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Introduction
The growth of available storage, memory, and central pro-
cessing unit (CPU) speed has arguably outpaced advances in 
the development of algorithms capable of taking advantage 
of an entire supercomputer for single computations, at least 
in common electronic structure and atomistic simulations 
in computational materials science. As a result, the trend in 
the field is shifting toward exploiting supercomputers to run 
large numbers of simulations, each taking only a relatively 
small amount of time and resources (e.g., plane-wave-basis 
density functional theory [DFT] codes typically running for 
a few days on a hundred cores). It has become increasingly 
possible, using thousands of parallel individual calculations, 
to rapidly scan wide parameter spaces, such as atomic struc-
ture and composition. This “screening” approach allows 
for the examination of many materials variations by com-
putation of their properties, selection of promising areas to 
explore with more accurate methods and experiments, and 
the ultimate discovery of new materials with optimal prop-
erties.1 Similar trends, sometimes termed high-throughput 
computing, have emerged in diverse areas of computation 
and information science, and many parallels exist in challenges 
and solutions across disciplines.

The first ingredient required for large-scale screening 
efforts is automation, eliminating the time-consuming task 
of manually managing the life cycle of each calculation, from 
input generation and deployment to output retrieval. In the 
solid-state electronic-structure domain, various tools have 
appeared early on in the last decade to address the needs 
to automate, among others, DFT energy computations 
(e.g., AFLOW,2 Materials Project,3 OQMD,4) and crystal 
structure manipulation, such as the Python codes ASE5/
pymatgen,6 which perform many useful operations such as 
creating supercells, surfaces, systems with defects, and many 
more advanced features. Despite increasing capabilities, how-
ever, many available tools are not interoperable and mostly 
focus on either specific computational codes or a narrow set 
of computation types.

The second required ingredient is the ability to maintain 
data quality, accessibility, and reproducibility. These chal-
lenges call for the development of new software infrastruc-
tures to couple automatic materials computations to database 
storage solutions. Fortunately, the availability of mature tools 
and concepts in the areas of databases and automation brings 
tremendous opportunities to data-intensive computational 
investigations of materials.
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Here, we first discuss the relevant aspects needed for 
an automation platform for computational materials science, 
focusing on AiiDA,7,8 a Python-based platform implementing 
the ADES pillars7 (automation, data provenance and repro-
ducibility, research environment with powerful workflows, and 
sharing). We then focus on crystallography tools (in particu-
lar spglib9 and seekpath10,11) that are essential within a high-
throughput computation environment.

ADES concepts and implementation in AiiDA
Automation of reusable dynamic workflows
Given a specific computation type and a simulation code, the 
quickest automation approach is to implement simple scripts 
to prepare inputs and run the calculations. These may be a 
direct solution for projects involving only a small set of prop-
erties (e.g., phase stability or bandgaps) computed with one 
code and changing only a few input parameters. However, 
these scripts tend to be hardcoded for the immediate prob-
lem and the available computer and batch queue scheduler 
(i.e., the system accepting and queuing executions to be run 
as soon as resources are available on a computer cluster). As 
a result, they are often difficult to apply to other problems, 
computers, or codes without major modification, and tend to 
be used only by their creators. In turn, this leads to sparse 
documentation and testing, increased chances of bugs and  
errors, and more generally to duplication of effort, with similar 
functionality repeatedly reinvented. At the same time, compu-
tational discovery of technologically relevant materials often 
involves computation of multiple properties—functional per-
formance, stability, and mechanical properties. Each of these 
may require a different method and code and varying amounts 
of computational time. In the solid-state atomistic domain,  
there are close to 40 different codes implementing various 
approximations and property computations, with a comparable 
number in the quantum-chemistry field.

In order to be able to combine the strengths 
and advantages of all of these codes, it is nec-
essary to implement a platform for developing 
reusable and interoperable workflows, achiev-
ing a delicate balance between standardization 
and flexibility. Instead of developing increas-
ingly complicated custom scripts, it is more 
efficient to adopt ideas, methods, and tools 
from the field of computer science. In the 
approach implemented in AiiDA, each task is 
an independent self-contained building block 
described in a uniform way as a calculation 
that takes data items (e.g., crystal structure, 
parameters) as input and produces data 
(e.g., electron or phonon spectra, energies) 
as output. Once each datatype is represented 
in a standard way that each workflow step is 
designed to accept, arbitrarily complex work-
flows involving diverse computational engines 
and data analysis tools can be composed by 

connecting the building blocks. The main advantage of using 
standard datatypes is the ability to reuse workflows as sub-
steps within other workflows without modification.

