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         Introduction 
 Materials informatics is the application of informatics (the study 
of the structure and properties from scientifi c information) to 
materials science and engineering to aid in the understand-
ing, development, and discovery of materials. Much of the 
initial emphasis in materials informatics has been placed on 
parametric fi rst-principles exploration of lattice structures of 
stable multicomponent compounds and phases, or small-to-
moderate-scale molecular structures that may deliver desired 
functionality.  1 , 2   Typically, this involves scripting workfl ows to 
systematically explore a range of material compositions and 
resulting energy-minimized structures using density func-
tional theory, molecular statics, or some other scheme built 
upon ground-state stability. Another approach, consistent with 
bioinformatics applications, is to introduce high-throughput 
synthesis of structure, followed by rapid and approximate 
property assessment in experimental assays. With such machin-
ery in place, regardless of the blend of computation and experi-
ments, an essential prong to this strategy is the application of 
data science to explore, screen, and select potential materials 
systems to meet application requirements. These methods con-
stitute what may be regarded as the discovery thrust of materi-
als informatics. 

 For example, consider the use of informatics in materials 
discovery through the prediction of phase stability in alloys as 
a function of their constituents. Electronic-structure calcu-
lations are being used to calculate the energetics of alloyed 
systems using computational combinatorics.  3 , 4   From these 
data sets, one can determine optimal confi gurations and 
the properties specifi c to those structures, including elas-
tic constants.  5   The Materials Project at Lawrence Berkeley 
National Laboratory provides results of such calculations 
as a web service.  6 

 Most practical materials systems, however, consist of 
interfaces that demarcate grain or phase boundaries, which 
infl uence thermal, mechanical, and physical properties at the 
mesoscale. For example, structural materials have a rich his-
tory of reliance on structure hierarchy well above the scale 
of the elementary unit cell of the lattice to achieve superior 
performance. The scales of structure in alloys range from sev-
eral nanometers for optimal precipitate strengthening, to tens 
of nanometers for multilayers and nanotwins, to hundreds of 
nanometers for distributed coherent precipitates and second 
phases, to tens of micrometers for grain-size distributions. 

Figure 1 7 , 8   shows an example of scales of material structure 
hierarchy that control properties of precipitate-strengthened 
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Ni-base superalloys for aircraft gas-turbine engine hot section 
components, such as the disks, which turn under the infl uence 
of the hot gases leaving the combustor. Composite materials 
derive their outstanding properties from the scale hierarchy 
associated with spatial distribution of phases with strong prop-
erty contrast, in addition to interphase regions that modify phase 
interactions. Properties of structural materials are mediated by 
point, line, and surface defects, with the latter two types having 
extended character and both short- and long-range structure.     

 The application of data science and informatics methods 
to microstructures has not been strongly emphasized in the 
solid-state physics, chemistry, and materials science com-
munities until recently. There are many challenges in apply-
ing informatics methods to microstructures that arise from the 
complexity of their hierarchical structures. The benefi ts of 
applying these methods to microstructures, however, are great, 
given their common characteristic of metastability and their 
important role in determining structure–property relations. 
The situation is further complicated by the presence of phase 
and structural transitions, which may yield disruptive advances 
in available properties. For example, transformation tough-
ening confers both workability and toughness. 

 Metastability of structural materials is a natural byproduct 
of nonequilibrium thermomechanical processing and associ-
ated structure evolution, which gives rise to novel, tailored 
microstructures. Achieving such hierarchical structures has 
historically been more art than science, as the ability to apply pre-
dictive computational models has been limited in this regard. 

Recent advances in phase-fi eld modeling and 
other related methods  9 , 10   offer promise in that 
they (1) clearly distinguish nucleation and 
growth phenomena; and (2) consider thermo-
dynamics in terms of stable phases, interfaces, 
and driving forces for kinetics. These are 
essential elements of a strategy for modeling 
process–structure relations for hierarchical 
microstructures, since the time scales for equil-
ibration at a given temperature vary according 
to the scale of each structure. The ability to 
computationally predict the emergent, collec-
tive properties/responses of interest for these 
hierarchical structures has been elusive, result-
ing in an emphasis on experimental protocols. 

