly, the natural question is whether the model 
parameters can be determined from such local observations, 
and thereby provide the lattice Hamiltonian that describes the 
system’s states. An example of such an approach is illustrated 
in Figure 6.37 Here, the STM image of the layered semicon-
ductor FeSe0.45Te0.55 surface illustrates the presence of two 

Figure 5. (a) Traditionally, microscopic lattice and off-lattice models are used to (b) derive 

macroscopic properties and structures, (c) which can be further compared with experimental 

observations (d). We pose that the microscopic degrees of freedom from the scanning 

transmission electron microscope or scanning tunneling microscope experiment can 

be directly matched to the microscopic lattice- and off-lattice models, yielding the 

information on local interactions. In (a), j, i, and k are the “spin” lattice sites, jij denotes 

“spin–spin” (exchange) interaction, and hi denotes “spin” interaction with external field H. 

The inset in (a) shows a snapshot of classical 2D Ising lattice at finite temperature. Photos 

of (left) CuSO4 and (right) K3[Fe(CN)6] crystals are courtesy of A.S. Kalinin and D.S. Kalinin.

Figure 6. (a, upper) Scanning tunneling microscope image of an FeSe0.45Te0.55 surface with bright and dark atoms representing Se and Te, 

respectively. Scale bar = 3 nm. (Lower) A schematic of the layered FeSe lattice structure. (b) A lattice model is initialized with effective interactions 

between the different atomic species present. p

xw  are the interaction parameters in system p, and quantity δ x  is equal either to one of the 

interactions between particles defined by xw  or zero. (c) Statistics of atomic configurations are computed from the experimental images 

(blue vertical bars in histogram; the configurations themselves are shown in the top panel, where Se and Te atoms are blue and red, respectively) 

and from the model (red vertical bars in histogram) and compared. The statistical distance metric between the two histograms in (c) (one from 

experiment, one from the model) is minimized by tuning the interaction parameters of the statistical model. Once the model is optimized in this 

manner, it can be used for predictions at unseen thermodynamic conditions as illustrated in (d) for reduced temperatures of ∗ = 0.75T  and ∗ = 1T  

(consistent with experimental data) at Se concentration of 0.45. Note: hanion, anion height (distance between the Fe layer and anion); σA, unit cell 

area; Pi, probability of finding outcome i in the measurement of the system p; NN, nearest neighbors; ui, energy of configuration i.37
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types of atomic species (Se and Te). Direct examination of 
the image shows that the atomic distributions are not random, 
and, in fact, atoms of similar types have a profound tendency to 
segregate and form light and dark atom clusters. This behav-
ior can be easily reproduced using simple statistical models, 
such as a nonideal solid solution, where the preferential ten-
dency for atoms of the same kind to segregate is described by 
a single parameter.

In this specific case, the question is whether this param-
eter (and its associated uncertainty) can be extracted from the 
experimental observations. The approach for such analysis 

was developed by Vlcek38 and was demonstrated for layered 
semiconductors and manganites.37,39 It relies on the principles 
of equilibrium thermodynamics and essentially optimizes a 
model’s parameters to best represent the distributions found in 
experiments. After optimization, taking samples from the 
model would be indistinguishable from drawing samples 
from experiments and allows the model to have predictive 
power. Notable is that the local interactions extracted from 
the image(s) of a single composition can further be used 
to explore a much broader parameter space of the material 
and ultimately reconstruct the associated phase diagram. 

Figure 7. (a) Experimental scanning transmission electron microscope movie of degradation of WS2 under electron-beam irradiation.  

The left and right frames were obtained on the same area at ∼90 s and ∼200 s, respectively, after the start of irradiation. The degradation of 

the material within this ∼110 s time period can be clearly seen. Scale bars = 2 nm. (b) Spatiotemporal trajectories reconstructed from the 

raw data using a combination of a deep-learning network (defect localization) and a Gaussian mixture model (defect classification). 

Here, Class 4 and Class 5 are associated with W vacancy and S/S2 vacancies, respectively, Classes 1 and 3 are associated with Mo dopants 

coupled to a S vacancy, and Class 2 corresponds to “contaminations” (the exact nature of which has not yet been explored in detail). One 

can identify multiple well-defined trajectories consisting either mostly of a single defect class or multiple defect classes. These trajectories 

can be isolated and used for an in-depth study of defect dynamics and transformations as illustrated in (c–g). (c, d) One-dimensional 

representation of trajectories (c) of defect subclasses originating from additional splitting of classes 1 and 3 in (b) and associated with  

(d) different types of Mo dopant coupling to S vacancy and with a single Mo dopant. The color scheme in (c) is the same as used for different 

defects in (d). Note: I, II, and III, different rotational states of the (MoW + VS structure). (e, f) These trajectories are used for Markov analysis. 