Figure 1 illustrates an example sequence of steps and 
data types involved in thermoelectric materials discovery, 
starting from crystal structure and first-principles electronic-
structure calculations.1 Hierarchical in nature, a calculation 
step may be composed of lower-level operations, each also 
represented as a workflow step (e.g., converting data formats 
or writing input files). This example workflow, run for each 
material, involves the use of several codes (DFT total energy, 
phonons, electron–phonon coupling, Boltzmann transport) and 
a variety of datatypes. Nevertheless, both on the high-level 
scientific logic and on the low-level data management, each 
step has the same abstract representation—a calculation oper-
ating on data.

Driven by similar automation needs in different data-
intensive disciplines, many workflow management systems 
have evolved over the last two decades. The vast majority 
of these require the entire workflow to be encoded as a pre-
defined sequence of steps. However, the challenge in scientific 
computations, for properties of materials in particular, is the 
often unpredictable and dynamic nature of calculations, which  
depends on the application. On the algorithmic level, for 
instance, workflow “width” is only determined at runtime 
(e.g., for thermodynamic phase-diagram computations involv-
ing multiple competing phases). Likewise, workflow “depth” 
(e.g., in iterative convergence) is often not known a priori. In 
addition, many codes in the community had not been originally 
designed with automation in mind. Therefore, workflows 
often need to implement error-recovery features that must adapt 
to the actual output of intermediate calculations. It is thus 
essential to be able to easily construct fully dynamic work-
flows, where decisions on which steps to perform are made 
programmatically. Moreover, the workflow system must be  

Figure 1. Example of workflow for computational discovery of thermoelectric materials used 

in Reference 1, shown at several resolution levels of control abstraction. Note: Green ovals, 

data objects; blue rectangles, calculations.
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able to manage thousands of workflows, each of them poten-
tially running for days or weeks (e.g., in molecular dynamics 
runs). For this reason, AiiDA implements workflows as sub-
classes of the WorkChain class, where steps must be defined as 
well as the logic flow (e.g., using “if” and “while” statements)  
that controls them. In each step, any Python logic can be execut-
ed, sub-WorkChains and long-running calculations can be 
launched, and at the end of each step, AiiDA waits for these to 
complete before continuing execution.

Importantly, the execution of WorkChains can be paused 
and restarted (and the computer on which AiiDA is running 
can even be rebooted) without losing the workflow state, 
which is essential when managing long-running workflows. 
An additional challenge of workflow systems, compared 
to scripts, is the learning curve for scientists to master new 
workflow constructs. Even for users familiar with Python, 
arguably today’s leading open-source language for data sci-
ence, composing workflows using object-oriented features 
can be an obstacle. Therefore, development of high-level, 
easy-to-use ways to standardize workflow implementation is 
a critical long-term strategic direction to facilitate automated 
materials design. To address this, AiiDA introduces a work-
flow architecture based on workfunctions, where workflows 
can be written as “wrapped” Python functions that accept 
and return immutable data objects (see Figure 2). The goal 
is to reduce the barrier of implementing workflows and track 
data provenance (see next section) by exposing the familiar 
functional interface already used in scripts, 
with minimal changes required in the code 
structure.

Data reproducibility and provenance
With the ability to automate computations and 
generate large data sets, a challenge arises in 
managing and organizing the data in a way  
that makes them accessible, reproducible, and 
searchable to other researchers. Simulations, 
unlike experiments, have the advantage of 
being, in principle, more reproducible, since 
codes and input data are digital and trivially 
replicated. Reproducibility, paramount in any 
scientific field, therefore needs a stronger 
emphasis in computational materials science. 
To this aim, it is necessary to record data 
provenance, including a detailed description 
of how the data were obtained, input param-
eters used, and with which method. Even if 
bit-level reproducibility is not necessary and 
often not achievable, approximate reproduc-
ibility and even partial provenance has tremen-
dous importance for several reasons. A typical 
example is the common case where compu-
tational researchers store simulation results in 
custom folder structures with minimal docu-
mentation. This results in the data becoming 

difficult to understand and reuse by others, especially when 
the original author leaves the group. Another important use 
case is exemplified by verification and validation studies, 
where knowledge of the exact inputs and settings is essential 
for comparing results of different codes or numerical methods. 
In general, all data and results should be published (along with 
the scientific paper) with complete provenance. This is not 
only scientifically necessary for reproducing results, but it can 
accelerate materials discovery by making the data immedi-
ately available for use by other researchers. Fully documented 
reproducible computations do not need to be repeated and can 
be used to perform additional analysis to uncover correlations 
or compute different properties.