 Multiscale modeling methods meanwhile 
are steadily advancing, in conjunction with 
experimental measurements, with fi delity 
appropriate to various levels of hierarchy to 
confi rm mechanisms and validate models.  11 , 12   
They have received investment now for nearly 
20 years. Still, it seems clear that the pathway to 
truly predictive multiscale models for process–
structure and structure–property relations is a 
long and winding one. Much of the behavior 
of materials is complicated by the presence of 
complex hierarchical structures that manifest 

themselves in physical responses over a wide range of length 
and time scales,  13   as indicated in  Figure 1 . Structure–property 
relations for metal alloys, for example, while fundamentally 
governed by the crystal structure, are highly dependent on the 
distributions of defects at the mesoscale. These defects can 
include grain boundaries in a polycrystalline material, dislo-
cations whose generation, annihilation, interactions, and 
motion govern yield and work hardening, point defects critical 
to solid-solution strengthening, and diffusion. This collection 
of structures over a range of hierarchical scales is generally 
referred to as a material’s microstructure. 

 The role of data science and informatics combined with 
digital representation of structure hierarchy is not only scien-
tifi cally interesting, but also practically compelling as a means 
to bridge these gaps in a reasonable timeframe to complement 
multiscale modeling and high-throughput experimental meth-
ods. This leads to an operative defi nition of the theme topic of 
this issue, Microstructure Informatics, as a branch of materials 
data science and informatics concerned with the identifi cation 
and quantifi cation of dominant scales of hierarchy of structure 
that can be characterized, digitally rendered, and systemati-
cally explored in terms of correlations that govern process–
structure and structure–property relations.   

 Why is microstructure informatics important? 
 Major current technology thrusts, such as the Materials 
Genome Initiative  14   and Integrated Computational Materials 
Engineering,  15   have made the persuasive argument that the 

  

 Figure 1.      Illustration of the role of microstructure hierarchy in Ni-base superalloys, 

ranging from lattice structures (fi rst principles), to defect mediation at matrix–precipitate 

interfaces (atomistics), to mesoscale many-body interactions of dislocations with precipitates 

(discrete dislocation and phase-fi eld simulations), to polycrystalline structures (continuum 

fi nite element or fi nite difference methods). Achieving greater concurrency of top-down 

design of engineering systems with materials development through this hierarchy of 

structure is an important objective, effectively supplanting materials selection as the 

dominant interface to materials research and development. Adapted with permission 

from References  7  and  8 . © 2010 Springer and 2010 Oxford University Press, respectively. 

Note: TEM, transmission electron microscopy; SEM, scanning electron microscopy; 

MEMS, microelectromechanical systems.    
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sequence of stages to develop and certify a new material are 
consistently too long ( ∼ 20 years) to achieve concurrency with 
the systems design process, alluded to in  Figure 1 . We have 
already mentioned the long-term prospect of realizing predic-
tive multiscale methods for process–structure and structure–
property relations of materials with hierarchical structure 
to support materials design and development. Although well 
established in certain fi elds, such as biology, weather fore-
casting, and climate change, methods rooted in data science 
have witnessed considerably less application in addressing 
process–structure–property (PSP) relations of materials. 
By taking advantage of prospects for enhanced decision 
support from computational modeling and simulation tools, 
higher resolution and more rapid characterization instru-
ments and methods, and incorporating modern data science 
tools and methods, researchers have increasingly focused 
on the goal of accelerating the insertion of new or improved 
structural materials into next-generation transportation vehicles 
and propulsion systems. 

 Early demonstration projects such as the Defense Advanced 
Research Projects Agency Accelerated Insertion of Materials 
(AIM) Program  16   from 2000 to 2003 provided a basis for 
optimism in this regard. The AIM program was focused on 
metallic systems (Ni-base superalloys for gas-turbine engine 
disks) and composite airframe materials. In AIM, various 
experimental and computational aspects of material process–
structure and structure–property relations were consolidated 
into a designer knowledge base  17   to provide a means to mini-
mize necessary iterations in the presence of uncertainty and 
converge on designed materials for specifi c components and 
performance requirements.  18   

 There are many ways to describe the microstructure of a 
material. These include standard metrics, such as the crys-
tal structure, the mean grain size and shape, the orientation 
of the grains (the texture), and grain-boundary character 
distribution. We also include parameters that describe other 
defect distributions, including the structure of multiphase 
materials, porosity, and dislocation substructures. Each of these 
structures may infl uence the material properties. The goal 
of materials informatics is to use data to identify these effects 
and examine whether correlations exist between the various 
microstructural parameters and a material property of interest, 
including the degree of potential cross-coupling of these param-
eters in determining such a property (i.e., if two types of struc-
tures act in combination or can be considered as independent). 

