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Abstract

This work investigates the influence of poly(dimethylsiloxane) (PDMS) within a nanocomposite coating solution constituted by silica
nanoparticles and toluene on mechanical properties, surface wettability, and surface morphology. The developed coating’s hardness and
elastic modulus were studied in detail. A variation in mechanical properties was observed as the amount of PDMS was varied. Also, the average
surface roughness, skewness, and kurtosis values show the influence of the amount of PDMS on the surface roughness characteristics of the

coating. Furthermore, it was observed that the water contact angles were linked with the proportion of PDMS.

Introduction
Superhydrophobic coatings have been a hot topic for the
research community since the last few decades because super-
hydrophobicity has many applications, which include but are
not limited to anticorrosion, ! self-cleaning,[3] and anti-
icing.*! Various methods exist for fabricating a superhydro-
phobic coating; these include the sol-gel method,’®! chemical
vapor deposition,'® physical vapor deposition,!”’ and a nano-
composite solution.'® 2 Varied in their complexity, fabrication
methods are selected according to which a basic substrate is to
be coated and which chemicals are to be used. The basic
requirements for developing a superhydrophobic coating are
low surface free energy (surface chemistry)!'* and consider-
ably higher surface roughness (surface morphology).'¥ So,
any fabrication technique, irrespective of its nature, includes
distinct processing steps to alter these properties of surface
chemistry and morphology to enhance superhydrophobic
behavior. The one exception to this, out of the previously men-
tioned techniques, is the nanocomposite coating solution, as it
can achieve the desired alterations in a single coating
process.!'”) Generally, a nanocomposite solution comprises
nanoparticles such as silica or nanoparticles of varying sizes,
a binder such as poly(dimethylsiloxane) (PDMS), and an
appropriate solvent medium such as toluene or ethanol.l'”]
The nanoparticles are responsible for the required surface
morphology. If they are functionalized prior to use to reduce
surface free energy, they could also affect the required surface
chemistry.l'® The role of the binder is to hold the constituents
together, thereby achieving the desired mechanical properties
rendering the coating durable.!'”!

One of the main problems associated with superhydropho-
bic coatings is their susceptibility to damage by external wear
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and abrasion; this susceptibility is often caused by insufficient
mechanical properties.”"®! When it comes to nanocomposite
coating solutions, since the binding agent is responsible primar-
ily for holding the coating firmly and stably onto the substrate,
it might seem possible to improve the mechanical properties of
the coating simply by increasing the amount of binding
medium within the nanocomposite coating solution. PDMS,
with its considerable adherence and abrasion resistance, is
often used as a binder medium within nanocomposite solu-
tions,"' ') and it is the binder used in this work. Many past
studies have tried to study the influence of the degree of cross-
linking within PDMS on its mechanical properties.**>2 When
PDMS is used as a binder within a nanocomposite coating,
researchers have also investigated the influence of varying the
number of nanoparticles in the nanocomposite coating while
keeping the amount of PDMS constant. Bolvardi et al. revealed
that in a nanocomposite coating composed of titania nano-
particles and PDMS, superhydrophobicity was significantly
decreased by increasing the number of nanoparticles.l**)
Bolvardi et al. also found that PDMS played a vital role in
achieving the desired surface properties for the same titania-
based nanocomposite coating. Amirpoor et al. studied the influ-
ence of silica and PDMS on the oil-water separation efficiency
of a superhydrophilic/superoleophobic nanocomposite coating
where the amount of PDMS was kept constant.** Their results
revealed that PDMS and the change in the number of nano-
particles had a considerable influence on the oil contact angle
of the nanocomposite coating. With respect to the number of
nanoparticles, the highest oil contact angle was obtained
when the number of nanoparticles was highest, whereas with
respect to PDMS, the highest oil contact angle was obtained
when the amount of PDMS was lowest. To investigate the
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possibility of improving the mechanical properties and other
significant properties of a nanocomposite coating with PDMS
as the binder, a nanocomposite coating solution using silica
nanoparticles, PDMS, and toluene is studied in this work by
varying the amount of PDMS. After a series of experiments,
the weight proportions of the chemical constituents were
optimized for the selected nanocomposite solution. The only
parameter varied here is the amount of PDMS within the nano-
composite solutions. With the aid of nanoindentation, the
dependence of mechanical properties such as the coating’s
hardness and elastic modulus on the amount of PDMS within
the nanocomposite coating solution was accurately measured.
The work also studied variation in surface roughness and sur-
face wettability with respect to the change in the amount of
PDMS to investigate the influence of the amount of PDMS
on these characteristic properties. Surface wettability was
quantified by the static contact angle. Surface roughness was
quantified with different roughness parameters such as average
surface roughness, root-mean-square surface roughness,
surface skewness, and kurtosis.

