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Al0.1CoCrFeNi high-entropy alloy (HEA) was synthesized successfully from elemental powders by mechanical
alloying (MA) and subsequent consolidation by spark plasma sintering (SPS). The alloying behavior,
microstructure, and mechanical properties of the HEA were assessed using X-ray diffraction, electron microscope,
hardness, and compression tests. MA of the elemental powders for 8 h has resulted in a two-phased
microstructure: α-fcc and β-bcc phases. On the other hand, the consolidated bulk Al0.1CoCrFeNi-HEA sample
reveals the presence of α-fcc and Cr23C6 phases. The metastable β-bcc transforms into a stable α-fcc during the
SPS process due to the supply of thermal energy. The hardness of the consolidated bulk HEA samples is found to
be 370 ± 50 HV0.5, and the yield and ultimate compressive strengths are found to be 1420 and 1600 MPa,
respectively. Such high strength in the Al0.1CoCrFeNi HEA is attributed to the grain refinement strengthening.

Introduction
The high-entropy alloy (HEA) concept is an innovative alloy

design strategy, where multiple principal alloying elements

are added (mostly in equiatomic proportions) to yield a single-

phased microstructure [either face-centered-cubic ( fcc) or

body-centered-cubic (bcc)] [1, 2, 3]. Traditionally, the alloys

contain a base principal element with minor alloying elements

(mostly follow Hume–Rothery Rules) to achieve desired prop-

erties depending on their applications. It was strongly believed

that alloying of more than one principal element could lead to

the formation of intermetallic or complex structures or bulk

metallic glasses [4, 5]. In 2004, Cantor and Yeh came up

with new alloys, where multiple principle elements in equimo-

lar fraction (CoCrFeMnNi and AlCoCrCuFeNi alloys) had

resulted in a simple crystal structure [6, 7]. According to Yeh

et al., the simple crystal structure attained in the HEA is attrib-

uted to the high configurational entropy of the system [6].

Further, HEAs exhibit superior mechanical properties, corro-

sion, oxidation, and irradiation resistance due to its intrinsic

core effects like heavy lattice deformation and sluggish cooper-

ative diffusion [8, 9, 10, 11, 12, 13, 14].

AlxCoCrFeNi HEA (alloy system with Co, Cr, Fe, and Ni

added in equimolar ratio and “x” denotes the molar fraction

of aluminum) is one of the prominent HEA system, which is

extensively studied due to its varying crystal structure from fcc

to bcc depending on the Al content [9]. The fcc based

AlxCoCrFeNi HEA offers excellent strain rate sensitivities

compared with the conventional crystalline fcc materials [9].

This alloy also exhibits high strength arising from the internal

stresses which have large friction stress from lattice distortion,

dislocation strengthening, and solid solution strengthening.

AlxCoCrFeNi-based HEAs exhibit a low stacking fault energy

(SFE) <30 mJ/mm2 [9, 10]. Such low SFEs hinder dynamic

recovery thereby enhancing the dislocation storage capacity.

This promotes the formation of deformation twins, which lead

to high work hardening rates [9, 11, 12]. AlxCoCrFeNi HEAs

show excellent structural stability [13] and mechanical properties

[15, 16, 17, 18, 19, 20, 21] over the range of temperatures. Also,

corrosion and wear resistance of AlxCoCrFeNi HEA is similar to

the conventional alloys like AISI 304 stainless steel and Inconel

718 alloys [22, 23, 24]. Due to these excellent properties, exten-

sive research has been carried out on AlxCoCrFeNi-based HEAs.
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However, most of the studies involve the production of the HEA

via casting (arc melting/induction melting) route [13, 14, 15, 16,

17, 18, 19, 20, 22, 23, 24].

The strength of the AlxCoCrFeNi HEA was found to be

dependent on the Al concentration since it promotes and stabi-

lizes a bcc structure [9, 13, 15, 17, 18, 20, 22]. Accordingly,

Al0.1CoCrFeNi HEA (A-HEA) is an excellent composition

exhibiting a single fcc crystal structure [10, 12, 19, 25, 26].