Specifically, (e) shows a schematic of Markov transition processes for a four-state system. Each state can transition either into itself or into 

one of the other three states. (f) Transition probabilities calculated from the trajectories in (c). Different colors are associated with calculated 

values of transition probabilities. (g) A calculation of diffusion coefficient D for defect class associated with S vacancies (shown in inset; 

“0” and “1” denote two different trajectories) within the 2D random walk approximation from the corresponding trajectories, isolated and 

collapsed onto a 2D plane. Overall, this figure shows how point-defect dynamics and solid-state transformations in the material under 

electron-beam irradiation (or other stimuli) can be accessed on the atomic level and corresponding reaction constants can be determined 

for just one point defect. Note: r, 1D representation of coordinates ( +2 2
X Y ); MoW, Mo on W site; VS, sulfur vacancy.24
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Moreover, this approach lends immediately to uncertainty 
quantification under a Bayesian framework (a statistical 
approach to uncertainty where beliefs, called priors, are 
updated based on observations), where the goal is not only 
to determine the mean of the interaction parameters, but 
also to infer the most probable form of the distributions. 
Sampling from these distributions to produce phase diagrams 
then allows for calculation of the uncertainty at each point 
in the thermodynamic space.

The challenge of material description becomes considerably 
more complex for structures with broken lattice periodic-
ity, especially for dynamic systems. Here, the fundamen-
tal challenge is the nature of the local structural materials  
descriptors as a first step for exploring correlation with local 
properties and developing causative models. As discussed 
previously, for periodic solids, such descriptors 
can be naturally constructed based on the sym-
metry properties of the lattice. In comparison, 
for molecular systems, the descriptors based on 
atomic connectivity and identities have been 
developed for several decades. For specific 
processes, the multiple molecular degrees of 
freedom can be represented as a smaller num-
ber of reaction coordinates and slow degrees  
of freedom (i.e., characteristic elements of 
molecular structure that evolve only slowly with 
time, similar to those illustrated in Figure 4);  
however, analysis of these represents one 
of the ongoing challenges in computational 
chemistry. In comparison, analysis of defects 
in solids represents an even more complex 
task, since in this case, even defects with nomi-
nally identical bonding patterns can be dis-
torted because of the presence of nonlocal 
strain and electric fields.

However, in several cases, the analysis can 
be straightforward and achieved by direct 
application of well-established chemical con-
cepts. Figure 7 illustrates the evolution of the 
structure of single-layer WS2 under the action 
of an electron beam.24 During this process, the 
electrons remove individual chalcogen atoms.  
This process has a small cross section, and only  
a few atoms are removed in each image. 
Combining with the fast (femtosecond) time 
scale of the electron passage, this allows 
us to represent the degradation process as  
a slow reduction observed at atomic resolution.  
Correspondingly, we observed formation of point 
defects, gradual aggregation and formation of 
extended defects and holes, and continuous deg-
radation of the material. Since only point defects 
form at the early stage of the process, long-
range lattice periodicity is initially maintained. 
In this case, the use of a deep-learning-based 

framework allows for the reconstruction of individual defect 
positions within an image frame that can further (after com-
pensating for drift) be represented as space–time trajectories. 
Several characteristic defect types were identified. For sulfur 
vacancies, the diffusion coefficient could be extracted. For stat-
ic molybdenum dopants, the kinetics of formation and isom-
erization of the MoW–Svac complex (i.e., Mo on W site forming 
a pair with a sulfur vacancy) could be established.24

In other cases, establishing the state descriptors represents 
a more complex problem. For Si in carbon dynamics, these 
descriptors were derived based on a Gaussian mixture analysis 
of the images, and corresponding transition rates were deter-
mined using Markov chain models. Alternatively, libraries 
of defects can be established via graph segmentation analy-
sis, as illustrated in Figure 8. However, both the establishment 

Figure 8. Schematics of learning structural descriptors from scanning transmission 

electron microscope (STEM) data. (a) Experimental STEM image of graphene with Si 

impurities. Darker areas are graphene lattice, larger brighter areas are Si-C amorphous 

regions, and smaller bright clusters and individual bright spots are Si-C defect complexes 

of interest.30 (b) Categorization of different defects using graph structures. The graphs 

were constructed by applying hard chemical constraints to the output of a deep-learning 

(DL) model. The first row shows defect structures with only one Si. The second and 

third rows show defect structures containing two Si impurities. +V denotes that a defect 

occurred next to C atomic vacancy. The alternative way of constructing descriptors 

is applying a Gaussian mixture model (GMM) to the stack of DL network-decoded 

(“cleaned”) images of atomic defects. In this case, the categorization is performed on the 

level of the decoded image pixel features.30 (c) A simple version of GMM fitting for n × 2 

data set, where n is the total number of samples and 2 is the total number of features, 

which in this case are just x and y coordinates. The Gaussian distributed clusters/sources 

