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Recently, significant progress in the field of grain boundary segregation was achieved, for
example, in better understanding and modeling the stabilization of nanocrystalline structures by
grain boundary segregation, searching for more advanced approaches to theoretical calculation of
segregation energies and development of the complexion approach. Nevertheless, with each
progress, new important questions appear which need to be solved. Here, we focus on two basic
questions appearing recently: How can be the experimental results on the grain boundary
segregation compared reliably to their theoretical counterparts? Is the preferred segregation site of
a solute in the grain boundary core substitutional or interstitial? We also show that the entropy of
grain boundary segregation is a very important quantity which cannot be neglected in
thermodynamic considerations as it plays a crucial role, for example, in prediction of thermody-
namic characteristics of grain boundary segregation and in the preference of the segregation site at
the boundary.

I. INTRODUCTION

The phenomenon “grain boundary segregation” is
known for decades. Although the first indirect evidence
of the effect of changed composition of grain boundaries
of copper on interfacial cohesion has been reported
already in 19th century,1 probably the first direct refer-
ence in the literature comes from 1950s when Stewart
et al.2 showed by autoradiography that polonium (i.e.,
radioactive isotope 210Bi) enriches grain boundaries in
lead. After the starting period of indirect detection,
extended studies of grain boundary segregation have
been facilitated by the development of surface analytical
techniques such as Auger electron spectroscopy (AES),
X-ray photoelectron spectroscopy (XPS or ESCA—
electron spectroscopy for chemical analysis), etc.3 In this
respect, the publication of Kalderon explaining the
reasons for catastrophic damage of the rotor in the
Hinkley Point power station in 1968 represents the very
first application of AES in the field of grain boundary
segregation.4 Since that time, numerous studies of grain
boundary segregation of various solutes in different
host metals were published. Somewhat later, molecular
dynamics (MD)5 and tight binding (TB)6 calculations of
the energy of grain boundary segregation have been

started. Besides them, various other approaches to theo-
retical calculations have been later developed, mainly
Monte Carlo and density functional theory (DFT) as
summarized in the recent review.7

During those more than 70 years of real and intensive
study of the grain boundary segregation, extensive
understanding of this phenomenon was achieved. The
development of this field can be documented, e.g., by
establishment of its thermodynamics and kinetics,
development of models for description of chemical
composition of the interfaces in real multicomponent
systems, models of nonequilibrium segregation joined
mainly with material irradiation or deformation, and the
relationship of the segregation with metallurgical prob-
lems such as intergranular embrittlement and grain
boundary engineering (GBE).8 In the following, we will
present recent trends and achievements and discuss some
open questions appearing during the development of the
field.

II. RECENT TRENDS IN STUDYING GRAIN
BOUNDARY SEGREGATION

The recent studies of grain boundary segregation have
been focused on the following tasks: (i) stabilization of
grain size (i.e., nanocrystalline structures) by grain
boundary segregation; (ii) relationship between grain
boundary segregation and changes of intercrystalline
cohesion; (iii) GBE; and (iv) nonequilibrium segregation.
Extensive attention has also been paid to (v) development
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of new techniques to experimental studies of grain
boundary segregation; (vi) theoretical calculations of
the segregation energy including development of new
procedures of these calculations; and (vii) studies of grain
boundary segregation in nonmetallic systems. Besides,
(viii) new models of grain boundary segregation have
been proposed including considerations of the segrega-
tion site in the grain boundary core; and (ix) development
of the concept of grain boundary complexions which also
shows the importance of the segregation entropy as
a decisive parameter describing this phenomenon. During
the last 5 years, more than 500 papers related to these
9 basic trends were published according to the Scopus
database, which documents that the interest in the field of
grain boundary segregation is permanently stable and
large. Let us briefly summarize the recent effort in the
individual issues listed above.