The two main obstacles for data provenance tracking are 
the additional effort required to record the full reproducibility 
information and the absence of immediate benefit of the repet-
itive and often error-prone manual annotation process, as indi-
vidual citation metrics still do not directly reflect the additional 
effort of making published data reproducible. Our experience  
with multiple materials discovery efforts in diverse technology 
areas led to the realization that a convenient approach to record 
provenance is to couple calculation automation with on-the-fly 
metadata capture. Therefore, one of the main design goals of 
AiiDA is to enable workflow automation with automatic prov-
enance tracking. Thus, researchers are no longer required to 
manually organize or curate inputs and outputs of their cal-
culations and describe data relationships (e.g., the parameters 

Figure 2. Automatic tracking of provenance using workfunctions in AiiDA. (Left) Simple 

workfunctions that compute the sum or the product of two numbers, a and b, or (function 

add_mul_wf) the quantity (a + b)c. (Right) Provenance graph automatically recorded by 

AiiDA via the workfunction decorators. The two types of _return links indicate if data were 

generated (solid arrow) or returned (dotted arrow) by the workfunction.
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of the numerical approximations, the input crystal structure or 
the sequence of manipulating it from structures available in 
an existing database). Instead, data objects are automatically  
generated and stored on the fly in a database by the workflow 
engine as the computational workflow progresses, recording 
the entire data history and calculation sequence without user 
intervention and enabling provenance inspection and queries. 
Importantly, since the data recorded are the same as that used 
by computations, correctness and complete computational 
reproducibility are guaranteed. Besides storing raw input and 
output files, data and calculation objects are represented in 
AiiDA as nodes in a graph. Relationships between data and  
calculations are encoded by edges, or links, in the dataflow graph 
representing the provenance of operations (e.g., input links con-
nect data to calculations that used them, and call links connect 
calculations to other subcalculations that they launched). As out-
puts can be used as inputs of further calculations, the AiiDA graph 
structure captures the full sequence of steps used to generate the 
final results. Moreover, every time the user invokes a “wrapped” 
work function (see Figure 2), AiiDA transparently tracks the 
operation, together with inputs, outputs, and any substeps called. 
Therefore, automated tracking of workflow execution is achieved 
with minimal cost for the user.

Sharing and reuse of data
A particular emphasis in AiiDA is on creating an ecosystem of 
tools, data, and workflows that encourages sharing and reuse 
of data and codes. Each database instance is local to a user or 
a group (and therefore fully private). AiiDA, however, ensures 
that data subsets, with their provenance, can be easily shared 
between instances and uploaded to centralized public data-
bases. To facilitate sharing, additional user-defined metadata 
can be added to computed results a posteriori (after having 
run the simulations). This metadata, whose formats are often  
defined by domain-specific ontologies, enables standardization 
of properties facilitating the reuse of data even between different 
computational codes and domains, as well as the possibility to 
perform searches and queries on data generated with different 
tools. As standardized ontologies are still being developed12–14 
and are not fully stabilized yet, a posteriori metadata tag-
ging is a future-proof solution to enable conversion of data to 
any format. Most importantly, if provenance is automatically 
tracked, a posteriori metadata tagging can also occur with no 
user intervention. This has been shown in Reference 15, where 
methods and plugin-based tools are presented to convert the 
AiiDA provenance to any external ontology. Moreover, plugins 
are already available to convert calculations performed using 
Quantum ESPRESSO16 to the metadata format defined by the 
Theoretical Crystallography Open Database.17

Similarly, the data generated with AiiDA can be seamlessly 
exported and visualized in the Materials Cloud,18 a web portal 
based on AiiDA that focuses on (curated and raw) data dis-
semination, while also providing automation tools for gener-
ating data both on the cloud or on local resources. An example 
of how the coupling of AiiDA with the Materials Cloud allows 

accessible and discoverable sharing of data is provided by the 
computational exfoliation study of 2D materials by Mounet 
et al.19 The full data accompanying the scientific publication  
are available on the Materials Cloud Archive, is versioned 
with a DOI,20 and is linked to a curated section that presents 
interactive views of the data provided in the paper (main text 
and supplementary material) linked to their browsable AiiDA 
provenance graph.

