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            Introduction  
 Inverse problems posed by the mechanical 
characterization of materials 
 Identifi cation of mechanical properties is crucial for all kinds 
of materials in order to develop faithful models of solids and 
structures, predict their mechanical response to a given loading, 
or assess their integrity and monitor their health. The mathe-
matical problems posed by the identifi cation of material prop-
erties are often referred to as inverse problems. 

 To defi ne an inverse problem, it is convenient to fi rst defi ne its 
opposite: a forward problem.  1   In mechanics, solving a forward 
problem means predicting the result of a mechanical action 
on a solid (displacement, strain, and stress) from knowledge 
of the material model and boundary conditions, which are 
combined in a boundary-value problem of partial differential 
equations based on the local mechanical equilibrium. On the 
other hand, an inverse problem is posed when the result of the 
mechanical action is partly or fully measured and one wants 
to employ these measurements to determine unknown param-
eters of the material model, unknown elements of the bound-
ary conditions, or the unknown initial geometry of the solid 
before the mechanical action.  2 

 Inverse problems should not be confused with semi-inverse 
problems, which are a sub-category of forward problems. 
Semi-inverse problems have an exact analytical solution, 

whereas the majority of forward problems have only 
approximate solutions that can be computed numerically 
using (e.g., the fi nite-element method). Semi-inverse prob-
lems occur especially when predicting the result of a mechani-
cal action on solids with simple geometries.  3   When the result 
of the mechanical action on such solids is measured and one 
wants to employ these measurements to determine unknown 
parameters of the material model, the closed-form expres-
sions of the mechanical fi elds allow a simpler identifi cation 
of the unknown material parameters. This subcategory of 
inverse problems may be classed as semi-forward problems. 
Semi-forward problems occur in a number of traditional 
mechanical tests, often called statically determined tests, 
where the parameters can be estimated by best-fi t determi-
nation from the data. 

 Solving inverse problems implies the defi nition of a cost 
function, estimating the distance between the model pre-
dictions and measurements. The cost function is minimized 
using either a least-squares technique (such as the Levenberg-
Marquardt algorithm) or a genetic algorithm, except in the 
case of semi-forward problems and linear least-squares which 
exhibit an explicit solution. In general situations, the model 
is solved numerically using a fi nite-element model updating 
technique (FEMU). In specifi c situations, when full-fi eld meas-
urements are available, an alternative to FEMU is possible in 
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the form of the virtual fi elds method, which has been shown to 
be more robust and effi cient in these situations.  4 , 5   

 Contrary to forward problems, a common diffi culty of 
inverse problems is their ill-posed character, which means that 
the existence and uniqueness of the solution are not always 
guaranteed.  6   The character may be due to a lack of reliable 
data and/or overcomplexity of the model. When access to 
more reliable data and complexity reduction of the model are 
not possible in practice, ill-posed character may be overcome 
mathematically by resorting to regularization approaches.  7     

 Specifi c context of blood vessels 
 The inverse problems, including the semi-forward problems, 
posed by the identifi cation of material properties in soft bio-
logical tissues are not straightforward, due to the complex 
microstructure of soft biological tissues, large deformations, 
response variation by sample and by patient, anisotropy, point-
dependent, nonlinear behavior, and permanent functional 
adaptation of the tissue to the environment. 

 Determining the mechanical properties of such tissues has 
been a fi eld of intense research for the last twenty years, since 
stress analysis of tissues has been shown to be meaningful 
for diagnosis in a number of medical applications (e.g., in the 
context of vascular medicine), indicating the risk of rupture of 
an aneurysm  8   or the risk of stroke.  9   This article focuses on the 
mechanical properties of elastic arteries, which are the largest 
arteries in the body located closest to the heart (e.g., the aorta 
and carotid arteries) and contain a large amount of elastic 
fi bers, increasing their compliance and allowing the damping 
of blood pressure fl uctuation over a cardiac cycle. 

 Existing experimental studies for inducing a mechanical 
stimulus on arterial tissues and measuring their response are 
numerous, though outside of the scope of this article.  In vitro , 
many experiments have been developed to characterize pieces 
of artery after collection from animals or human donors; the 
most commonplace are the uniaxial tensile, biaxial tensile, 
tension-infl ation, and bulge infl ation tests. The deformation 
may be measured at a single point or as a whole fi eld using 
an optical technique.  In vivo , non-invasive stimuli have to be 
employed, the most common being the natural blood action 
on the arterial wall (pressure variations). A number of tech-
niques have been developed to image the response of arteries 
to this mechanical action, such as intravascular ultrasound 
imaging (IVUS),  10 – 12   magnetic resonance imaging (MRI),  13   and 
intravascular optical coherence tomography (OCT).  14   Some of 
these techniques are available in current clinical practice and 
allow an elastography mode, which means they allow mapping 
of strains at different stages throughout a cardiac cycle. 