 There are several challenges to quantifying microstructure. 
First, microstructures are typically quantifi ed by assessing 
digital images from two-dimensional (2D) sections, which 
cannot appropriately capture the three-dimensional (3D) char-
acter of the structure. Second, hierarchical structures over a 
vast spatial range from a few nanometers to several hundred 
micrometers require different measurement resolutions and 
associated techniques, presenting challenges to combining 
information with proper spatiotemporal identifi cation. Third, 
most of the metrics previously described are typically used 

to correlate with mean properties; on the other hand, minimum 
properties among a statistical distribution of properties are 
often of interest and depend on the distribution of structures, 
such as the grain size, across a material. Examples include 
minimum fatigue strength or fatigue life, minimum fracture 
toughness, and minimum ductility. Fourth, microstructure 
evolves as a function of temperature and with external load-
ing stimuli, and the associated structures are metastable. 
In particular, point, line, and surface defects that are arranged 
to deliver desired performance in modern alloy systems evolve 
over time in service, greatly complicating the assessment of 
long-term durability and suitability for applications. This also 
fundamentally limits existing technologies for screening alloys 
based only on fi rst-principles calculations, as alluded to in the 
foregoing. 

 Recently, much progress has been made in the 3D char-
acterization of microstructures, as described in a series of 
recent articles.  19   One promising approach employs serial 
sectioning combined with optical microscopy and electron 
backscatter diffraction to yield 3D microstructures rep-
resented with voxels.  20 , 21   Advances in using synchrotron 
radiation have enabled nondestructive characterization of 
3D microstructures and hint at multiresolution techniques 
to augment optical microscopy (see the June 2016  MRS 
Bulletin  issue: “Synchrotron radiation research in materials 
science”).  22   From these data, one can quantify the distribution 
of structures across a fully 3D microstructure, from which 
various statistics, such as mean, standard deviation, and even 
higher-order statistical moments of the spatial distribution, 
can be determined.   

 Microstructure informatics approaches 
 While offering substantial improvement relative to that 
available from simple 2D data sets, employing brute-force 
statistical analyses of 3D structures to identify spatial cor-
relations between various elements of a microstructure is 
challenging. A new monograph on microstructure informatics 
by Kalidindi  23   focuses on developing mathematical corre-
lations between microstructural features and properties or 
responses of interest. In their article in this issue, Kalidindi 
et al. discuss the need for an e-collaboration infrastructure 
in which distributed team members with different tools and 
expertise can share data, capabilities, ideas, and intermediate 
results to accelerate the identifi cation of the most effi cient and 
profi table “pathways” for data to fl ow and for models or data 
analytics to be executed to provide decision support in mate-
rials development. These pathways or “workfl ows” can then 
serve as templates for user interactions and schema to simi-
larly support various other analogous materials-development 
problems. 

 Problems of interest to microstructure informatics chiefl y 
focus on the relation of a hierarchy of material structure to 
properties or responses at various length and time scales. Two 
case studies are presented, one comprising a model-based 
study that relies on machine learning to pursue computational 
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design and development of Ni-base superalloys. The second 
case study focuses on a rigorous framework for the sto-
chastic quantifi cation of the material structure, based on well-
established concepts of  n -point spatial correlations (often 
simply referred to as  n -point statistics) that provide a set of 
measures organized by increasing amounts of information. 
This type of framework furnishes a fairly general description 
of the microstructure and is not limited to any specifi c length 
or time scale. It provides a number of advantages. One is its 
ability to represent the microstructure mathematically using 
two-point statistics, typically, or three-point and higher order 
as necessary. Building on the statistical continuum theory of 
Kröner,  24 , 25   it is then possible to describe correlations between 
microstructure distributions and material responses of interest 
at the scale of a representative volume element (RVE) by fi rst 
calibrating to simple microstructures and then extending to 
microstructures of arbitrary complexity composed of the same 
set of objects, for example, phases or defects. The RVE is the 
smallest volume that is statistically representative of the over-
all microstructure with regard to a given property or response. 