Crystallographic tools
Crystallography and materials science
The essential datatype in atomistic materials science is the 
atomic structure. Crystalline solids can be efficiently studied 
by considering their periodic structure, where distortions or 
defects can be included as corrections. Periodic crystals can 
be categorized according to their symmetries in one of 230 
space groups,21 and symmetries can facilitate the understand-
ing of physical and chemical properties (selection rules for 
optical transitions, degeneracy of electronic states, occurrence 
of electric polarization). An essential ingredient of most work-
flows in the field is thus a tool to detect the space-group type 
and symmetry operations of an input structure.

It is often essential to ensure that atomic coordinates and 
cell vectors given as input to a quantum code are “refined” 
to numerically satisfy the crystal symmetries. This helps in 
guaranteeing that codes can exploit symmetries to reduce 
the computational cost or enforce them, facilitating the inter-
pretation of results. Deviations from symmetry might be due 
to low precision in the reported coordinates in a database or 
from experiments, or can originate from the output of numeri-
cal minimization algorithms. To clarify the latter point, we 
consider the search of phase-transition pathways in metals,22 
where structures were relaxed after distorting them according to 
the phonon eigenvectors associated with imaginary frequen-
cies. On-the-fly refinement was essential for a fully automated 
search, because distorted structures often relax toward a higher-
symmetry configuration, but the minimization algorithm stops 
before the exact minimum is reached.

In addition, tools for standardization of crystal struc-
tures are convenient to enforce crystallographic conventions 
(principal crystal axes direction, axes order in orthorhombic 
structures) and facilitate comparison of tensorial properties 
computed for different materials or in different numerical 
settings.

Symmetry detection: spglib
A library that can perform the crystallographic operations pre-
viously described is spglib.9 It detects the symmetry using the 
algorithms by Grosse-Kunstleve,23,24 searching exhaustively 
all point-group and space-group operations, obtaining their 
matrix representations, identifying primitive and conventional 
cells, and performing database matching with the Hall sym-
bols data set.25,26 Additionally, for slightly distorted structures, 
lattice parameters are refined and reoriented in Cartesian coor-
dinates, and atomic positions are relocated to their nearest 
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site-symmetry positions (within numerical thresholds).24 The 
algorithm of spglib is designed to be robust against these dis-
tortions, ensuring that the detected symmetry operations cor-
respond to a space group as coset representatives. Moreover, 
the chosen conventional unit cell always adheres to crystal-
lographic conventions: spglib follows an algorithm27 that first 
fixes all basis vectors as required by the space-group type21 
and chooses the first setting appearing in the Hall symbols 
list.25,26 The remaining vectors are ordered to be either |a| < |b|, 
|a| < |c|, or |b| < |c|, as prescribed by Parthé and Gelato.28 In the 
special case of triclinic crystals, the Niggli cell29 is employed.

High-symmetry k-points and band-structure paths: 
seekpath
Band-structure plots are useful tools to study the electronic 
structure of materials, as they reflect the crystal symmetries 
and can provide both an intuitive and quantitative understanding 
(e.g., the Fermi-energy position relative to the bands indicates 
metallic or insulating character, or the band 
curvature is directly related to the effective 
electron mass). Typically, energy levels are 
plotted along paths (often chosen arbitrarily) 
connecting reciprocal-space high-symmetry 
points in the Brillouin Zone (BZ) (reciprocal-
space points are often called “k-points”). High-
symmetry paths and points have been classified 
and labeled by the crystallography commu-
nity.26,30 However, often there is also an interest 
in low-symmetry points at the vertices and face 
centers on the BZ surface, where energies of 
bands coming from neighboring BZs coincide 
by reciprocal-lattice translational symmetry.