Stabilization of grain boundaries by grain boundary
segregation has been frequently studied with extended
interest as the importance of nanocrystalline materials is
growing similarly as the requirements on their stability at
enhanced temperatures. Solute segregation is one of the
main stabilizing features and has been investigated from
various viewpoints and model formulations.9–14 In this
respect, the effect of entropy is also often considered as
its importance increases with increasing temperature.15

The present task is to find the rules for stabilizing effects
and selection of suitable systems in which the nano-
crystalline structure remains unchanged. In this respect,
positive enthalpy of mixing plays the crucial role.9–11 The
effect of the grain boundary segregation on the stabiliza-
tion of nanocrystalline structures consists in complex link
of reduced grain boundary energy, boundary migration
kinetics, and mobility13 which is often anisotropic: in
such case, growth of few grains is thus possible on
account of the otherwise stabilized nanostructure.16 This
is inevitable, however, as few but large grains may appear
in the materials similarly to the abnormal grain growth.
Typical hosts for the study of the grain size stabilization
are nickel,14,15,17 tungsten,18 and iron.14 Great attention is
also paid to immiscible nanocrystalline alloys.19 Indeed,
the solute segregation is not the single stabilizing effect
of the nanostructure: Another one is the drag of the
boundary migration caused by presence of precipitates
(e.g., Zener drag). However, the necessary condition for
formation of the precipitates at the grain boundaries is
preceding solute segregation at those regions.20

Another consequence of grain boundary segregation is
segregation-induced change of intergranular cohesion.
This subject is mainly studied on technologically impor-
tant and/or prospective materials as nickel,7,21–23 tung-
sten,24,25 iron,7,26–28 aluminum,29–31 magnesium,32

vanadium,33 niobium,34 and NiAl.35 The quantitative
data on this relationship were recently summarized and
critically discussed in review papers.7,36,37 For example,

the dependence of the strengthening/embrittling energy
(for definition, see Eq. (6) in Part III) on the difference of
the sublimation enthalpies of host iron and solute
elements is shown in Fig. 1.7 The anisotropic effect of
fracture propagation in S-doped nickel confirmed that the
crack tends to propagate along general grain boundaries
while low-angle, special and twin grain boundaries are
more resistant against the fracture damage.22 From the
viewpoint of the atomic size, it seems that the character-
istic strengthening/embrittling energy is closely related to
the ratio of atomic radii of the host and segregated atoms:
the segregated atoms with larger radii than the host atom
usually act as embrittlers and those with smaller radii act
as cohesion enhancers.24 Another approach shows that
the decisive role in the segregation-induced changes of
the cohesion consists in the tendency of individual
solutes to bond breaking.25,34,37 However, the strength-
ening/embrittling energy is defined as a difference of the
segregation energies at the grain boundaries and at the
free surface (for their definition, see Eq. (5) in Sec. III),
and the surface segregation also plays an important role
in changes of the cohesion.26

FIG. 1. Dependence of the strengthening/embrittling energy, DESE,I,
and/or the Gibbs energy, DGSE,I, on the difference of sublimation
energies of a-iron and respective solute. Blue triangles represent
experimental data of DGSE,I at differently oriented grain boundaries.
Symbols connected by vertical lines show limiting values of individual
data. The red circles and green squares are the values calculated by
DFT methods and by other theoretical approaches, respectively; the
symbols of the same type correspond to the same source. Reprinted
with permission from Ref. 7. Copyright 2017 Elsevier.
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Despite the description of the solute segregation at
interfaces seems to be well elaborated,8 new models of
grain boundary segregation emphasizing the role of
entropy have been further developed which shed more
light to individual dependences or refine the existing
models. A new method was proposed to estimate
energetic quantities of the grain boundary segregation
on the basis of diffusion measurements in binary systems
with limited solid solubility. Besides determining the
grain boundary diffusivity, this method allows us to
evaluate the characteristic parameters of the grain bound-
ary segregation.38 Kaptay39 extended the Butler equation
to model equilibrium energy and composition of grain
boundaries in polycrystals. Based on the Cahn–Hilliard
equation, a phenomenological model was proposed
which describes different types of distribution of dis-
solved components as, e.g., depletion and/or enrichment
of the grain boundary, and competitive precipitation in
the bulk and at the grain boundary.40 Additionally,
a qualitative model has also been proposed to explain
the contradiction between theoretical calculations of
preferentially substitutional segregation of phosphorus
at the grain boundaries of iron at 0 K and experimental
indications of its interstitial segregation: This model is
based on consideration of temperature dependence of the
Gibbs energy of segregation for both positions in the
grain boundary core and suggests the existence of
a transition of the segregation site in the grain boundary
core.41 The importance of entropy in quantitative ther-
modynamic considerations has also been emphasized in
the prediction of the grain boundary segregation42 (and
also in classification of grain boundaries on the basis of
their chemical composition43). Practical importance of
the entropy in the grain boundary segregation was
documented on above-mentioned stabilization of the
nanocrystalline structure in multicomponent nickel-
based alloys containing particles of high-entropy alloys.15