(denoted by red, blue, and green contour plots) are shown at different iterations (left to 

right: 1, 10, and 50) of GMM fitting. For imaging data, the features are associated with 

image pixels and the dimensionality of the data set is n× (width*height*channels), where 

w and h are the image width and height, respectively, defined in pixels, and c is number 

of channels/classes obtained from the pixel-wise classification of raw image with a DL 

model. Notice that overlap in the tails of Gaussian distributions means that some classes 

may get misidentified. (d) The classes extracted via GMM are images corresponding to 

different atomic structures (here red and green are pixels assigned to C and Si atomic 

species, respectively, by a DL network). Since the GMM analysis does not account for 

rotational invariance, the GMM-produced results can be further refined by taking into 

account a discrete symmetry of the lattice (not shown here).
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of structural descriptors and reaction and trans-
formation pathways remain as open problems. 
For ergodic processes, Markov models offer a 
good start. For more complex and nonequilib-
rium cases, more complex Koopman formalism 
or VAMPNets40 can offer a way forward.

The third challenge is the use of derived 
local laws to generalize the material’s behav-
ior in the broader parameter space. Generally, 
this is a well-explored problem in the context 
of statistical physics. A necessary new ele-
ment will be the uncertainty quantification 
(i.e., how far from the measurement condi-
tions can we extrapolate). In some sense, this 
also guides experimental design to maximize 
knowledge gain of the underlying generative 
model, rather than specific properties.

The fourth challenge refers to real-time 
feedback. Until now, the vast majority of atom-
ically resolved (and mesoscopic) imaging stud-
ies have been performed using predefined 
rectangular scan areas, with adjustments 
performed based on evaluation by a human 
operator. For imaging systems with a small 
number of regions of interest, and especially 
for beam- or probe-induced manipulation, 
real-time image-based feedback is required.41 
The example of Fourier transform-based 
feedback for atomic fabrication has recently 
been introduced, as shown in Figure 9.12,42 
Ultimately, we envision that such approaches 
can be combined with beam-induced reaction 
and electrocatalysis to introduce beam-powered 
and beam-controlled molecular actuators and 
machines.

Summary
The first experimental insights into atomic 
structure of solids were obtained in the begin-
ning of the 20th century, as recognized by the 
Nobel Prize for the Braggs in 1915. Since then, 
Fourier-based descriptions of structure and quasiparticles 
have become the primary language of condensed-matter 
physics. From the mid to the end of the century, the emergence 
of electron and probe microscopies has allowed for visual-
izing structures of solids with atomic resolution. Yet much 
of the effort has been centered on the purely instrumental 
aspect of this research, with relatively little effort aimed at 
understanding the fundamental physics and chemistry from 
the imaging data. Currently, advances in dynamics, low-dose 
imaging, and advanced sample environments allow in-depth 
studies of materials dynamics at the single-atom level and 
have opened the pathway for atomic manipulation.

These opportunities—to control materials on a single-
atom level and understand the fundamental physics—provide 

us with a new way to address Feynman’s challenge: “What I 
cannot create, I do not understand.”43 With the advent of 
local probes and local structural and chemical information, 
not only from electron and scanning probe, but also from 
tomography (e.g., atom probe), the challenges lie in deter-
mining the building blocks of the generative models that 
underpin the physics of the system.

Recent advances in machine learning, including genera-
tive adversarial networks, may provide a starting point for 
learning the important descriptors directly from available data. 
Combining information from diverse sources into a single 
framework in a self-consistent manner and using it to reinforce 
theory-experiment feedback loops remains an open challenge. 
Correctly determining the underlying physics in real time can 

Figure 9. (a) Left: Scanning transmission electron microscope image showing text that Oak 

Ridge National Laboratory sculptured via electron-beam-induced crystallization of SrTiO3. 

Scale bar = 5 nm. Right: Zoomed in area from the red square. Scale bar = 2 nm.17  

(b–d) Beam-induced crystallization and dopant front motion in Si, illustrating the potential 

for atomic-scale material and dopant engineering in commercial semiconductors. (b) Inducing 

crystal growth and dopant motion in [111], the result of which is shown in (c). (d) Pushing 

dopants deeper into the crystal. The thick red arrows show the direction of the beam 

slow advance. The thick red base lines illustrate the scan width.42 (e–n) Direct electron-

beam (e-beam) atom-by-atom assembly of Si clusters in graphene. Shown are sequential 

segments of assembly of the four-atom “fidget spinner” cluster. The arrows in (f) are pointing 

out the rotation of the two carbon atoms. Notice that in (h) the Si dimer obtains an additional 

Si atom from a Si “reservoir” outside the scan frame. The third Si atom is then knocked 

away by the e-beam before reattaching in a more stable configuration by substituting the 

two C atoms that rotated in (e–g). The insets in (e–n) show the proposed atomic structure 

for each observed experimental image. Scale bar = 0.5 nm.12
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provide in situ feedback to tailor and build structures to meet 
specific requirements that would otherwise be impossible 
without both the rapid identification (enabled by machine 
learning) as well as the rapid predictions enabled by integrated 
modeling efforts.
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