Materials and methods

2024-T3 aluminum alloy plates of 2.5 cm x 2.5 cm X 0.5 mm
were used as the substrates. Chemicals used were anhydrous
ethanol (Sigma-Aldrich, St. Louis, MO, USA), isopropyl
alcohol (Sigma-Aldrich, St. Louis, MO, USA), acetone
(Sigma-Aldrich, St. Louis, MO, USA), silane-modified hydro-
phobic silica nanoparticles (RX-50) with an average diameter
of 55+15nm (Evonik, Piscataway, NJ, USA), toluene
(Sigma-Aldrich, St. Louis, MO, USA), polydimethylsiloxane
elastomer kit (Sylgard 184) (Dow Corning, Midland, MI,
USA). All the experiments were performed at an ambient
temperature of 25 °C.

The flat substrates with the given dimensions were cleaned
in a sequential manner as follows: ultrasonication in acetone
was performed for 15 min followed by thorough rinsing with
isopropyl alcohol, ethanol, and deionized water to remove
any surface contaminants or grease. This step was followed
by drying in air. After the preparation of substrates to be coated,
the nanocomposite coating solution was prepared according to
the following procedure. 1.5 g of silica nanoparticle was mixed
in 6 g of toluene and then the suspension of nanoparticles in
toluene was dispersed by ultrasonic stirring for 1h.
Ultrasonication for substantially longer duration is necessary
for avoiding aggregation of nanoparticles and to facilitate
proper dispersion. Simultaneously, an appropriate amount of
PDMS base polymer was added to 4 g of toluene for different
nanocomposite solutions and was dispersed by ultrasonic stir-
ring for 1 h. For nanocomposite solution-A, nanocomposite
solution-B, nanocomposite solution-C, and nanocomposite
solution-D; 0.5, 1.0, 1.5, and 2.0 g of PDMS base polymer
were used, respectively. After 1h, both the solutions were
mixed together and continued the ultrasonication for another
hour. After this step, the solution was mixed further using a
mechanical stirrer for 2h to ensure better mixing and

dispersion. Once the mechanical stirring was performed for 2

h; nanocomposite solution-A, nanocomposite solution-B,
nanocomposite solution-C, and nanocomposite solution-D
were mixed with 0.05, 0.10, 0.15, and 0.20 g of curing agent,
respectively, and the mixture was stirred using mechanical stir-
rer for another 30 min. The obtained solution was degassed in a
vacuum desiccator for 20 min to remove any air bubbles
entrapped within the nanocomposite solution. The nanocompo-
site solutions thus obtained were then deposited on the
aluminum alloy substrates using spin coating at a speed of
800 rpm for 10 s. The coating was then oven-cured at 110 °C
for 20 min followed by air cooling in a fume hood. The coating
obtained using nanocomposite solution-A is hereon referred to
as coating-A, and similarly, coating obtained using nanocom-
posite solution-B, nanocomposite solution-C, and nanocompo-
site solution-D will be referred to as coating-B, coating-C, and
coating-D respectively.

Nanoindentation was performed using a nanoindenter
(Hysitron TI 980, Bruker) equipped with a diamond Berkovich
tip. The indentations required for the modulus mapping and
hardness mapping on the fabricated coatings were carried out
using load-controlled quasi-static trapezoidal load function
with a peak load of 250 mN. The measurement of static contact
angles was performed using a drop shape analyzer (DSA2SE,
Kriiss) to analyze the wetting behavior of different coatings.
Deionized water droplets (10 uL) were dropped onto the surfaces
under ambient temperature and atmosphere. For each static
contact angle measurement, at least four measurements were
performed at arbitrarily selected locations on the sample. The
surface topographies of the samples were measured using an
atomic force microscope (AFM, Park NX10, Park System Co.)
in contact mode with a scan area of 10 x 10 um?.