 In these situations where elements of the response of an 
artery subjected to mechanical stimuli are measured, access to 
the mechanical parameters is never direct, and semi-forward 
or even inverse problems have to be posed and solved. The 
rest of this article is devoted to a survey of these inverse prob-
lems in vascular biomechanics, attempting to highlight the 
salient features but also the limits of the various identifi cation 

approaches published so far. After a brief review of the main 
characteristics of elastic arteries and their constitutive models, 
the survey is divided into three parts corresponding respec-
tively to three major objectives that researchers try to attain in 
vascular biomechanics and simultaneously to three different 
length scales of the tissue:
      (1)      Focusing on the macroscopic scale, the fi rst part relates to 

the general objective of performing (patient-specifi c) stress 
analyses on blood vessels to predict their possible risk of 
rupture in the context of disease (such as aneurysms or ath-
erosclerotic plaque) or their response to the implantation 
of a device (e.g., a stent or graft). Macroscopic constitutive 
equations are necessary to reach this objective. Arteries are 
usually modeled by a phenomenological hyperelastic strain 
energy function involving different numbers of parameters 
depending on the complexity of the observed behavior. 
This has been the subject of extensive research because of 
the challenge to identify parameters that are needed for the 
sophisticated constitutive equations employed.  4 , 15 – 32    

     (2)      Looking at the mesoscopic scale, the second part relates 
to the objective of characterizing regional variations in 
mechanical properties, often for comparative qualitative 
purpose. The inverse problem is posed here by considering 
heterogeneous distributions of material properties at the 
scale of the tissue (for instance, considering several differ-
ent layers in the artery). Characterizing these regional varia-
tions is particularly useful for medical diagnoses (since 
the presence of stiffened regions may indicate a lesion) 
but also in understanding the progression of diseases and 
monitoring lesions.  

     (3)      Finally, at the microscopic scale, the third part relates to the 
objective of tracking the separate contributions of different 
microconstituents in the global mechanical response, as sub-
tle changes in the micromechanical distribution of stresses 
and strains may alter the basic activity of cells (expression 
of particular genes and production of particular enzymes and 
proteins). Due to this continuous growth and remodeling 
activity, the tissue is never stress-free and mechanobiology 
tries to understand the related governing processes.   

     Inverse problems posed by the complexity of 
the mechanical behavior at the macroscopic 
scale  
 Generalities about the biomechanics of elastic 
arteries 
 Elastic arteries are soft biological tissues, which can be described 
in terms of their constituents (histological description), the 
arrangement of the latter in the microstructure (morphological 
description), and also as a macroscopic structure subjected 
to mechanical loading. In terms of histology, elastic arteries are 
composed of three main types of cells:  33 , 34   endothelial cells, 
smooth muscle cells (SMCs), and fi broblasts, embedded in an 
extracellular matrix made up mainly of collagen, elastin (in the 
form of elastic fi bers), and a fl uid-like ground substance 
containing proteoglycans among other things. 
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 In terms of morphology, arteries are usually arranged in 
three distinct layers  34   (see   Figure 1  ). The innermost layer of 
the vascular wall, called the  tunica intima , is delimited from 
the inside space of the artery (the lumen) by a layer of endo-
thelial cells and from the rest of the artery by a fenestrated 
(perforated) sheet of elastin called the internal elastic lamina. 
The intermediate layer, called the  tunica media , is made up 
of SMCs embedded in an extracellular matrix consisting of 
elastin, collagen, and the ground substance. These SMCs are 
organized in concentric layers separated by fenestrated elastin 
sheets. Finally, the outermost layer, called the  tunica adventitia , 
is made of a dense network of collagen fi bers, mechanically 
preventing the wall from over-distension.     

 Structurally, an elastic artery  in vivo  is a pre-stretched pipe 
under an internal pressure load, able to stretch in response to 
each heart pulse and still able to undergo fi nite deformations 
far beyond the ones induced by the pressure variations in the 
body. While the diameter change over a cardiac cycle is about 
10%,  35   a segment of artery may shrink from 50% to 80% of 
its length when it is removed from the body  21 , 36 , 37   from elastic 
recoiling alone. 