Both the grain size stabilization and the relationship
between the grain boundary segregation and changes of
the intergranular cohesion can be successfully applied in
the concept of the GBE. In this respect, a new specific
branch—grain boundary segregation engineering—has
been proposed.44–46 According to this concept, solute
segregation is utilized to manipulate specific grain bound-
ary structures, compositions, and properties to enable
optimum material behavior.45 This effect is documented
for example by Mn containing maraging steel in which
ductile and tough martensite is produced.44,46

Further progress has also been made in the concept of
grain boundary complexions during last five years.
Present knowledge on grain boundary complexions was
thoroughly summarized with respect to their categoriza-
tion and transitions.47,48 In this respect, bilayer grain
boundary complexions and their faceting were observed
and described in Cu–Bi alloys.49 These bilayers were

found to be the main cause for significantly enhanced
liquid metal embrittlement and corrosion.21 Stable grain
boundary complexions are also formed in polycrystalline
alumina when the boundaries are enriched by yttrium,
lanthanum, and/or magnesium. The values of the segre-
gation energy at selected grain boundaries by the force
field-based energy minimization method suggest that
there is a critical solute concentration (3–4 atoms/nm2)
for achieving the monolayer grain boundary complexion
with the lowest mobility. Twin grain boundaries were
found to be more favorable than general high angle grain
boundaries to form monolayer complexions necessary for
limiting grain growth.50

Recent effort in the field of nonequilibrium grain
boundary segregation has been focused on the establish-
ment of a unified mechanism of nonequilibrium segrega-
tion and segregation-induced embrittlement. This
mechanism based on thermally induced and/or stress-
induced nonequilibrium grain boundary segregation
describes three types of intergranular embrittlement—
reverse temper embrittlement of steels, intergranular
corrosion embrittlement of stainless steels, and interme-
diate temperature embrittlement of metals and alloys.51

These problems represent a consequence of an interim
substantial increase of the grain boundary concentration
of a harmful solute before it approaches an equilibrium
value. For example, this mechanism is responsible for the
embrittlement of Bi-doped nickel52 and for loss of hot
ductility of various stainless steels.53 To overcome the
problems of embrittling the steels, it was suggested to
avoid slow cooling of the material from the aging
temperature or keeping it at intermediate temperatures.54

However, the grain boundary segregation is not limited
to metals and alloys which represent the earliest studied
materials in many respects. Besides them, other materials
have recently been studied in relationship to grain
boundary segregation. In this connection, main attention
has been paid to oxides like ZrO2,

55–60 TiO2,
61–63

CeO2,
55,64 UO2,

65 and ZnO66; as well as to silicon,67

ferrites,68–70 perovskites,71 spinels,72 and multiferroics.73

A phenomenological model was proposed to explain the
origin of grain boundary complexions and the first-order
complexion transitions which may occur in CuO-doped
TiO2 bicrystals.61 In these materials, the effect of
segregation on their electric and magnetic properties
have been frequently studied.64,66–69,71,73,74 Hydrother-
mal stability, mechanical stability, and translucency
were studied in materials for dental applications such as
3Y-TZP ceramics.57 Considerable attention has been paid
to the site of the segregant in the grain boundary core,
i.e., which atom is substituted there.60,61,65,71 It was also
found that energetically stable configurations of the
segregants vary in dependence on their ionic radii.56,58

Although ZnO with high portion of grain boundaries can
exhibit ferromagnetism itself, doping with “magnetic
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atoms” such as manganese, cobalt, iron, or nickel, and
their segregation facilitates its appearance.66