 In this way, a series expansion can be written to represent 
structure–property relationships, decomposing each term 
according to a microstructure function and an infl uence func-
tion for spatial correlations of structure-response functions of 
appropriate order (infl uence functions describe how changing 
one point of the sample affects an estimator [e.g., a correla-
tion function, as an approximation of a Green’s function]). 
These infl uence functions are calibrated either to experiments 
or more typically to high-fi delity RVE simulations. Principal 
component analysis can be exercised to identify a key, limited 
set of terms that contain most of the relevant correlations in 
structure–property relations, lending considerable effi ciency 
to exploration of the microstructure design space. 

 Another article in this issue describes a different, comple-
mentary approach to using informatics to link the process 
route with microstructure and microstructure with properties, 
achieving so-called PSP linkages. In their article, Wodo et al. 
point to the lack of a unifi ed mathematical formalism to seam-
lessly connect chemistry with thermodynamics and kinetics 
to inform PSP linkages via a predictive design strategy. To fi ll 
this gap, they introduce microstructure informatics as a means 
to capture the interaction between processing variables and 
their infl uence on chemistry–microstructure–property correla-
tions via use of manifold representations and data-compression 
methods to achieve substantial reduction of model order, 
facilitated by principal component analyses. The gist of this 
approach is to reduce the space of microstructure descriptors 
to a set of meaningful descriptors that manifest correlations. 
Examples are provided for establishing libraries of properties 
to support grain-boundary engineering and the design and 
optimal fabrication of organic solar cells. 

 They close with a discussion of the need for high-
performance computing to address the “big data” aspects of PSP 
linkages via microstructure informatics for problems involv-
ing complex PSP relations, for which the “phase space” to 

explore in correlations is high dimensional. Such problems 
are commonplace in designing engineering materials, which 
previously has been a largely empirical, iterative, and time-
consuming exercise. The authors point to the need for approaches 
that allow materials developers and design engineers to explore 
PSP relations without requiring high-level domain expertise in 
software engineering, fault tolerance, and high-performance 
computing, and advocate a cloud-computing paradigm. We add 
to their stipulations the need for uncertainty quantifi cation and 
the management of uncertainty margins in the entire enterprise of 
pursuing PSP linkages.   

 Multiscale modeling 
 One of the grand challenges for computational materials sci-
ence is the extreme range of length and time scales that gov-
ern material behavior, ranging from the angstrom length and 
sub-picosecond time scales of atomic-scale behavior to the 
respective length and time scales of meters and years for 
material behavior in engineering applications. At each scale 
of microstructure, there is a structural “unit” that dominates 
the physical processes at that scale. These units are the entities 
whose dynamics defi ne the physics of interest at each scale. 
Typically, a set of models of materials behavior is created for 
each of the various scales.  26   

 The coupling of microstructure informatics with multiscale 
modeling and simulation offers an opportunity to signifi cantly 
leverage multiscale modeling to provide decision support for 
materials development and to establish statistical confi dence 
in structure–property relations. Improved fi delity and accuracy 
of multiscale models to predict structure-dependent behavior 
can, in turn, cooperate and interplay with microstructure infor-
matics to improve overall confi dence levels for estimates 
of structure–property relations, thereby reducing the bur-
den on costly and time-consuming experimental protocols. 
The past few decades have witnessed important trends in 
multiscale modeling that cut across disciplines. In particular, 
fi rst principles, atomistics, and Monte Carlo methods that 
originated in computational physics and chemistry have now 
become commonplace in engineering curricula and research, 
with materials science and engineering serving as a bridge 
in the materials context.  26 , 27   Moreover, there is an increased 
interest in fi nite element methods, continuum mechanics, and 
constitutive modeling from the condensed-matter physics and 
chemistry/chemical engineering communities. There has been 
a remarkable transformation in engineering sciences and 
computational mechanics of materials to embrace lower scale 
phenomena and insert related information into higher scale 
models. 