The alloys are highly resistant to radiation [27, 28], high-

temperature softening [13], and corrosion [29] compared with

the conventional structural alloys. Even though A-HEA illus-

trates a unique work hardening behavior, the main drawback

is its low yield strength (150 MPa) [25]. Yield strength indicates

the upper-threshold value of the stress, after which the material

could start to deform permanently its shape. The materials used

in the structural parts need to withstand load for a long period

under static as well as dynamic loading conditions; hence, the

structures are usually designed in reference to the yield strength

of the material to provide safe and reliable design [30]. Lower

yield strength could limit the application of A-HEA; hence,

the present work focuses on the strength improvement in

A-HEA by tailoring its strengthening mechanisms [31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41]. Strengthening of alloys with the

fcc phase can be achieved by either grain refinement [31, 32,

33, 34, 35, 36] or by dispersion strengthening (adding hard par-

ticles in the matrix) [37, 38, 39, 40, 41]. Grain refinement is one

of the effective strengthening strategies that can be achieved in

two ways: (i) Changing the processing technique (employ pro-

cesses with a high cooling rate like additive manufacturing or

copper mold casting or melt spinning) [42, 43, 44, 45] or

using non-equilibrium processing like the mechanical alloying

(MA) [46, 47, 48] or (ii) Employing thermomechanical pro-

cesses [25, 36, 49, 50, 51]. Mainly, A-HEA-based alloys were

strengthened by thermomechanical processing like severe plastic

deformation (processing with friction stir processing [25], high-

pressure torsion [49], etc.). Kumar et al. have achieved a yield

strength improvement of about 315 MPa by grain refinement

(reduction from millimeter to micrometer-range sized grains)

[25]. Similarly, Xu et al. on the other hand employed cryo-

rolling to improve the yield strength of the HEA to about

800 MPa [36]. Nevertheless, all the above-mentioned improve-

ments in strength were carried out on cast samples.

Powder metallurgy is another alternative route that can fab-

ricate samples and at the same time can strengthen the sample

in several ways including grain refinement, solid solution

strengthening, and dislocation strengthening [52, 53, 54]. MA

followed by powder consolidation is one of the traditional solid-

state alloy synthesis processes used in the powder metallurgical

approach. It involves alloying of elemental powders by ball mill-

ing (alloying of elements occurs due to cyclic welding and frac-

ture phenomenon between alloying elemental powders) and

subsequently consolidating the ball-milled powders by sintering

them at high temperature [45, 53, 54]. By this process, a range of

materials starting from supersaturated solid solutions, quasicrys-

tals, amorphous alloys, nanomaterials, and intermetallic with

nano-structures can be produced [46, 55, 56, 57, 58, 59, 60,

61]. Spark plasma sintering (SPS) is a field-assisted sintering

technique, which can consolidate the powder material rapidly.

The SPS process with a higher heating rate enables a higher den-

sification rate with sluggish grain coarsening rate during sinter-

ing. Hence, the SPS technique efficiently produces fine-grained

bulk samples without affecting intrinsic properties and struc-

tures (nano or submicron structure) of the powder [62, 63].

By utilizing the advantage of SPS combining with MA, the

present study focuses on the processing of A-HEA, where the

aim is to improve the strength of the alloy by non-equilibrium

powder processing. The resultant microstructure and mechani-

cal properties are studied in detail.

Results
Mechanically alloyed Al0.1CoCrFeNi powder

The scanning electron microscope (SEM) images of the elemen-

tal powders (Al, Co, Cr, Fe, and Ni) are given in Figs. 1(a)–1(e).