For the study of the grain boundary segregation and
mainly its fine features, a feasible experimental tool is
required. Therefore, further development of methodology
and top instrumental equipment—high-resolution elec-
tron microscopy (HRTEM) and 3D atom probe tomog-
raphy (3D APT)—has been reported recently. At present,
the best atomic resolution at the interfaces is reached by
spherical aberration-corrected scanning transmission
electron microscopy (Cs-corrected STEM), which was
applied for the first time in the study of chlorine and
oxygen segregation at the grain boundaries in copper
interconnects.75 Aberration-corrected high-angle annular
dark-field imaging in transmission electron microscopy
was used to distinguish fine details of distribution of Hf
atoms in the grain boundary core of Al2O3: it was proved
that apparent multiple layer segregation is, in fact, single-
layer segregation on the faceted grain boundary.76 Solute
segregation to inversion domain boundaries in ZnO was
used as an example of the best procedure of trans-
formation of obtained nanobeam-mode spectra to quan-
tify the areal density of atoms contained within a very
thin layer of a matrix material with a precision better than
1 atom/nm2 in all these cases.77 In contrast to HRTEM
which provides us with site resolution of segregants at the
grain boundary, 3D APT displays the distribution of the
segregants in a relatively large volume (i.e., volume of
the order of 103 cubic nanometers) inside the material
albeit not identifying the site in the grain boundary core.78

Therefore, it is a very important tool in studies of the grain
boundary segregation mainly in nanocrystalline materials
as done, for example, in the cases of characterization of the
A15 phase in a bronze-route Nb3Sn superconducting wire
with a Cu–Sn(Ti) bronze matrix,79 of analysis of solute
redistribution in pearlitic steel,80 and of distribution of
boron and alloying elements at prior austenite grain
boundaries in a quenched martensitic steel.81 A simplified
nondestructive 3D electron backscatter diffraction (EBSD)
methodology was proposed which enables us to measure
all five degrees of freedom of grain boundaries combined
with segregation analysis using 3D APT. The approach is
based on two 2D EBSD measurements on orthogonal
surfaces at a sharp edge of the specimen followed by the
analysis of the grain boundary composition using 3D
APT.82,83 Nevertheless, a more precise procedure for the
preparation of the desired specimen to study grain bound-
aries in refractory metals with a dual focused ion beam/
scanning electron microscope is still required.81

Last but not least, theoretical calculations of the
segregation energy have been intensively performed
during the period of 2013–2017, too. The systems
representing both the technologically applied materials
and materials with application potential in the near future
have been studied. As expected, the main host element

for these studies is a-iron,84–91 followed by nickel92–97

and aluminum.98–102 Frequently, the systems based on
tungsten24,25,103–107 and molybdenum103,104,108,109 have
also been studied. BaZrO3 represents the nonmetallic
system of increasing interest in connection with impurity
and solute segregation.110–115 In vast majority of these
cases, the DFT procedures have been applied. Some of
the above studies were performed according to the pattern
coined by Všianská and Šob.116 The qualitative progress
in the development of the procedures for calculations of
the segregation energy was done when the quantum
mechanics (QM)-based methods were combined with
molecular mechanical ones to enlarge the computational
repeat cell by several orders of magnitude.102 This
approach enabled us to calculate the energetic character-
istics of general grain boundaries having low symmetry
which cannot be obtained with help of classical DFT
methods. It was proven quantitatively that sulfur segre-
gates interstitially at R5 (210) grain boundary of a-iron.
However, presence of chromium prevents its segrega-
tion.86 While both sulfur and chromium segregate at
different sites in the grain boundary core, this is a flagrant
example of repulsive interaction during solute segregation
in a multicomponent system. Despite it is known that
substitutional alloying elements significantly affect the
processes running in steels such as recrystallization and
austenite-ferrite phase transformation, mechanisms of their
interaction with the interfaces remain unexplored. DFT
calculations of segregation of niobium, molybdenum, and
titanium at grain boundaries in iron suggest the co-
segregation of these solutes at intermediate distances.87