Results and discussion

Mechanical property analysis using
nanoindentation

To measure the mechanical properties such as reduced elastic
modulus and hardness for all the coatings, mapping of those
properties was performed over an area of 2 mm x 2 mm. The
mapping was achieved by compiling the property values
obtained from a matrix of indentations positioned with a gap
of 100 um between successive indentations. A total of 400
indentations were performed for one test, and identical indenta-
tions were performed on all the points using a load-controlled
trapezoidal quasi-static load function with 250 mN peak load.
Figures 1(a)-1(d) show the hardness mapping for coating-A,
coating-B, coating-C, and coating-D. Determination of hardness
is crucial in quantifying the mechanical stability of coatings, as
it gives information about resistance to deformation.*> It can be
observed that, in the case of each coating, the hardness value
varies slightly from one location to another. The average hard-
ness for coating-A was 0.20 GPa, whereas that of coating-B,
coating-C, and coating-D were 0.11, 0.05, and 0.04 GPa,
respectively. The highest hardness value among all the coatings
was observed on coating-A, and the lowest value was observed
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Figure 1. Hardness mapping for (a) coating-A, (b) coating-B, (c) coating-C, and (d) coating-D.

on coating-D, owing to the highest proportion of PDMS within
the nanocomposite. These mappings show that the hardness of
the coating is inversely proportional to the amount of PDMS
within the nanocomposite solution when the levels of all other
constituents remain unaltered. Figures 2(a)-2(d) show the
reduced elastic modulus mapping for coating-A, coating-B,
coating-C, and coating-D. Reduced elastic modulus quantifies
the cumulative effect of the elastic deformations.*®? As the
same indenter tip and identical loading conditions are used for
different coatings in this work, reduced elastic modulus can be
effectively used to compare different coatings based on the elas-
tic deformations occurring on them. Similar to the observations
made for hardness mapping, the highest modulus value among
all the coatings was observed for coating-A, as expected, and the
lowest value was observed on coating-D. The average reduced
elastic modulus for coating-A was 2.66 GPa, whereas that of
coating-B, coating-C, and coating-D were 2.32, 1.59, and
1.24 GPa, respectively. These mappings show that, when the
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levels of all other constituents besides PDMS remain unaltered,
the reduced modulus of the coating is inversely proportional to
the amount of PDMS within the nanocomposite solution.
Supplementary Table S1 summarizes the average for the values
of the reduced elastic modulus and hardness for the 400 distinct
indentation points along with the standard deviation. This matrix
of indentations was repeated over three samples, and similar
results were obtained.

Surface wettability analysis using goniometry
Considering the role of nanoparticles and the binding agent
such as PDMS within a nanocomposite solution intended to
fabricate superhydrophobic coatings, it is clear that the propor-
tion between the constituents within the nanocomposite solu-
tion should be well balanced and optimized in order to
achieve desirable wetting behavior. Since surface morphology
and surface chemistry of the fabricated coating are the key
parameters in controlling the wetting characteristics of a
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Figure 2. Reduced elastic modulus mapping for (a) coating-A, (b) coating-B, (c) coating-C, and (d) coating-D.

coating, the proportion should be balanced in order to reduce
the surface free energy and simultaneously improve surface
roughness. Figure 3 shows the variation in the static contact
angle with respect to the amount of PDMS. As shown in
Fig. 3, the maximum static contact angle was obtained for
coating-B, where 1.0 g of PDMS was used along with 10 g
of toluene and 1.5 g of silica nanoparticles. Static contact
angles were measured for each nanocomposite coating, for
which only the distinction was the amount of PDMS. The static
contact angle corresponding to 0.5 g PDMS was 149°, and the
contact angle was observed to increase up to 156° upon increas-
ing the PDMS from 0.5 to 1.0 g. Upon further increasing the
amount of PDMS to 1.5 g, a decline in the contact angle was
observed, and the value was measured to be 145°. Finally, a
steep decrease in the contact angle was observed after increas-
ing the amount of PDMS to 2.0 g. The contact angle reduced to
a very low value of 114°. The highest static contact angle
observed for coating-B can be justified by the highest surface
roughness observed in the case of coating-B among all the

coatings. A detailed discussion about the surface morphology
characteristics and its effect on surface wettability is presented
in the following section. Supplementary Figure S1 shows
the static contact angle image for a water droplet of 10 uL on
coating-B.

