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            Introduction 
 Data-centric approaches have been adopted to dramatically 
accelerate progress in materials science. This is also the 
case for the study of nanostructures of materials.  1   Thanks 
to advances in computational power and techniques, theoret-
ical calculations using density functional theory (DFT) can 
be systematically performed for many different crystals and 
nanostructures with predictive performances; these have been 
stored as open databases, as shown in the other articles in this 
issue, or in local depositories. Progress of digitally controlled 
microscopy and spectroscopy has enabled acquisition of big 
data from nanostructures with atomic resolution. The com-
bination of such digital data with modern machine-learning 
(ML) techniques has been used to explore materials and 
structures. It has been used to extract meaningful and useful 
information and patterns from existing data, or data-driven 
discovery. 

 This article reviews recent progress in ideas and tools in 
nanoinformatics and informational materials science. Actual 
applications of ML techniques for materials problems will 
also be demonstrated. Topics include descriptions of materials 
properties, construction of interatomic potentials, discovery 
of new inorganic compounds, exploration of potential energy 

surfaces for effi cient characterization of ionic transport, 
effi cient search of interface structures, data analysis of hyper-
spectral images by transmission electron microscopy, and 
design of catalytic nanoparticles.   

 Descriptions of materials properties 
 How compounds are represented in a data set is a key 
factor in controlling the performance of an ML approach. 
Representations of compounds are called “descriptors” or 
“features.” A useful strategy is to use a set of quantities, derived 
from elemental and structural representations of a compound, 
as descriptors since such representations are abundant in the lit-
erature. Kernel ridge regression prediction models for the DFT 
cohesive energy have been used to evaluate the performance 
of descriptors derived from elemental and structural represen-
tations.  2   Our best prediction model has a prediction error of 
0.045 eV/atom.  2   Therefore, the present method should be use-
ful to search for compounds with diverse chemical properties 
that are applicable to a wide range of chemical and structural 
spaces without performing exhaustive DFT calculations. Our 
previous research confi rmed that descriptors based on elemen-
tal and structural representations are useful in other applications 
such as the prediction of thermal and electronic properties.  3   –   5 
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Another application of descriptors is the ML interatomic 
potential (MLIP). MLIP, which is based on a large data set 
obtained by DFT calculations, can improve the accuracy 
and transferability of interatomic potentials.6,7 In the MLIP 
framework, the atomic energy is modeled by descriptors cor-
responding to structural representations. For elemental metals,  
MLIPs have been obtained from DFT calculations using linear 
regression such as Lasso and linear ridge regression.8,9 MLIPs 
with structural descriptors dependent only on the distance 
between two atoms have small prediction errors, enabling the 
physical properties to be accurately predicted. It is important 
to use an extended approximation for the atomic energy in 
transition metals.10,11 For elemental Ti, the optimized angular-
dependent MLIP has a prediction error of 0.5 meV/atom, 
which is much smaller than that of the linearized MLIP 
with the power of pairwise descriptors of 17.0 meV/atom. 
This angular-dependent MLIP can predict the physical prop-
erties much more accurately than existing IPs.

Recommender system for the discovery of new 
inorganic compounds
Chemically relevant compositions (CRCs) that form stable 
crystals and atomic arrangements of inorganic compounds 
have been collected as inorganic crystal structure databases. 
We have proposed recommender system approaches to pre-
dict currently unknown CRCs from a database.12,13 First, the 
performance of matrix- and tensor-based recommender sys-
tem approaches was examined to discover currently unknown 
CRCs.12 The Tucker decomposition recommender system 
shows the best performance: 735 test CRCs (24.5%) were 
identified in the top 3000 compositions. Second, systematic 
DFT calculations were used to investigate the phase stability 
of 27 recommended compositions with high predicted ratings. 
Among the top 27 compositions, 23 currently 
unknown compounds were found to be stable 
by the DFT calculations.12 These results indi-
cate that the recommender system has great 
potential to accelerate the discovery of new 
compounds.

Exploring a potential energy 
surface for characterizing atomic 
transport
Atomic transport plays a significant role in 
various phenomena related to physics, chem-
istry, and materials science. For the transport 
of a mobile atom governed by thermally acti-
vated processes in a host crystal, the kinetics 
are fully characterized by the entire potential 
energy surface (PES) of the mobile atom in 
the crystal. The entire PES can be theoretically 
evaluated by exhaustive local structural opti-
mizations around the mobile atom, in which 
the mobile atom is fixed at each point on a fine 
grid introduced in the crystal. However, such 

evaluations require huge computational costs, particularly 
for first-principles calculations. In this section, a novel ML 
method is introduced.14 Only several dominant points char-
acterizing atomic transport of interest were evaluated selec-
tively. The global minimum point and the bottleneck point 
on the optimal path are focused on. The latter point is defined 
as the maximum point on the lowest-energy path between 
two global minimum points separated by a lattice translation 
vector.