 In the most common view of multiscale materials model-
ing, a hierarchy of models and simulations, each describing 
a specifi c scale and its associated phenomena, is linked to 
create a multiscale description of materials behavior with 
information (e.g., outputs from one model as inputs to the next) 
being passed sequentially from scale to scale, an approach 
that is often referred to as information passing or sequential, 
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hierarchical multiscale modeling.  28   Inherent in the information-
passing paradigm is the lack of corresponding inverse models 
that would allow us to predict the needed structures and prop-
erties at the small scale from desired properties or responses at 
a larger scale—information fl ows only in one direction, from 
small scales to large. 

 Another approach, which is often referred to as concurrent 
multiscale modeling,  27   links simulations at different length 
and time scales directly within a single integrated framework. 
Its development has been substantially more limited than that 
of hierarchical multiscale modeling. This approach has the 
advantage of enabling the fl ow of information between scales, 
both bottom-up and top-down. This can facilitate prediction 
of localization of damage and deformation at notches, for 
example, while simultaneously considering overall component-
level response.  29   –   31   As in sequential multiscale simulations, 
models must be developed and applied at multiple scales, with 
the added complication of determining appropriate interfaces 
between the models that enable them to be used concurrently. 
This also introduces new sources of uncertainty related to the 
idealizations and approximations in strong coupling of models 
at different length and time scales. 

 A form of concurrent multiscale modeling, termed domain 
decomposition, focuses on modeling material response at 
distinct resolutions in different spatial domains, for exam-
ple, using atomistic resolution near grain boundaries and 
continuum dislocation dynamics  32 , 33   or coarse-grained atomistic 
approaches  34   –   37   away from the these boundaries. The time scale 
of these domain decomposition methods is typically dictated 
by the most highly resolved description used in any region of 
the overall domain. 

 Methods for computational homogenization of microstruc-
tures have received considerable attention in the literature, in 
which a heterogeneous material is replaced by an equivalent 
homogeneous material at the RVE level, with the goal of com-
puting its effective properties. This fi eld has evolved consider-
ably in the past few decades relative to previous generations of 
approaches that involved considerable idealization of micro-
structure and interfaces. More recent approaches exploit high-
performance computing to consider realistic microstructures, 
interface behavior, and nonlinear and higher order responses 
of individual phases in solving nested initial boundary value 
problems at multiple scales. 

 The article by Geers and Yvonnet provides an overview of 
how the fi elds of computational materials science and mechan-
ics of materials have essentially merged in the past decade, 
with a common purpose of modeling responses and proper-
ties of microstructures at various scales. In particular, they 
provide examples for copper-rubber interface delamination in 
stretchable electronics and advanced dislocation-based plas-
ticity models. The fast Fourier transform method is discussed 
as a means to pursue much more effi cient computational 
homogenization for 3D microstructures, including multiphys-
ics problems. The article closes with a discussion of reducing 
computational costs in nonlinear coupled simulations at two 

scales (substructures and interfaces) in a composite material 
using parallel computing strategies, along with model-reduction 
techniques and approximate two-scale decoupling methods based 
on informatics learning strategies such as neural networks. 

 The homogenization strategies discussed by Geers and 
Yvonnet often seek to build “bottom-up” relations, most often 
using hierarchical and sometimes concurrent multiscale mod-
eling strategies. On the other hand, it is clear that informa-
tion must fl ow from top to bottom to pursue materials design 
to satisfy specifi ed performance requirements. Pursuit of 
inverse-design problems requires top-down invertibility of PSP 
relations; for example, the relations developed via microstruc-
ture informatics  23   are often amenable to inversion. McDowell 
et al.  8   extensively discuss a more general methodology to 
conduct materials design exploration that is informed using 
various scale-specifi c tools (experiments, models, metamod-
els, and informatics correlations), whether hierarchical or 
concurrent in nature, and exploits concepts in the multidis-
ciplinary design optimization community to evaluate PSP 
linkages as a multilevel design exercise in the presence of 
uncertainty. 

 A key goal of multiscale modeling is to provide decision 
support in multilevel design and development of materials in 
the presence of various sources of uncertainty, including ran-
domness of the microstructure, the structure of the models, 
and values of model parameters. This includes providing sup-
port for understanding coupling for phenomena across length 
and time scales such that structure can be designed and con-
trolled to manipulate properties/responses at a higher scale in 
an intended manner. It should be understood that multiscale 
modeling serves the purposes of multilevel design of materi-
als with microstructure, but does not constitute materials 
design in its own right.   