The particle size distribution of elemental powders measured by

laser granulometry is provided in Fig. 1(f). All of the elemental

powders have shown different shapes and sizes. Al and Fe

possessed with droplet-shaped with Dv50 of 30 ± 15 and 41 ±

17 μm, respectively; Co has finer particles (15 ± 7 μm) with den-

dritic structure; Cr shows irregularly shaped particles (Dv50 of

24 ± 12 μm); Ni depicts tree sponge shaped structure with

Dv50 of 22 ± 16 μm. Figures 2(a)–2(d) display the SEM images

of the mechanically alloyed powder as a function of milling

time. The elemental powder mixture after 2 h of milling

shows the presence of irregularly shaped particles with an aver-

age size of 35 ± 12 μm. It may be carefully observed from the

image [Fig. 2(a)] that some particles exhibit smooth fractured

surfaces and others exhibit rough surfaces as a result of repeated

welding and fracturing events that take place during MA [46,

62]. The smooth surface corresponds to the fracture event,

and once they are welded, the surface becomes rough and irreg-

ular. As the isopropanol is used as a processing control agent

(PCA), it reduces the cold welding event and enables more frac-

turing events, which leads to a drastic reduction in the size of the

particles after 4 h of milling and the average size of the particles

is observed to be 18 ± 4.3 μm. The particles are irregular in

shape, and both smooth and rough surfaces are observed just

like in the 2 h milled powder samples.

MA of the Al0.1CoCrFeNi powder to 6 h leads to a mar-

ginal increase in the size of the powder particles, which may

be attributed to the cold welding incidents that take place dur-

ing MA [46, 62]. The average size of the powder particles is
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observed to be 25 ± 6.5 μm. An increase in particle size indi-

cates the predominant occurrence of the cold welding event

and agglomeration of the powder particles after 6 h. The dom-

inance of the welding event could occur in any one of the fol-

lowing conditions: (a) if the temperature of the milling medium

reaches a certain critical temperature, PCA could not control

the welding event effectively and leads to the agglomeration

of the particles and (b) when the impact energy in the milling

process is not high enough to fracture the welded particles.

With prolonged MA to 8 h, the size of the powder particles

is drastically reduced, while maintaining the irregular shape.

The average size of the Al0.1CoCrFeNi powder particles is

observed to be 8 ± 1.5 μm. The size of the Al0.1CoCrFeNi

HEA powders is drastically reduced from ∼25 to 8 μm after

8 h of MA. Since the powder size is reduced drastically and

there are several welding and fracturing events taking place

Figure 1: SEM images of the elemental powders: (a) Al, (b) Co, (c) Cr, (d) Fe, and (e) Ni, respectively, and (f) their corresponding particle size distribution.

Figure 2: SEM images of the
Al0.1CoCrFeNi elemental powders ball
milled for (a) 2 h, (b) 4 h, (c) 6 h, and
(d) 8 h, respectively.
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due to the impact of ball and friction between them, the pow-

der particles will be strained severely and the degree of internal

stresses in the powder particles increases drastically with MA

time, which may be measured using X-ray diffraction (XRD).

The XRD patterns of the MA Al0.1CoCrFeNi HEA powders

(for 2, 4, 6, and 8 h, respectively) along with the SPS consoli-

dated sample are shown in Fig. 3. The XRD pattern of the 2 h

MA powder shows all the peaks corresponding to the elemental

powders. However, with increasing the MA time, the identity of

the individual elemental phases disappears, and the peaks corre-

sponding to two crystal structures fcc and bcc are observed. The

width of the peaks increases with increasing MA time, and this

broadening may be attributed to the following factors:

(i) decrease in the crystallite size or the coherent domain size,

(ii) increase in the lattice strain or internal strain in the material,

and (iii) increase in the number of internal defects like the dis-

location density and stacking faults [64]. Besides, the peaks cor-

responding tend to shift toward a lower angle due to the alloying

of the elements, eventually forming an alloy with high entropy

in it. After 8 h of MA, peaks of only two crystal structures are

observed: namely α-fcc and β-bcc phases, suggesting that the

Al0.1CoCrFeNi HEA exhibits a two-phased crystal structure.

The two-phased microstructure is the resultant of the formation

of solid solutions during MA. Eventhough the single fcc phase

was reported by other researchers [9, 10, 11, 12, 13, 14], in

Al0.1CoCrFeNi HEA prepared by arc melting and induction

melting techniques, Al0.1CoCrFeNi HEA prepared by MA

shows the two-phased crystal structure. Such occurrence also

observed during MA of CoCrFeMnNi HEA (which possesses

a single fcc phase when prepared by arc melting and induction

melting techniques) [61, 64].