The basic strategy for identifying the dominant points is 
to construct a probabilistic Gaussian process (GP) model of 
the entire PES, which is iteratively updated using the first-
principles PEs already computed in the earlier steps. The next 
point for PE computation is selected by the estimated likeli-
hoods of the dominant points within a Bayesian optimization 
(BO)-like framework. The intrinsic difficulty is that the  
optimal path and its bottleneck point are found after acquiring 
complete information about the entire PES. Use of only the 
mean and variance at each grid point is never sufficient to esti-
mate the likelihood of the bottleneck point, although these are 
usually used in typical GP + BO strategies.4,15,16 To overcome 
this difficulty, multiple randomized PES samples were gener-
ated according to a probabilistic GP model, and the optimal 
path for each PES sample was identified using a dynamic pro-
gramming (DP)-based algorithm. This enables collections of 
the global minimum and bottleneck points to be obtained, and 
these collections are considered to be distributions represent-
ing the likelihoods of the dominant points. See the flowchart 
shown in Figure 1 for reference.14

The GP + DP + BO method was applied to the isotropic 
and anisotropic proton diffusivities in c-BaZrO3 with the 
cubic perovskite structure and t-LaNbO4 with the tetragonal 
scheelite structure.14 Only 50 and 100 PE computations were 

Figure 1. Flowchart of the machine-learning method based on the Gaussian process, 

dynamic programming, and Bayesian optimization frameworks for preferential evaluation of 

several dominant points primarily characterizing an atomic transport of interest.14 Note: PE, 

potential energy; PES, potential energy surface; DFT, density functional theory.
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required to identify both global minimum and bottleneck 
points in c-BaZrO3 and t-LaNbO4, respectively. Thus, the ML 
method based on the extended frameworks of GP, DP, and 
BO shows high computational efficiency for identifying the 
dominant points. Note that this method is, in principle, appli-
cable to any kind of atomic-transport phenomena governed by 
multiple mobile atoms. Furthermore, other phenomena gov-
erned by thermally activated processes (e.g., phase transitions 
and chemical reactions), are also considered as applications, 
where both initial and final states can be given in a configura-
tion space. The novel ML method should therefore be used 
extensively as a robust, efficient, and realistic method.14

Interface structure determination from 
informatics
Interfaces are a lattice defect inside materials and influence 
overall material properties. For example, interfaces in poly-
crystalline materials (i.e., grain boundaries [GBs]), determine 
ion-transportation properties and high-temperature mechani-
cal properties. That interfaces have different properties from 
the bulk is a consequence of the fact that they have different 
atomic configurations from that inside the bulk. Thus, for a 
comprehensive understanding of interface properties, deter-
mination of the atomic structure of the interface is crucial.

However, extensive calculations are necessary to deter-
mine even one interface structure because of the geometrical 
freedom of the interface. The number of atomic configurations 
to be considered often reaches 104 in even the model GB, such 
as coincidence site lattice ΣGBs. As schematically illustrated in 
Figure 2, the structure and energy calculations for all candi-
dates must be performed, leading to optimized configurations 
and energies (Ei,j in Figure 2). The most stable configura-
tion with the minimal energy (Ei, min in Figure 2) can then be 
determined from the DFT/molecular dynamics (DFT/MD) 

simulation of the interface. This “brute force” computation 
is necessary to determine other types of interfaces because 
the interface structure is dependent on the type of interface 
(ΣGB1, ΣGB2 in Figure 2). To accelerate interface structure 
searching, efficient methods based on ML techniques, includ-
ing virtual screening and BO have been proposed.16,17

Virtual screening is an effective method in time-critical 
problems, and has been used in drug discovery, where a pre-
diction model was constructed using ML from a relatively 
small data set and a large database consisting of the actual 
data and data predicted by the prediction model. The idea of 
our virtual screening method to determine the interface struc-
ture is illustrated in Figure 2. A prediction model (predictor) 
is constructed via regression analysis of the training data, in 
this case, ΣGB1 and ΣGB2. Once the predictor is constructed, 
the GB energies, Ei, min (i=3,4,..N), can be predicted from the ini-
tial configurations. Next, the promising initial configuration is 
optimized using the structure and subsequent energy calcula-
tions, and then the accurate energy and stable structure are 
obtained (Stable ΣGB3,4, … N in Figure 2).16