 The different mechanical and organizational features of 
the arterial wall have been incorporated in diverse phenom-
enological, macroscopic constitutive models. A comprehen-
sive review of the arterial wall constitutive models has been 

published by Kalita and Schaefer.  25   Most of the models focus 
on the passive behavior of arteries (in other words, they neglect 
the mechanical actions of cells) and neglect the viscous effects. 
While a typical tensile stress–strain response of an aortic sample 
is shown in   Figure 2  , here, we recall the principal characteris-
tics of the arterial wall models.     

 Because of the large deformability of elastin, the constitu-
tive models for elastic arteries are usually developed within 
the fi nite-strain theory and are based on the defi nition of a 
strain energy function. Complex coupling between axial and 
circumferential responses has always been observed in  in vitro  
experiments. Accounting for that observation, the strain ener-
gy function can either be an orthotropic exponential strain 
energy function  21   or be defi ned as a fi ber-reinforced compos-
ite, where each term of the strain energy function accounts for 
the contribution of a specifi c constituent.  23 , 32 , 38   In these models, 
elastin and the ground substance are taken into account as the 
same phase, considered as a neo-Hookean matrix (exhibiting a 
nonlinear elastic behavior and possible large stretches), and 
different numbers of collagenous fi ber families and SMCs are 
accounted for by the introduction of polynomial or exponen-
tial terms in the strain energy function. The large amount of 
fl uid makes the tissue almost incompressible.  16   Since different 
tissue layers exhibit different mechanical behaviors, a layer-
specifi c strain energy function is sometimes introduced.  15 , 29 , 39   

 Due to their permanent functional adapta-
tion, residual stresses sit within the arterial 
wall. The presence of residual stresses has been 
evidenced by the observation of the arterial 
wall opening up in response to a radial cut  40 – 44   
(see   Figure 3   for the defi nition of the opening 
angle). However, empirical observations are not 
suffi cient to measure residual stresses since they 
are self-equilibrating and complex inverse prob-
lems can arise.  45         

 Inverse problems for characterization 
of mechanical properties at the 
macroscopic scale 
 In most cases, statically determined experimen-
tal tests are used to characterize the arteries, 
leading to semi-forward (inverse) problems. 
But as stated previously, due to the complexi-
ty of their mechanical behavior, identifi cation 
of the material parameters of a constitutive 
model is rarely direct. Different inverse 
approaches and best-fi t methods exist for their 
identifi cation depending on the experimental 
tests available, whilst it has been shown that 
the choice of the cost function can also infl u-
ence the results.  46   

 The identifi cation of the parameters of an 
anisotropic hyperelastic strain energy function 
requires measuring the response of the mate-
rial to multiaxial stress loading for different 

  

 Figure 1.      Schematic representation of the arterial wall, showing the three different arterial 

layers and their composition. Reprinted with permission from Reference 39. © 2000 Springer.    
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loading paths. The most appropriate tests for arteries are the 
tension infl ation tests, which consist of pressure loading the 
artery at different axial stretches. Auricchio et al.  47   compared 
the reliability of two isotropic phenomenological models and 
four structural invariant-based constitutive models, commonly 
used to describe the passive mechanical behavior of arteries, 
to perform best-fi t estimations from the curves of tension infl a-
tion tests. The conclusion is that each domain may be reliable 
depending on the level of local anisotropy in the tissue. 

 Identifi cation may appear simpler when using uniaxial 
tests; however, they provide no sensitivity to the mechanical 
behavior in the other directions of the tissue. In that case, most 
of the parameters have to be bound in narrow ranges of values 
in order to overcome the lack of sensitivity. A good example is 
the study from Masson et al.  28   who identifi ed the 13 parameters 
of a material model from dynamic pressure measurements on 
the inner side of the arterial wall. Another elegant contribution 
introducing the notion of state constraints in the minimization 
problem was performed on a human aorta by Stålhand et al.  30   

 A concern is the material parameters of the tissue in the 
regime just preceding its rupture.  48   51   They usually induce a 

complex identifi cation due to the localized effects of dam-
age preceding the rupture, but most of the experimental 
approaches dedicated to this problem have assumed homo-
geneous strains in order to keep the semi-forwardness of 
the inverse problem.    