The lattice parameter, crystalline size (D), and the lattice

strain of the MA powders and the bulk SPS sample were

evaluated from the XRD patterns by using the Williamson–

Hall plot [65] and are tabulated in Table 1. The broadening

of the peaks increases with increasing MA time implies that

the crystallite size decreases, and the lattice strain increases

because of the continuous hitting effect of the balls and vials

during the MA process. The lattice parameter of the α-fcc

phase increases with increasing MA time from 4 to 8 h (shift

in the diffraction peaks to the lower angles) due to the expan-

sion of the lattice with the diffusion of the elements. It may be

observed from Table 1 that the crystallite size of both α-fcc and

β-bcc phases decreases from 108 ± 10 to 37 ± 7 nm and 63 ± 6

to 8 ± 2 nm, respectively, when MA from 4 to 8 h. Similarly,

the lattice strain increases constantly with an increase in the

MA time.

The energy-dispersive X-ray (EDS) mapping of the A-HEA

powder after 8 h of MA is given in Fig. 4. It can be observed that

out of five principal alloying elements, Al, Co, Fe, and Ni are dis-

tributed evenly, whereas Cr is segregated along certain regions

without having a uniform distribution like the other four ele-

ments. Among the metallurgical factors (atomic size, crystal

size, melting point, and self-diffusing ability), the alloying ability

was found to depend directly on mechanical disintegration and

inversely on the melting point of the alloying elements [66]. In

the present work, the reduction of particle size associated with

the mechanical disintegration during MA has favored alloying

of the elements. Chen et al. have reported that during alloying

of the multi-principal elements (Al, Co, Cu, Cr, Fe, Mo, Ni,

and Ti), the alloying rate of the elements decreases in the follow-

ing order: Al→Cu→Co→Ni→Fe→Ti→Cr→Mo [66]. Similarly,

in the present work, the alloying rate on the elements decreases

in the following order: Al→Co→Ni→Fe→Cr. Since Cr has the

least alloying rate among the five elements considered, it is seg-

regated randomly. Additional thermal treatment or increasing

Figure 3: XRD patterns of the Al0.1CoCrFeNi HEA powders and spark-plasma sintered bulk sample.
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MA time may completely dissolve Cr in the HEA matrix;

however, this is beyond the scope of the present manuscript.

Consolidated (spark plasma sintered)
Al0.1CoCrFeNi HEA

The SPS consolidated A-HEA bulk sample show a density of

7.268 g/cc leading to a relative density of ∼96% (calculated

with respect to the density of A-HEA synthesized by the arc-

melting furnace). The XRD pattern of the Al0.1CoCrFeNi bulk

SPSed A-HEA sample (Fig. 3) shows the presence of two phases:

α-fcc and Cr23C6-carbide phase. Interestingly, the β-bcc phase

present in the 8 h MA powder disappears after the SPS process.

The metastable β-bcc in the 8 h MA powder transforms into a

stable α-fcc phase with the supply of thermal energy (atomic dif-

fusion) during the SPS consolidation. In addition, peaks of the

α-fcc shift toward the lower angle, and it influences the lattice

parameter. The lattice parameter of the α-fcc phase in the

bulk sample is observed to be 0.3572 nm, which is an increase

of 0.0048 nm compared with the 8 h MA powder. Such an

increase in lattice constant after SPS is due to the phase trans-

formation from the metastable β-bcc phase into stable α-fcc

phase and Cr23C6-carbide. In addition, the relaxation of the

internal stress stored in MA powder also contributed to an

increase in the lattice constant in SPSed A-HEA. It can be

noted that the increase in the lattice parameter during MA is

less compared with that of SPSed A-HEA. This is attributed

to the pronounced phase transition in SPS consolidation than

during MA due to the assistance of the thermal energy [64].

The crystallite size of the bulk HEA sample is ∼48 nm, and

the lattice strain is evaluated as 2 × 10−3 (no unit). The increase

in the crystallite size (from 37 nm for the 8 h MA powder) and

the decrease in the lattice strain (9 × 10−3 for the 8 h MA pow-

der) after consolidation can be attributed to the supply of ther-

mal energy to the powder during the SPS process, which helps

the crystals to grow and the lattices to relax be giving up the

internal strain in the material. Retainment of the nanometer-

scale microstructure after SPS of A-HEA at 1000 °C is attributed

to efficient heating of the powder [higher heating rate (100 °C)]

and short holding time [62, 63].