We applied the virtual screening method to the [001] sym-
metric tilt GB of Cu. The predictor was constructed using two 
Σ5 and two Σ17 GBs, and a total of 83 descriptors related to 
the geometrical data, such as bond length and atom density, 
were used. The predictor was used to determine 12 other GBs 
of Cu, Σ13∼Σ125.16

To obtain the stable structures for these GBs, the DFT/
MD simulation was performed more than one million times. 
On the other hand, the most plausible candidate can be deter-
mined by the predictor, and only a single (or a few) calcula-
tion is necessary for each type of GB. The virtual screening 
method thus significantly decreases the computational cost to 
determine the GB structures.

In addition to the virtual screening, we have developed 
an alternative and powerful method to search 
for stable interface structures with the aid 
of a geostatistics approach called kriging.17 
Kriging is an effective interpolation method 
based on BO and GP governed by prior covar-
iance. The kriging method has been applied 
and demonstrated to determine the GBs of 
fcc-Cu, bcc-Fe, MgO, rutile-TiO2, and CeO2 
GBs.17,18 By using the kriging method, the 
most stable structure can be determined using 
less than 100 time calculations.

Furthermore, the concept of transfer learn-
ing, in which learning results from other  
related tasks, has been combined with kriging. 
We have confirmed that the transfer learning 
can accelerate search by approximately three 
times compared to the original kriging.19 All 
of these investigations demonstrated that ML 
methods, virtual screening, kriging, and trans-
fer learning are powerful tools to accelerate 
interface structure searching.

Figure 2. Schematics of interface structure searching using the virtual screening method.16 

Note: DFT, density functional theory; MD, molecular dynamics.
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Hyperspectral image data analysis through 
nonnegative tensor factorization
Another intriguing field of “nanoinformatics” involves  
applications of blind signal separation (BSS) techniques to 
experimental hyperspectral image data to separate physi-
cally interpretable overlapping spectral components and map 
their spatial distributions. Current digitally controlled scan-
ning electron/transmission electron/probe microscopes (SEM, 
STEM, SPM, respectively) equipped with spectroscopic detec-
tors enable automatic generation of large data sets consisting 
of laterally spatially resolved spectral intensities even at atomic 
resolution, which are expressed in three-dimensional (3D) 
tensor form (data cube). This data expression is particularly 
useful for extracting subtle chemical state changes associated 
with localized defects or impurities, such as inclined interfaces 
and trace elements, and also signals from data having low 
signal-to-noise ratios (SNRs).

The problem here is to achieve statistical isolation of 
a small number of basis spectra and their contributions at 
individual positions, under the assumption that the spectral 
intensity at each sample pixel is represented by a linear com-
bination of the basis spectra associated with the underlying 
chemical states or phases, without any a priori knowledge 
other than the experimental data.

In order to extract basis spectra from spatially highly mixed 
data, we have developed a spatially orthogonally constrained 
NMF algorithm20 and demonstrated successful applications to 
chemical state analyses of the cathodes of lithium-ion batter-
ies.21,22 As a solution, we have proposed signal subspace sam-
pling (SSS), which can be used to convert the original data set 
into a sampled set, preserving the original information and 
better satisfying the recovery conditions for subsequent BSS 
methods compared to other techniques; this is particularly effec-
tive in cases involving strong spatial and/or spectral mixing.23

NMF can be extended to tensor form to process data sets  
having higher-order dimensions (e.g., those concurrently 
obtained through use of more than one type of spectroscopic 
method at each sampling point). The tensor-form NMF can be 
used to obtain deeper and more accurate insights (which are 
often unique) than those resulting from analysis of a single data 
source.24,25 In NTF, each data point of a 3D data 
cube, xklm, is described as ( ) ( ) ( )= λ i i i

klm i i k l m
x a b S  

for a given number of components in a manner 
that minimizes the sum of the squares of the 
residuals. Each of the terms in the sum is a data 
cube, where the information along each mode 
can be described by a single vector, as shown in 
Figure 3. A successful application example is 
given in Reference 26, where significant spectral 
information is extracted from low-SNR data.