 Inverse problems posed by regional variations 
of materials properties at the mesoscopic scale 
 Elastography is widely used as a tool for medical diagno-
sis of different arterial pathologies, as indicated earlier. Some 
pathologies such as atherosclerosis are characterized by local-
ized arterial stiffening. In other cases, since the mechanical 
properties are related to the composition of the tissue, their 
determination helps doctors assess the risk of rupture, so 
as to avoid a stroke or a heart attack. However, elastography 
only allows for mapping of the strain fi eld, and inverse prob-
lems must be solved to determine maps of the mechanical 
parameters. 

 In many situations, researchers are only interested in the 
small deformations of arteries occurring  in vivo  around a mean 
static pressure, chosen as the average reference confi gura-
tion. Small deformations are induced by the pressure changes 
in the lumen of the artery over a cardiac cycle or externally 
induced by an appropriate medical device. In these situations, 
the mechanical behavior of the artery is linearized around 
the reference confi guration in such a way that any stress 
change  Δ  σ  in the artery may induce a strain change such as: 
 Δ  ε   = C  –1   Δ  σ  .  Rigorously, the stiffness tensor  C  should be 
an anisotropic tensor, tangent to the stress–strain curve at 
the reference confi guration point, and the equation should only 
be used for small variations of the strain: || Δ  ε || < 0.05, for 
proper equivalence with the constitutive equations that are 
characterized from the  in vitro  bench tests. For larger strains, 
a polynomial Taylor series expansion is still possible. In a large 
number of cases, transverse isotropy is assumed and only the 
mechanical properties of the artery perpendicular to the main 
direction of blood fl ow are sought. Since the tissue is almost 
incompressible, a Poisson’s ratio is commonly prescribed, 
with values varying from 0.45 to 0.49. Only an elastic modu-
lus  E  has to be identifi ed for a complete material character-
ization. We named this the tangent elastic modulus.  23   

 Many researchers have tried to estimate the regional varia-
tions of this parameter, for instance at different sites along the 
length of an artery or even mapping its distribution across the 
whole cross-section of atherosclerotic plaques in the coro-
nary arteries (using OCT or IVUS) or in the carotid arteries 
using MRI; FEMU methods were specifi cally developed to 
solve these inverse problems.  52   Nevertheless, identifying  E  is 
not suffi cient to perform a stress analysis on the artery. As the 
loading applied to the artery may be dynamic, this may permit 
characterizing a viscoelastic model.  18   

 Note that some authors have also extended the problem 
of identifying a tangent elastic modulus to confi gurations of 
the artery other than the average  in vivo  confi guration. For 
instance, some authors have carried out tests  in vitro , such as 

  

 Figure 2.      Uniaxial tensile stress–strain response of a human 

aortic sample.  17      

  

 Figure 3.      Opening of an arterial wall segment due to a radial 

cut ( R  e , external radius;  R  i , internal radius;  α , opening angle).    
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indentation  53   or micropipette aspiration,  54   on pieces of arteries 
collected from human donors or animal models. An inverse 
problem has to be solved to derive the homogeneous or hetero-
geneous elastic moduli involved in the mechanical response to 
these tests. However, the obtained values cannot be compared 
to the  in vivo  ones as they correspond to linearization of the 
stress–strain response around different reference confi gura-
tions (a load-free stress state and one subjected to the mean 
arterial blood pressure). The main interest of these tangent 
elastic moduli in confi gurations different from the  in vivo  ones 
is to compare different tissues in the same confi guration or dif-
ferent locations in the same tissue. 

 Regional variations of hyperelastic (nonlinearized) param-
eters involved in the complete strain energy functions have 
rarely been characterized. Variations of material properties 
across the arterial wall thickness are commonly reported from 
experiments: independent characterization of the different 
layers (intima, media, and adventitia) has revealed, their differ-
ent mechanical properties that infl uence the global response 
of the artery.  55   Indeed, Humphrey  34   reported normal and 
upside-down tension infl ation tests on arteries, which evi-
denced their different responses. However, only a few studies  15   
have attempted to solve an inverse problem where both the 
media and adventitia have unknown material properties 
that have to be extracted from the response of the complete 
artery. The regional variations of hyperelastic material 
parameters along the circumferential and axial directions 
of arteries constitute a new class of inverse problems with 
recent interest. 