TABLE 1. The lattice parameter, crystallite size, and the lattice strain of the MA powders and the bulk Al0.1CoCrFeNi HEA samples calculated from the XRD patterns.

Sample designation

Lattice parameter (nm) Crystalline size, D (nm) Lattice strain (×10−3)

α-phase β-phase α-phase β-phase α-phase β-phase

4 h MA powder 0.3524 ± 0.0002 0.2875 ± 0.0002 108 ± 10 63 ± 6 6 ± 1 6 ± 2
6 h MA powder 0.3529 ± 0.0004 0.2876 ± 0.0001 82 ± 7 55 ± 8 7 ± 2 10 ± 1
8 h MA powder 0.3534 ± 0.0008 0.2878 ± 0.0004 37 ± 7 8 ± 2 5 ± 3 7 ± 0.5
Bulk Al0.1CoCrFeNi HEA 0.3572 ± 0.0003 – 48 ± 3 – 2 ± 1 –

Figure 4: Energy-dispersive X-ray elemental mapping of 8 h mechanical alloyed Al0.1CoCrFeNi HEA powder.
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The SEM, corresponding electron backscattered diffraction

(EBSD) images, and phase maps of the bulk A-HEA sample are

given in Fig. 5. The SEM image shows the presence of two differ-

ent color contrasts in themicrostructure, revealing the presence of

two distinct phases (α-fcc and Cr23C6 phases) in Fig. 5(a). The

EBSD image [Fig. 5(b)] shows the uniform distribution of nano-

crystalline grains with an average size of ∼100 nm in the phases

considered. Also, both the phases (α-fcc and Cr23C6 phases) are

randomly oriented in the bulk sample. The phase map obtained

from EBSD scan data [Fig. 5(c)] reveals that the red-colored

phase corresponds to α-fcc phase and the green phase corre-

sponds to the Cr-rich Cr23C6-phase. The fraction of Cr23C6 is

measured as ∼14%. Further, the EDS area mapping [Fig. 5(d)]

reveals the distribution of alloying elements in the bulk HEA

sample. It can be observed that excepting Cr, all the elements

(Al, Co, Fe, and Ni) have a uniform distribution throughout.

The nominal composition of the alloy and the individual phases

measured using EDS spot analysis are given in Table 2.

The α-phase with light contrast shows nearly equimolar dis-

tribution of the elements Co, Fe, and Ni and is deficient in Cr.

On the other hand, the dark phase is rich in Cr. EDS spot analysis

at Cr23C6 has the following composition: 56.78Cr–14.86Fe–

11.69Ni–13.71Co–2.01Al (in at.%). The formation of Cr23C6

has been reported in the SPS processed HEAs containing

Cr such as CoCrFeMnNiNx, AlCoCrFe, CoCrFeMnNi, and

Al0.3CoCrFeMnNi HEAs. [67, 68, 69, 70, 71]. Vaidya et al.

depicted the carbon contribution for carbide formation as the

decomposition of the PCA [72]. Eventhough Cr-rich σ phase is

reported inmany literature [72], lowerGibb’s free energy for chro-

mium carbides than that of σ phase [73] has led to Cr23C6-carbide

formation in the present investigation.

The bright-field transmission electron microscopy (TEM)

images of the bulk HEA at the α-fcc matrix and at the interface

between α-fcc matrix and Cr23C6 are shown in Figs. 6(a) and

6(b), respectively. Figure 6(a) reveals the presence of austenitic

grains with twins indicating that the grains are in a recrystal-

lized condition. The grains are distributed in the range of

50–200 nm. Whereas, the Cr23C6-phase is coarse-grained com-

pared with the α-fccmatrix. Further, the Cr23C6-phase does not

show any signs of twin formation. The interface between the

α-fcc matrix and the Cr23C6-phase is coherent and epitaxially

related to each other. The selected area diffraction (SAED) pat-

tern of the matrix and Cr-rich-phase [Figs. 6(c) and 6(d)]

reveals the presence of cubic ( fcc) crystals and Cr23C6, respec-

tively, corroborating with the XRD results. The presence of

such an hard Cr23C6-phase is beneficial when present in min-

imum fraction. When the Cr23C6 fraction is increased, it could

hamper the ductility of the material [74].