Informatics design of catalytic 
nanoparticles
One of the primary thrusts of computational  
materials design is the use of data mining 

algorithms coupled with DFT calculations, allowing for 
accelerated and high-throughput calculations.27–29 From this 
enlarged database, systems are screened for those with cal-
culated properties meeting design requirements. However, an 
issue that must be addressed is the lack of data density and 
diversity, resulting in modeling performed only in those 
regions of the chemical search space where data exist. This 
results in iterative design of new chemistries because the 
design is principally done in the data regions where the gov-
erning physics are already well defined. An alternative design 
approach is not to create as much data as possible, but rather 
to identify the targeted data for transformational design, as 
has been demonstrated in prior publications.30–35 The objective 
of this approach is to identify (1) where new data are needed 
and (2) where additional data do not add new information. 
This leads to developing computationally efficient design 
rules based on the extraction of “hidden” physics within the 
existing knowledge base. This approach thereby guides future 
experiments and calculations, while simultaneously shrinking 
the data search space.

As an example, in the design of nanocatalysts (i.e., the 
design of catalytic chemistries as a function of constituent 
atom chemistry, atomic neighborhoods, and the site of reac-
tion), the d-band center, dc, of the adsorbent can be used to 
represent the absorbate’s binding energy (BE).36,37 However, 
the relationships between dc and DFT calculated BE do not 
account for the edges of nanoparticles, but rather assume 
crystallographic planes. Therefore, expanding this work to 
the nanoscale requires additional descriptors to capture the 
BE-chemistry relationships with the descriptor considered, 
including surface strain, electronegativity difference between 
nanoparticle elements, charge transfer between the surface 
and subsurface, and weighted elemental descriptors such as 
atomic number, work function, and melting temperature.

To close the nanodesign gap, we have developed and 
employ a hybrid informatics methodology that (1) assesses a 
larger descriptor space; (2) ensures that the governing physics 
that we are attempting to model in a high-throughput fashion 
captures the governing physics; (3) identifies the minimal 
amount of data/descriptors needed to represent this physics; 

Figure 3. Schematic representation of the nonnegative tensor factorization concept for 

a 3D tensor case.24–26 The tensor X stores two types of spectroscopic data concurrently 

recorded at the sampling points of (x, y). Each data point of a 3D data cube, xklm, is 

described as = λ ( ) ( ) ( )i i i

klm i i k l m
x a b S  for a given number of components. Each of the terms in 

the sum is a data cube, where the information along each mode can be described by a 

single vector, the resolved matrices, S, A, B storing isolated spectral components and their 

spatial abundances, respectively.
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(4) develops quantitative structure–property relationships 
(QSPRs), which link the descriptors (describing the nanopar-
ticle chemistry) with the property of interest (in this case BE); 
and (5) applies the QSPRs to a “virtual” material search space, 
which can then be rapidly screened.30 Beyond providing a 
computationally tractable and data-driven modeling approach, 
the QSPR also provides physically meaningful relationships 
by defining how the individual components impact the target 
material properties. With these models, we can predict the 
properties for massive search spaces and for materials, which 
are difficult to model via quantum mechanical approaches.

The nanoinformatics design steps are highlighted in 
Figure 4, where principal component analysis (PCA) was 
used to assess the correlations in the data, identify the mini-
mal amount of information for design required, and to ensure  
that the known physics is sufficiently captured.30 This last 
point is critical to ensure that the QSPR is not solely a sta-
tistical result, but rather is physically driven even if that 
physics is not fully quantitatively defined. From this descrip-
tor space, QSPRs were developed with high accuracy and 
robustness for BE of CO and H molecules. The robustness was 
ensured through the utilization of cross validation, leading to 
a proper tradeoff between accuracy and robustness. From the 
QSPR, we were able to expand the knowledge base to mul-
ticomponent nanoparticles,30 as shown in Figure 4. Starting 
from knowledge of BEs of 11 elements, we predicted with 
high accuracy the BE of 242 nanoparticles, with the number 
of potential chemistries expanding significantly as we relax 
the uncertainty limitations. This demonstrates the potential for 
significant expansion of the knowledge base and allows us to 
enter design spaces which have previously been prohibitive 
to explore.

Summary
In this article, we have reviewed recent prog-
ress in our ideas and in the tools used for 
nanoinformatics and materials informatics, 
as well as actual applications of ML tech-
niques for materials problems. They include 
descriptions of materials properties, discovery 
of new inorganic compounds, exploration of 
potential energy surfaces for characterizing 
atomic transport, interface structure search, 
hyperspectral image data analysis, and design 
of catalytic nanoparticles. Consequently, nanoin-
formatics is expected to accelerate the explo-
ration of frontiers in materials science and 
promote the integration of information and 
utilization of accumulated knowledge regard-
ing nanostructures for the design and innova-
tion of actual materials.
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