A new approach was proposed to design Ni-based poly-
crystalline superalloys: This approach is based on the idea
that the creep-rupture characteristics of a superalloy are
mostly determined by the strength of interatomic bonding
at grain boundaries and in the bulk of the c matrix. From
this point of view, Zr, Hf, Nb, Ta, and B are proposed as
the most promising low-alloying additions.93 The calcu-
lated strengthening/embrittling energies of numerous sol-
utes at nearly R3 (111) [110] tilt symmetric grain
boundary in tungsten suggest that solutes with larger atom
radius than tungsten, i.e., Sr, Th, In, Cd, Ag, Sc, Au, Ti,
and Zn, embrittle tungsten while those with smaller atom
radius—Cu, Cr, and Mn—can be considered as cohesion
enhancers.24 Besides them, boron, carbon, and beryllium
were identified as potential alloying additions for an
increased intergranular cohesion in tungsten and molyb-
denum. Similar to previously studied solute segregation at
grain boundaries of nickel host,116 calculations of the grain
boundary and surface segregation energies in cobalt
suggested that interstitially segregated Si should be the
cohesion enhancer of the R5 (210) grain boundary while
interstitially segregated S, Ge, As, and Se, and substitu-
tionally segregated Ga, In, Sn, Sb, and Te are grain
boundary embrittlers; interstitially segregated P and
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substitutionally segregated Al have a very small effect on
the grain boundary cohesion (Fig. 2).97 Unfortunately,
a very important characteristic of the grain boundary
segregation—segregation entropy—has not been calcu-
lated despite its importance was unambiguously
proved.8,41,42 It is also interesting that some solutes were
found to change their site in the grain boundary core from
substitutional to interstitial upon segregation.104

III. OPEN QUESTIONS IN GRAIN BOUNDARY
SEGREGATION

Substantial progress in understanding the grain
boundary segregation, in development of the

experimental techniques enabling its study and mainly
in calculation of the segregation energies has been
done during the last five years. However, with this
achievement, new questions have been opened which
need to be addressed. Examples of such questions are
as follows: Why there is an extreme disagreement in
the values of the segregation energies for some solutes
while there is quite a good agreement for others in the
same host metal? What is the segregation site of
individual solutes in the grain boundary core (mainly
for metalloids in transition metals)? What is the role of
the entropy in grain boundary segregation? Here, we
will touch these questions and formulate some con-
clusions and consequences.

FIG. 2. Strengthening/embrittling energy, DESE, at the R5 (210) GB in fcc Co (a) and Ni (b). Reprinted with permission from Ref. 97. Copyright
2017 IOP Publishing.
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A. Comparison of theoretical energies of grain
boundary segregation with experimental values of
segregation enthalpy

The majority of the experimental data are correlated
according to the Langmuir–McLean segregation iso-
therm. This type of description deals with characteristic
thermodynamic quantity of the grain boundary segrega-
tion, the molar Gibbs energy of segregation, DGI. In
general, this isotherm can be written as8

XGB
I

X0 � XGB
I

¼ XI

1� XI

exp �DGI

RT

� �
; ð1Þ

where XGB
I and XI are the grain boundary and bulk

concentrations of the solute I in a binary M–I solid
solution, X0 is the saturation level of the grain boundary
segregation, R is the universal gas constant, and T is the
temperature. DGI is composed of two terms, the standard
(ideal) molar Gibbs energy of segregation, DG0

I , and the
excess molar Gibbs energy of segregation, DGE

I ,

DGI ¼ DG0
I þ DGE

I : ð2Þ

Let us note that the standard state is chosen as the
unperturbed bulk pure substance (i.e., element and—in
the case of the host—also chemical compound, interme-
tallic compound, etc.) at the temperature T at which
the segregation is studied, and under normal pressure
in the structure of the host material, M. The other term on

the right-hand side of Eq. (2), DGE
I ¼ RT ln

cGB
I

cM
cIc

GB
M

, is

a combination of the corresponding activity coefficients,
cni , reflecting the difference between ideal and real
behavior, ani ¼ cni X

n
i , where ani are the activities (i.e.,

generalized concentrations) of i in the state n.8 As their
values are hardly measurable, DGE

I is usually evaluated
according to a suitable model. The Fowler approach is
frequently used to approximate the effect of activity
coefficients in binary systems, using a coefficient of
binary interaction of I–I in M, aI(M),