Mechanical properties of the bulk Al0.1CoCrFeNi
HEA

The hardness of the bulk SPSed A-HEA sample is measured

to be 370 ± 50 HV0.5, which is almost double the value when

compared with the hardness of their as-cast counterpart

Figure 5: (a) SEM image of the spark plasma sintered bulk Al0.1CoCrFeNi HEA and the corresponding (b) EBSD image, (c) phase maps, and (d) EDS mapping images
of the individual alloying elements (Al, Co, Cr, Fe, and Ni).

TABLE 2. Nominal chemical composition of the spark plasma sintered bulk
Al0.1CoCrFeNi and their individual phases (at.%).

Description Al Co Cr Fe Ni

Overall 1.63 24.44 25.39 24.65 22.78
Matrix 0.83 26.95 17.54 27.33 26.26
Cr23C6 2.01 13.71 56.78 14.86 11.69
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(180 HV0.5). Such an increase in the hardness of the samples

may be attributed to the fine grain structure obtained during

the MA process. The representative compressive stress–strain

plot of the bulk HEA samples is illustrated in Fig. 7(a). The

compressive yield strength (CYS) and ultimate compressive

strength (UCS) for the bulk SPSed A-HEA were found to be

1420 ± 20 and 1600 ± 40 MPa, respectively, with plastic defor-

mation of 10 ± 2%. SPSed A-HEA shows seven-folds improve-

ment in CYS and two-folds improvement in UCS of the

A-HEA that prepared by vacuum arc melting and induction

melting (CYS of ∼200 MPa and UCS of ∼900 MPa) [20].

Such enhancement in the CYS and UCS of A-HEA is attribut-

able to the retainment of the nanometer-scale grains during

SPS consolidation. This variation in strain may be attributed

to the fraction of Cr23C6 particles/phase present in the sample

used for the compression test. As Cr-rich phase only degrades

the ductility of the sample, its fraction may lead to such varia-

tion. In addition, it may also be attributed to the differences in

the defect levels in the samples like porosity.

Images of the fracture surface of the bulk HEA are shown

in Figs. 7(b)–7(d). The brittle failure in the bulk HEA sample

may be observed clearly from Fig. 7(b) in the form of cleavage

(brittle facets). Higher magnification images show the presence

of several microcracks, and some of them grow to form macro-

cracks, leading to the failure of the sample. Considering the

phases present (α-fcc and the brittle Cr23C6) and the micro-

structural distribution of the phases, it may be attributed that

the microcracks initiate from the brittle Cr23C6 when the

local stress exceeds the fracture strength of the material.

Several of such microcracks combine join together to form a

macrocrack, leading to the failure of the material.

Discussion
The XRD analysis (Fig. 3) and micro to nano level structural

characterization by electron microscopes (Figs. 5 and 6) have

revealed that the SPS of A-HEA has resulted in the bulk

A-HEA with dual-phase structure (with ∼86% α-fcc phase

indicated in red color in the EBSD phase map and ∼14%
Cr23C6-phase indicated in green color in the EBSD phase

map). Further, it is noticeable that both the α-fcc phase and

Cr23C6 phase retain nanocrystalline even after sintering at

1000 °C for 5 min using the SPS technique. The effective

local heating of the powder surfaces by the higher heating

rate (100 °C/min) in SPS restricts the grain coarsening during

sintering and leads to effective sintering of the powders without

Figure 6: The bright-field TEM images of
the spark plasma sintered bulk
Al0.1CoCrFeNi HEA at the (a) α-fcc matrix
and (b) interface between α-matrix and
Cr23C6-carbide phase and (c and d) their
corresponding SAED patterns.
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altering the grain size of the powders. Whereas, A-HEA synthe-

sized by vacuum arc melting and vacuum induction melting

has revealed single α-fcc phase coarse grains in the range of

millimeters at the as-cast condition and as-homogenized

condition [20, 25, 26].