 By modeling the arterial wall as a mem-
brane and taking advantage of the isostaticity 
of a pressurized membrane, it is possible to 
reconstruct the (possibly heterogeneous) point-
wise stress distribution without the assumption 
of known constitutive behavior.  56   Furthermore, 
the strain distribution across the artery can 
be measured by digital image correlation. It 
therefore becomes possible to plot pointwise 
stress–strain curves and to identify the material 
parameters pointwise in a semi-forward man-
ner by simple curve fi tting. This simplifi es the 
problem considerably, avoiding the repeated 
resolution of fi nite element models, which 
is required in other approaches.  27 , 57 , 58   Such an 
approach has been developed especially for 
understanding aneurysm rupture, showing the 
development of localized damaged zones in 
the tissue prior to its rupture.  59     

 Inverse problems posed by functional 
adaptation of arterial tissue at the 
microscopic scale 
 In vascular tissues, as in many biological tis-
sues, the physiological properties are closely 
related to the mechanical environment sensed 

by the tissues. Indeed, biological tissues have the ability 
to grow and remodel due to mechanosensitive cells, and 
to adapt their microstructure to new mechanobiological 
demands. It is also generally agreed upon that the develop-
ment of vascular pathologies (e.g., aneurysms and thrombi) 
is highly linked to the remodeling properties of the vascular 
tissue and to changes in its mechanical environment. Among 
the different constituents of the vascular wall, collagenous 
fi bers are regularly renewed, while the only period of elastin 
synthesis by the organism is the perinatal and childhood period, 
making elastin degradation an irreversible process. Also, 
the mechanical behavior of vascular tissue is highly complex: 
reorganization of the microstructure, such as progressive 
decrimping and reorientation of the elastic and collagenous 
fi bers  60 – 62   happens in vascular tissues which are subjected to 
mechanical loading (  Figure 4  ). In order to correctly capture 
this complex behavior, account for the remodeling process, 
and predict its effect on the overall mechanical behavior, 
it is necessary to quantify the specifi c contributions of the 
mechanically signifi cant constituents to the overall mechani-
cal behavior.     

 The following question can therefore be addressed: What 
are the predictive capabilities of the available constitutive 
models to reliably account for separate contributions of the 
diverse arterial wall constituents on the macroscopic mechani-
cal response?  63   Here, we restrict the discussion to the passive 
behavior of arterial wall tissue. We are mainly interested in 
the two main constituents that contribute to the mechanical 
response of arterial wall tissues, namely collagen and elastin.  

  

 Figure 4.      Progressive decrimping of collagen fi bers in the adventitia of a rabbit carotid 

artery. Adapted with permission from Reference 62. The same area was imaged using 

confocal microscopy for different pressure steps from 0 mmHg to 140 mmHg. The rabbit 

mean physiological pressure is 70 mmHg.    
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 Tracking the contribution of collagen fi bers 
 The arterial wall owes its main mechanical characteristics, such 
as progressive stiffening and anisotropy, to collagen fi bers and 
their orientations.  39   In most of the available constitutive 
models,  22 , 32 , 64   fi ber families are characterized by their orientation 
angles while their progressive stiffening is modeled through 
exponential functions of the stretch. Determination of their 
orientations can be carried out in two ways: either by histo-
logical examination of the tissue or by an inverse method, 
searching for the orientation angles that best fi t the macro-
scopic behavior of the tissue. A comparison of the two meth-
ods shows that the optimal orientation angles stemming from 
the inverse method are not always consistent with the histo-
logical estimations of the fi ber orientations both in healthy  47   
and aneurysmal tissues, for which the inverse method leads to 
overestimation of the orientation angles.  65   Even though some 
authors have introduced more complex models including a 
distribution function of orientations,  46   the majority of models 
have a maximum of four fi ber families: one circumferentially 
oriented,  61   one axially oriented, and two diagonally oriented 
fi ber families. Histological observations highlight the diffi culty 
in clearly defi ning fi ber families by allocating a precise orien-
tation angle to them.  47   

 Modeling the progressive recruitment of collagen fi bers is 
another important question that needs to be addressed. In the 
 ex vivo  load-free confi guration, microscopic observations 
show crimped fi bers with different orientations that the 
mechanical loading tends to stretch and reorient along the 
principal strain directions  24   (also see  Figure 4 ). This progres-
sive reorientation process is generally named the recruitment 
of collagen fi bers. For large stretching, the collagen fi bers are 
perfectly straight and parallel to each other. However, the 
physiological load lies between these two extreme situations 
and poses the problem of collagen fi ber engagement under 
physiological conditions. Different experimental studies  60 , 66 – 68   
showed that only partial engagement of collagen fi bers is 
reached at physiological pressure: only 5–10% of the fi bers 
actively participate in the mechanical behavior of vascular 
tissues at these pressures. This progressive recruitment is 
the physical origin of the nonlinear character and progressive 
stiffening of the response of vascular tissues. In general, it is 
implicitly accounted for through the introduction of exponen-
tial functions in the constitutive models,  21 , 24 , 32 , 39   but in some 
specifi c models, a probability distribution function for the 
engagement strain of the fi bers has been introduced.  69   Such a 
function simplifi es the identifi cation of mechanical properties 
related to collagen and elastic fi bers (through the use of vari-
able recruitment stages).   