DGE
I ¼ �2aI Mð Þ XGB

I � XI

� �
: ð3Þ

The molar Gibbs energy of segregation, DGI, controls
the grain boundary composition in binary M–I solid
solution at temperature, T, and volume solute concentra-
tion, XI. Unfortunately, it depends on XI, and in a non-
trivial way on T because of temperature dependence of
XGB
I and thus, it can hardly be extrapolated.
As the Gibbs energy, G, is composed of two terms,

enthalpy, H, and entropy, S,8,117

G ¼ H � TS ; ð4Þ

and—as was shown recently8,117—DH0
I and DS0I are

independent of temperature, therefore, according to

Eq. (4), DG0
I is a linear function of temperature. Accord-

ing to the choice of the standard state, DG0
I is indepen-

dent of XI and therefore it can be well extrapolated.
However, it describes XGB

I only if DGE
I ¼ 0, i.e., in an

ideal or infinitesimally diluted system.8,117

The characteristic quantity used in theoretical
approaches to the grain boundary segregation is the
Helmholtz energy of segregation, DFI. This energy
represents the difference between the energy of the
system with the solute atom located at the grain boundary
and the system with the same atom located in the bulk.
However, the calculations of the interfacial segregation
are frequently performed at 0 K (MS, DFT) and thus,
only the internal energy of segregation, DEU

I , is
determined,

DEU
I ¼ EU

I � Eb
I ; ð5Þ

where EU
I is the energy of the computational repeat cell

with the atom I located at the interface (U 5 GB for the
grain boundary or FS for the free surface), and Eb

I is
the energy of the same cell with the atom I located in the
bulk. It is apparent from the definition that DEI reflects
the real state of the grain boundary segregation. However,
the recent analysis7 showed that with a reasonable pre-
cision, DH0

I and DEI can be well compared as their
difference, DH0

I � DEI ¼ PdVE
I , is negligible at normal

pressure.42

A recently published comparison of the values of the
theoretically calculated segregation energy, DEI, and
experimental values of the standard segregation enthalpy,
DH0

I , showed that there exists an extreme disagreement
between them for some solutes in iron and nickel,
whereas some solutes exhibit very good agreement.7,118

The plot of these values characterizing the grain bound-
ary segregation against the solid solubility of the partic-
ular solute I, X�

I , in a-iron (represented by the Gibbs
energy of solution, DGsol

I ¼ RT lnX�
I ) showed two dis-

tinct areas—one of a very good agreement for well
soluble solutes (X�

I > 0:01) while the other one exhibit-
ing substantial disagreement for less soluble solutes
(X�

I , 0:01), see Fig. 3.
The level of the limiting concentration, X�

I � 0:01,
coincides obviously with the “concentration” of a single
atom in the computational repeat cell: In DFT calcula-
tions, the number of atoms in the computational supercell
is usually close to 100 so that XI � 0.01. If the solid
solubility of the solute is lower than this concentration
limit, the configuration of the system with the solute atom
placed in the bulk is nonequilibrium one and, conse-
quently, the segregation energy, DEI, involving Eb

I is also
nonequilibrium one, i.e., it has no physical meaning. Of
course, it is hard to compare a block with a single atom in
a cell containing 100 atoms with the system containing
say billions of atoms where the concentration has a real
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meaning. On the other hand, the computational supercell
may represent the system quite well, and it is supposed
that it is periodically repeated in the space so that we can
imagine that a system can be formed by a solute creating,
e.g., a “nanowire” through the lattice. If we consider only
a single atom in the cell, we cannot in principle account
for any interaction between two solute atoms, i.e., an
important contribution to the energy of the bulk and

consequently segregation energy is completely omitted.
The objections that the computation converges to a single
value do not explain this problem as it can converge to
a local minimum which can be far from the correct
energy of the bulk system, Eb

I . However, despite the fact
that some characteristics of interfacial segregation calcu-
lated for low-solubility segregants are unreliable due to
physically meaningless values of Eb

I in Eq. (5), we can
reliably determine the strengthening/embrittling energy,
DESE,I, which refers on the effect of the segregant to the
changes of the intergranular cohesion, as this incorrectly
determined term is removed,

DESE;I ¼ DEGB
I � DEFS

I ¼ EGB
I � Eb

I

� �� EFS
I � Eb

I

� �
¼ EGB

I � EFS
I :

ð6Þ
Nevertheless, the discussion about the reliability of the

segregation energy is still open and needs proofs, tests,
and final answering.