 Digital microstructure representation and 
uncertainty quantifi cation 
 The Michel and Meredig article focuses on how to digitally 
represent the vast amount of information necessary to express 
not only microstructure descriptors at length scales, but also 
all relevant information associated with PSP relations, ranging 
from atomic-scale structure, through various levels of hier-
archy of microstructure, and onto the component design 
level. They contend that this must be pursued in a machine-
readable, structured format to serve as input data for infor-
matics schemes. They introduce a hierarchical data structure 
called physical information fi le (PIF) as a fl exible schema to 
store process history, structure, properties, devices, and other 
subsystems of the physical system of interest in the coupled 
materials development and component design system. 

 However, databases that are too narrowly or rigidly struc-
tured cannot serve the necessary purposes of materials design 
via distributed collaboration because they are not suffi ciently 
fl exible for use by multiple developers, and hence do not 
incentivize widespread usage.  38   To this end, they provide 
simple examples to explain the fl exibility of their PIF approach, 
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including properties of LiNiO thermoelectrics and an ionic 
liquid. While these examples focus on structure at the atomic/
molecular scale, they argue for generalization to incorporate 
more complex mesoscopic structures at higher length scales 
via nesting of system and subsystem objects. To enhance 
buy-in of scientists and engineers, programmatic access to 
the schema needs to be provided via open-source tools. The 
decomposition of such fl exible structured data sets between 
open-source and proprietary (e.g., informatics companies) 
servers will undoubtedly be a matter of much discussion in 
the coming years as the materials R&D community deliber-
ates on how to construct federated databases to best serve 
the needs of microstructure informatics and materials design 
and development. 

 Uncertainty quantifi cation describes the assessment of 
the uncertainty in a simulation (or experiment). The basic idea 
is that any development and execution of a model generates 
error. For example, limiting the scope of the phenomena 
included in a model results in error. Use of experimentally 
determined parameters results in error. The limitations of even 
verifi ed numerical methods introduce errors. While it is chal-
lenging to quantify the errors at each scale, quantifying how 
those errors propagate across scales is an even more daunt-
ing task. This error analysis effectively comprises uncertainty 
quantifi cation. The science of uncertainty quantifi cation is 
relatively new and is the focus of considerable efforts in many 
communities, including materials.  39   –   41   

 A major focus of microstructure informatics is the quan-
tifi cation of uncertainty, which is dominated by the errors 
in the digital representations of the microstructures or asso-
ciated process–structure and structure–property relations 
(so-called epistemic or reducible uncertainty) and the statisti-
cal or random error associated with the variation in the actual 
microstructures (aleatoric or irreducible uncertainty). The 
latter error can be quantifi ed, as can the errors associated 
with representation of microstructure. While there have been 
some applications of uncertainty quantifi cation to informatics 
techniques,  42   this is still a growing area of research. Yet another 
type of uncertainty is that of model form or structure, since 
description of materials phenomena can be approached with 
several types of models. Management of uncertainty, propaga-
tion of uncertainty in multiscale model chains, consideration 
of uncertainty in model assumptions and forms in addition 
to parameters, and assignment of performance margins are 
major considerations. 

 To this end, a recent report  27   addresses many of the great-
est challenges and opportunities for multiscale modeling. 
It should be noted that several of the key recommendations 
relate to uncertainty, for example, to “address uncertainty 
quantification and propagation across multiple models 
describing a range of material length and time scales.” Other 
recommendations deal with the need for strong bidirec-
tional coupling methods across scales for evolving micro-
structure, consideration of rare events and extreme value 
microstructure distributions, multiresolution (or multiscale) 

multiphysics free-energy functions, and addressing the role of 
phase nucleation and interfacial properties. All of these areas 
offer considerable challenges to microstructure informatics 
and should be addressed by ensuring these approaches are 
suffi ciently well-grounded, linked to the underlying physics 
and chemistry to the greatest extent possible, sophisticated, 
and robust. This is one distinguishing feature of informatics 
applied to materials, especially materials with hierarchical 
microstructures.     
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