 Tracking the contribution of elastic fi bers 
 In general, mechanical models only account for the role of 
elastic fi bers (mainly made of elastin) through a neo-Hookean 
isotropic contribution in the strain energy function. However, 
biological studies show the importance of elastic fi bers 
in maintaining the shape and the functions of arteries. For 

instance, arteries with degraded elastin are more prone to local 
enlargements such as aneurysms.  70   The following question 
can therefore be posed: Which characteristics of the mechani-
cal behavior of elastic fi bers can be retrieved from existing 
models and which ones are missing? 

 Concerning the mechanical properties of elastic fi bers, they 
are generally assimilated in the initial tangent elastic modulus 
of the arterial stress–strain response. However, evaluation of 
the neo-Hookean parameter by means of inverse methods and 
a curve fi tting algorithm  32   leads to an elastic modulus for the 
matrix, which is far below the elastic modulus measured on 
isolated elastic fi bers.  20 , 71   This can be explained by at least two 
phenomena. First, the matrix in which the collagenous fi bers 
are embedded is not only made of elastic fi bers but also of a 
ground substance, which contributes to the mechanical behav-
ior at low stretching.  71   Second, progressive unfolding of the 
elastic fi bers has also been observed  61   impacting the recruit-
ment of collagen fi bers. This elastic fi ber unfolding occurs 
before the decrimping of collagenous fi bers, which subse-
quently undergo less decrimping, endowing arterial walls 
with a more compliant response to pressurization.  72   This 
was confi rmed by observations of elderly people’s arteries: 
Their elastin is degraded, and the decrimping of collagenous 
fi bers is more pronounced and occurs earlier.  73 , 74   The latter 
observations indicate strong interactions between elastic and 
collagenous fi bers. This interaction is not limited to the low-
stretch regime, but is also visible at high stretching. Models 
tend to simplify the real behavior of arteries and identify the 
high-stretch tangent modulus with that of collagen fi bers. 
However, experiments on arteries with chemically degraded 
elastin fi bers show a larger elastic modulus for these arteries 
than for healthy ones, evidencing the contribution of elastic 
fi bers to the mechanical behavior at high stretching.  20   

 It must however be stated that inverse determination of 
the neo-Hookean parameter can be useful for estimating the 
quality of elastic fi bers, a very low elastic modulus being 
associated with degraded (nonfunctional) elastin. In particular, 
aneurysmal arteries, whose elastin is known to be degraded,  75   
exhibit a low initial tangent modulus, as compared to healthy 
arteries.  76   The importance of considering the contribution of 
all the components at the microscale and not just that of the 
collagen is emphasized by the existence of internal stresses 
in the tissue that biomechanists sometimes try to identify.  73   
This constitutes another class of inverse problems for which 
experimental data is not available yet. For instance, if it would 
be possible to take the collagen fi bers out of the tissue and 
measure the deformation that this would induce, evaluating 
internal stresses would be permitted.  77      

 Conclusion 
 This article demonstrated that inverse problems posed by 
mechanical characterization of arteries are numerous and 
diverse, and it would be an enormous task to exhaustively 
review all the existing contributions. The more modest pur-
pose of this article is to synthesize the main objectives usually 
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motivating such contributions. Three groups of objectives 
were found: to have a set of relevant parameters to perform 
numerical simulations; to characterize regional variations of 
material properties in order to track the effects of functional 
adaptation or lesions; and to identify the contribution of 
microconstituents to the mechanical response. 

 Even if a relevant theory that can satisfactorily explain 
the mechanical behavior of soft tissues on the basis of its 
internal structure and composition is still lacking, great effort 
has been made so far to relate the complex mechanical 
behavior of arteries to their microstructure and this has 
motivated numerous inverse problems. The current per-
spective, however, is elsewhere, as the proper calibration of 
growth and remodeling models represents a new challenge. 
This is a new class of inverse problems related to the mecha-
nobiological characterization of arteries  78 – 80   instead of purely 
mechanical characterization.    
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