B. Solute site in the grain boundary core:
interstitial or substitutional?

One of the examples of a solute exhibiting large scatter
of the data shown in Fig. 3(a) is phosphorus. However,
the solid solubility of phosphorus in the volume of a-iron
is rather close to the limit value of X�

I � 0:01. One of the
sources of surprisingly large scatter among the theoretical
values of DEI for a single grain boundary is the
considered site of the segregated atom in the grain
boundary core. Phosphorus is a substitutional solute in
bulk a-iron and frequently, it is a priori accepted as the
substitutional segregant.119–121 Despite that, it is also
sometimes a priori considered as the interstitial segre-
gant.5,122,123 In some theoretical papers, the calculated
values of DEP for both interstitial and substitutional sites
are compared to show the site preference (lower segre-
gation or binding energy indicates the preference of the
site). Yamaguchi’s calculations provide a quantitative evi-
dence for the preference of substitutional segregation in the
second boundary layer (as read from the figures, DEP ffi
�80 kJ/mol for interstitial and DEP ffi �110 kJ/mol for
substitutional segregation at R3{111} grain boundary
of a-iron)124 although—compared to the reported accu-
racy of 610 kJ/mol of the determination of DEP, see Ref.
125—this difference is rather small. Rajagopalan et al.126

report stable substitutional segregation position either in
the 2nd or in the 3rd layer at numerous grain boundaries.
Nearly the same values of DEP for substitutional segre-
gation in the 2nd layer and for interstitial segregation at
the R3{111} grain boundary of a-iron is reported by Ko
et al.127 although they claim that substitutional segrega-
tion is preferred. On the other hand, interstitial segrega-
tion is preferred elsewhere. Braithwaite and Rez128 refer

FIG. 3. Plot of the segregation energy and/or enthalpy of grain
boundary segregation, DEI and DH0

I , versus the Gibbs energy of
solution, DGsol

I ¼ RT lnX�
I (i.e., solid solubility, X�

I ), in a-Fe.
(a) Complete dependence; (b) detail for solutes with high solid
solubility (X�

I > 0:01). Solid triangles: experimental data (AES, FIM,
3D APT); empty triangles and/or dashed lines: (experimental) prediction
[in (a), it is prediction for solute segregation at general (upper line) and
special (bottom line) grain boundaries]; dotted lines in (b): extent of the
error of the values determined experimentally; solid circles: DFT values;
solid squares: other theoretical values (MS, TB). Reprinted with
permission from Ref. 7. Copyright 2017 Elsevier.
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the interstitial position to be more stable at the R5{210}
grain boundary than the substitution position in the 2nd
layer; however, for calculations of the exchange and
correlation energy, they applied the local density approx-
imation which does not describe the energetics of iron
correctly. Wachowicz and Kiejna129 report distinctly
different values of DEP for substitutional and interstitial
segregation at R3{111} grain boundary (about �15 kJ/mol
and about �310 kJ/mol, respectively) as well as for R5
{210} grain boundary (about �80 kJ/mol and about
�405 kJ/mol, respectively). However, the values given
for the interstitial segregation are too low (i.e., too large
in absolute value) to describe the segregation correctly.7

Our own preliminary calculations130 show that the in-
terstitial position is stable at the R5{210} grain boundary
while the substitutional position is unstable. We also
compared energetics of phosphorus segregation in the
substitutional position in the 2nd layer and in the
interstitial position directly at the R3{111} grain bound-
ary. In comparison with Yamaguchi,124 we used a more
precise setting for our calculations. Contrary to Yama-
guchi,124 we obtained nearly the same energetic values
for both positions with a slight preference for the
interstitial position at the grain boundary.