The hardness (∼370 HV0.5) and compressive strength (CYS:

∼1420 MPa and CUS: 1600 MPa) of the A-HEA prepared by SPS

are higher than that of the as-cast/homogenized A-HEA prepared

by vacuum arc melting and vacuum induction melting [20, 25,

26]. For engineering alloys, the yield strength can be dictated

by the strengthening factors like intrinsic lattice friction (σLF),

solid solution strengthening (σSSS), grain boundary

strengthening/Hall–Petch strengthening (σHP), dislocation

strengthening (σdislo), and particle dispersion strengthening

(σdisp). The yield strength of the alloy can be predicted by using

the formula given in the following equation [75, 76, 77, 78, 79]:

sTotal = sLF + sSSS + sHP + sdislo + sdisp

= so + sHP + sdislo + sdisp, (1)

sLF =
∑n
i=1

Ci∗ sLRi , (2)

where Ci and σLRi are molar fraction and lattice friction stresses.

Hence, σLF of the alloy is evaluated as 125.15 MPa by considering

the lattice friction stresses of alloying elements; Al, Co, Cr, Fe, and

Ni were reported as 16, 10.3, 454, 25, 22 MPa, respectively, from

the recent publication [77]. Further, σo = σLF + σSSS is a factor that

includes lattice friction and solid solution strengthening contri-

butions [75]. Kumar et al. have estimated the σo and Hall–

Petch coefficient (KHP) for the Al0.1CoCrFeNi HEA as 174 and

371 MPa(μm)1/2, respectively [25]. The remaining strength con-

tributing factors (σHP, σdislo, and σdispl) can be evaluated from

Eqs. (3)–(5) [76].

sHP = KHP��
d

√ , (3)

sdislo = MaGb
�����
rdislo

√
, (4)

sdisp = M0.4 Gb
pl

ln(2�r/b)������
1− n

√ , (5)

where d is the average grain size;M is the Taylor factor (3.06); α is

the correlation factor for a specific material (0.2 for fccmaterials),

b is the Burgers vector, ρdislo is the dislocation density (calculated

as 1.332 × 1017 m−2 from theXRDpattern), and L is inter-particle

spacing calculated from

l = 2�r
���
p

4f

√
− 1

( )
. (6)

f is the volume fraction of particles,�r is the average particle size of

the dispersed particles, and v is Poisson’s ratio of the dispersed

particles. The predicted strength values from σHP, σdislo, and

σdisp for the given bulk HEA sample are 1174, 6, and 21 MPa,

respectively. Hence, total the yield strength of the bulk

Al0.1CoCrFeNi HEA is estimated as 1375 MPa which suits well

with the experimental yield strength (1420 MPa). The results

show that the major strengthening mechanism operating in the

bulk HEA sample is grain refinement strengthening [Fig. 7(e)],

Figure 7: (a) Compressive stress–strain plot for the spark plasma sintered bulk Al0.1CoCrFeNi HEA and (b–d) secondary SEM images showing the fracture surface of
the bulk Al0.1CoCrFeNi HEA samples after compression test. (e) Plot showing the experimental and theoretical strength of the bulk Al0.1CoCrFeNi HEA including the
contributions from the various strengthening mechanisms.
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which is attributed to the MA process. Such grain refinement

strengthening is absent in the cast materials, excepting thermo-

mechanical treatments are carried out after fabrication.

Even though the strength of the bulk Al0.1CoCrFeNi HEA

is improved significantly by MA and subsequent SPS, the frac-

ture strain of the materials is decreased drastically to ∼10 ± 2%.

This may be attributed to the presence of Cr23C6 (which is

brittle) and is distributed unevenly in the α-fcc matrix.

Summary
Processing of bulk Al0.1CoCrFeNi HEA through powder metal-

lurgy route (MA combined with SPS) was studied in detail. The

following summary may be drawn.