Surface morphology analysis using atomic
force microscopy

Figures 4(a)—(d) show the three-dimensional AFM images for
coating-A,  coating-B,  coating-C, and  coating-D.
Supplementary Table S2 shows the statistical roughness param-
eters retrieved from the AFM images for all coatings. The stat-
istical parameters measured from the AFM images include
average roughness (R,), root-mean-square roughness (Rrs),
surface skewness (Rgsk), and kurtosis (Rky). The surface rough-
ness of any surface is often quantified by R5 and Rrys, and
those are the common parameters used for measuring surface
roughness,[27’28] whereas, Rgx and Ryy are advanced rough-
ness parameters that are not frequently given with basic surface
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Figure 3. Variation in the static contact angle with respect to the amount of PDMS.

roughness measurements.”” "1 Surface skewness quantifies distributed peaks and valleys of specific heights. Surface topog-
the symmetry of the statistical distribution of peaks and valleys raphy with more peaks than valleys indicates a positive surface
in the surface topography of the sample. When the skewness skewness, whereas a negative surface skewness refers to more
value is 0, it means that the surface topography has equally valleys than peaks in the surface topography. Kurtosis refers to
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Figure 4. Three-dimensional AFM images for (a) coating-A, (b) coating-B, (c) coating-C, and (d) coating-D.
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the probability density sharpness of the surface topography. For
surfaces with low peaks and low valleys, kurtosis becomes less
than 3, and for surfaces with high peaks and low valleys, it
exceeds 3. The average surface roughness for coating-A,
coating-B, coating-C, and coating-D was found to be 84.1 +
2.2,105.97 +4.8, 84.3 £3.3, and 52.54 = 0.6 nm, respectively.
The trend in variation of surface roughness is like the one
observed in the case of static contact angle; hence, it is evident
that the water contact angle is directly linked with the surface
roughness characteristics of the coating. Coating-B showed
the highest surface roughness of 105.97 nm, and in terms of
static contact angle, coating-B also exhibited the highest
value. Comparing coating-B, coating-C, and coating-D, the
decrease in surface roughness observed as a result of increasing
the amount of PDMS can be attributed to the possibility of the
rough and dense silica structures partially or fully covered by
the excess PDMS. The reason for coating-A to have lower sur-
face roughness than coating-B could be insufficient binder
within the nanocomposite coating solution to facilitate the for-
mation of hierarchical silica structures. The surface skewness
and kurtosis values reveal that the height distribution for all
the coatings are much less skewed and hence highly symmetric,
as the values for surface skewness lie between —0.5 and 0.5.
Supplementary Figure S2 shows the representative scanning
electron microscopy (SEM) image for the surface morphology
alteration as a result of the nanocomposite coating.

Conclusion

In this work, the influence of the amount of PDMS binder within
a nanocomposite solution on mechanical properties, surface
wetting behavior, and surface roughness characteristics was
studied. The results show that when the amount of PDMS binder
is increased in the nanocomposite solution for a probable
improvement in the mechanical properties of the coating, it
compromises the required surface roughness requirements and
hence the desired hydrophobicity. More importantly, contrary
to the anticipated improvement in the mechanical properties as
the amount of binder was increased, a decline in the mechanical
properties was observed as the ratio between reinforcing
nanoparticles and PDMS binder was reduced. The appropriate
amount of PDMS binder with respect to the number of nanopar-
ticles for this particular nanocomposite solution was found for
achieving desired wetting behavior without compromising the
mechanical properties and adherence onto the substrate.

Supplementary material
The supplementary material for this article can be found at
https:/doi.org/10.1557/mrc.2020.59.
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