In the high-throughput era, the need has 
been recognized31 to provide coordinates of  
relevant k-path end points to automate band-
structure computations. Moreover, using stan-
dard paths can ease comparisons. For this 
reason, seekpath10 has been developed, also 
overcoming limitations of existing tools in the 
literature. seekpath relies on the standardiza-
tion performed by spglib to guarantee that the 
crystal structure complies with crystallographic 
conventions. Moreover, labels of high-symmetry 
k-points are the same as in crystallography,26 
and labels for additional points do not conflict 
with existing letters. Additionally, seekpath 
provides default band paths, also for systems 
with no inversion and Hamiltonians without 
time-reversal symmetry, to cover all relevant 
lines in the BZ in a nonredundant way (note 
that the Bravais lattice might not be enough 
to determine this path, and the space-group 
symmetry must be taken into account10).

A Python implementation32 and a web  
interface are both provided with seekpath. 

The latter11 is valuable for educational purposes to visualize 
crystal structures and BZ using interactive three-dimensional 
plots, and to perform symmetry analysis without the need to 
install software. Conversely, the Python interface is ideal for 
fully automated computational projects.

Combining all tools
AiiDA implements interfaces to spglib and seekpath to 
streamline their use directly with AiiDA data nodes and 
automatically store their execution via work functions. These 
interfaces enable provenance tracking of computed band 
structures and are already implemented in the workflows for 
Quantum ESPRESSO.33 Similarly, the combination of spglib 
with prototype AiiDA automation and database tools was 
key in enabling a systematic high-throughput study of the 
symmetry-controlled frustrated ionic transport and discovery 
of new solid electrolytes.34 As an example, in Figure 3a, the 
aluminum band structure computed by the aforementioned 

Figure 3. (a) Aluminum band structure computed with an automated AiiDA workflow. (b) Code 

to submit the “turnkey” workflow, requiring only minimal inputs: code, starting crystal 

structure, and set of pseudopotentials. (c) Provenance for the aluminum band structure 

data node (bottom node in the graph) as automatically tracked by AiiDA. Data nodes: red 

ovals, calculations: rectangles (light-green: WorkChains, dark-green: work functions, dark 

blue: Quantum ESPRESSO calculations), Quantum ESPRESSO code: light blue diamond. 

Starting from an initial structure (top of the graph), the workflow relaxes it, determines the 

suggested band path using spglib and seekpath (dark-green rectangle workfunction), and 

computes the band structure with Quantum ESPRESSO.



PROVENANCE, WORKFLOWS, AND CRYSTALLOGRAPHIC TOOLS IN MATERIALS SCIENCE: AIIDA, SPGLIB, AND SEEKPATH

701MRS BULLETIN  VOLUME 43  SEPTEMBER 2018  www.mrs.org/bulletin

AiiDA workflows using Quantum ESPRESSO and exploiting 
spglib and seekpath was obtained by running the launching 
script of Figure 3b, where all tools described here were com-
bined. The provenance graph, automatically tracked by AiiDA, 
is reported in Figure 3c. The input script is minimal and only 
requires specifying pseudopotential family, the code to use, 
and the initial structure that the workflow first relaxes. This 
“turnkey” workflow proves that the tools described enable full 
automation of calculations requiring many steps of different 
complexity and computational cost, while preserving the prov-
enance of computed data. Leveraging these tools, the scientist’s 
knowledge on how to perform the simulations and recover from 
possible errors is encoded in the workflows source code. Sharing 
the AiiDA workflows as plugins makes them easily reusable 
and ensures that complex calculations are fully reproducible.

Summary
We have presented the challenges of high-throughput simula-
tions in computational materials science. First is the need for 
automated tools, such as AiiDA, to manage the execution of 
dynamic workflows while ensuring that these are implemented 
in a format reusable in different projects and by different 
researchers. We have emphasized the importance of guaran-
teeing reproducibility of results while tracking the provenance 
of all data, proving how AiiDA makes this possible without 
requiring additional effort by users. Furthermore, we have 
shown how, by leveraging automatic provenance tracking, it 
is possible to add metadata (in standardized formats) without 
additional user input to facilitate seamless sharing of com-
puted data. We then discussed the tools (focusing on spglib 
and seekpath) to manage periodic crystal structures and their 
symmetries, essential in any atomistic materials science proj-
ect, and how they can be integrated in dynamic workflows to 
automate the computation of advanced materials properties.
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