(1) MA of the Al0.1CoCrFeNi elemental powders for 8 h has

resulted in a two-phased microstructure: α-fcc and β-bcc

phases.

(2) The consolidation of the powders via SPS has led to a

phase transformation, where the metastable β-bcc phase

transforms into a stable α-fcc phase. In addition, brittle

Cr23C6 is present in the α-fcc matrix.

(3) The hardness of the bulk Al0.1CoCrFeNi HEAwas found to

be 370 ± 50 HV0.5. CYS of 1420 MPa and compressive

ultimate strength of 1600 MPa were observed along with a

plastic strain of ∼10%. The strength is significantly higher

than the as-cast counterpart; however, the plastic strain is

drastically reduced due to the presence of brittle Cr23C6.

Such high strength is attributed predominantly to the

strengthening of the material by grain refinement, which is

obtained through the MA process.

Materials and Methods
Material synthesis

40 g of pure (99.9%) Al, Co, Cr, Fe, and Ni metal powders were

taken with the molar ratio of 0.1:1:1:1:1. The particle size of the

elemental powders was measured using Analysette 22

COMPACT device (Fraunhofer approximation) from Fritsch

GmbH, Idar-Oberstein, Germany. The powder mixer was

mechanically alloyed using a high-energy planetary mill

(RETSCH Emax, Haan, Germany). WC-Co balls with an aver-

age diameter of 5 mm were used. The ball to powder ratio was

kept as 5:1, and the MA was carried out at 1500 rpm for 8 h.

The vials were made of WC. To study the alloying behavior,

the powders were sampled at regular intervals (2, 4, 6, and

8 h). To prevent the metal powders from bonding together

and to avoid the sharp temperature rise during MA, isopropa-

nol has been used as the process control agent. The powders

after 8 h of MA were used for the consolidation process.

Figure 8: Schematic illustration showing
the SPS setup.
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The schematic of powder consolidation/sintering by the

SPS process is given in Fig. 8. Graphite die/punch setup with

20 mm diameter, shielded with graphite sheet was filled with

mechanically alloyed Al0.1CoCrFeNi HEA. Then, the packed

powders were sintered using SPS (HPD 10-GB from FCT

Systeme GmbH, Frankenblick, Germany). The temperature

used for sintering was 1000 °C with an applied pressure of

50 MPa for 5 min. The required temperature for sintering

was achieved at a heating rate of 100 °C/min. The entire SPS

operation was carried out under argon atmosphere inside a

glove box. Finally, the surface of the bulk Al0.1CoCrFeNi

HEA sample after sintering was machined to remove any pos-

sible contamination (like carbon) on the surface of the material.

Characterization and testing

The bulk Al0.1CoCrFeNi HEA was polished as per the ASTM E3

standard for further characterization. Structural characterization

of the powder and the bulk samples were carried out using the

X-ray diffractometer from Rigaku, Neu-Isenburg, Germany

(UltimaIII). X-ray diffractometer operated with Cu Kα radiation

(with X-ray wavelength:1.5406 Å) was used to scan the samples

between 30° and 90° with a step size of 0.05°. The microstruc-

ture of the powders and bulk sample was recorded using

a Zeiss field emission gun scanning electron microscope

(FEG-SEM). The EBSD analysis and energy-dispersive X-ray

spectroscopy (EDS) analysis were done to evaluate the micro-

texture and chemical composition analysis using Quanta-3D

FEG-SEM equipped with a TSL-OIM EBSD unit. Bright-field

images and the SAED patterns were recorded using TEM

from Tecnai G2 F20, FEI, Boon, Germany. The density of the

bulk HEA samples was evaluated using the Archimedes princi-

ple. The Vickers microhardness measurements were carried out

according to the ASTM E384 standard, using the MICRO MET

2001 device (Buehler GmbH, Braunswick, Germany) with a

load of 500 g and a dwell time of 10 s. The compression test

samples of dimensions: 3.5 mm diameter and 7 mm height

(H/D ratio = 1.5) were extracted from the bulk SPS sample as

per the ASTM E9 standard. The compression test was carried

out with a strain rate of 10−3/s using the INSTRON 5569

machine, Darmstadt, Germany.
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