On the other hand, indirect experimental evidence
based on the enthalpy–entropy compensation effect
suggests interstitial segregation of phosphorus.41,117 In
its integral form, the enthalpy–entropy compensation
effect for grain boundary segregation (which is also
reported in more detail in Sec. III.C) is represented by
a linear dependence between the standard enthalpy, DH0

I ,
and standard entropy, DS0I , of grain boundary
segregation,8,117

DS0I ¼
DH0

I

TCE
þ DS0 ; ð7Þ

where DS9 is the integration constant. In the case of the
grain boundary segregation in a-iron, expression (7) is
well fulfilled by various solutes (Fig. 4). It is apparent
from Fig. 4 that this dependence splits into two branches,
the upper one for interstitial segregants and the lower one
for substitutional solutes. Accordingly, phosphorus, tin,
antimony, and probably also other metalloids may be
supposed to segregate interstitially at the grain bound-
aries of a-iron. Let us note that not only the experimental
results but also theoretical values of Ko et al.131 on
temperature dependence of the grain boundary concen-
trations at three different grain boundaries calculated by
the MC approach using a modified embedded-atom
method which provide us with the values of the segre-
gation enthalpy and entropy, fit with the interstitial
branch in Fig. 4.

It is apparent from the above survey that the position of
the segregated phosphorus at the grain boundaries of

a-iron is not clearly determined at all. Some theoretical
results show qualitative agreement with experimental
deductions; however, quantitatively, there is a large
discrepancy. The other theoretical values contradict with
the experiment, although according to Yamaguchi,124 the
difference between the substitutional and interstitial
position should be small.

C. Role of entropy in grain boundary segregation

It is apparent from Part B that the entropy is an
important thermodynamic variable also in grain boundary
segregation. Unfortunately, this parameter is not used
regularly in the segregation considerations; better say, it
is frequently (or nearly always) neglected. Probably, it is
the consequence of the fact that the procedure of its
theoretical calculation is complicated or has not been
elaborated yet and that it represents an additional variable
for evaluation of experimental data.

We did already see that the entropy plays an important
role in explanation of the site preference in the grain
boundary segregation. This example as well as other
confirmations result from the existence of the enthalpy–
entropy compensation effect.8,42,117 In fact, Eq. (7) is
only an integral form which seems to suggest that entropy
and enthalpy are mutually dependent. However, it is not
so—the enthalpy–entropy compensation effect says that
the changes of enthalpy caused by a changed intensive
parameter (here the grain boundary structure, W) are
compensated by the changes of the entropy caused by the
same change of that parameter,8,117

FIG. 4. Integral form of the enthalpy–entropy compensation effect
for grain boundary segregation in a-iron. Full symbols: segregation
of C (squares), P (triangles), and Si (circles) at individual grain
boundaries. Other symbols are literature data for solute segregation in
polycrystalline a-Fe.41,117 Theoretical values according to Ko
et al.131 are the half-solid triangles at the right-hand side of the
figure just under the interstitial branch (denoted by nearly horizontal
arrow for P). Reprinted with permission from Ref. 41. Copyright
2016 IOP Publishing.
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TCE ¼
@DH0

I
Wð Þ

@W

� �
T;P

@DS0
I
Wið Þ

@W

� �
T;P

: ð8Þ

In fact, the TCE represents the reciprocal value of the
slope of the enthalpy–entropy compensation effect shown
in Fig. 4. The value of TCE for ferritic iron is 900 K and is
identical for both branches of this dependence, i.e., for
substitutional as well as interstitial segregants.41,117 Un-
fortunately, this is the only host for which the value of
TCE was determined till now as there is no sufficient
information on the values of the segregation entropy for
solutes in other hosts.

The direct consequence of Eq. (8) combined with
Eq. (4) is that at compensation temperature,
TCE, dDG0

I ¼ 0, i.e., DG0
I 6¼ f Wð Þ. This means that at

TCE, all grain boundaries in a polycrystal possess the
same composition. This also means that the magnitude of
the anisotropy of grain boundary composition observed at
low temperatures is reduced if temperature approaches
TCE and disappears at TCE. Above TCE, the anisotropy of
solute segregation is reversed, i.e., general boundaries
which exhibited stronger segregation at lower temper-
atures that special ones, possess lower solute concen-
trations at high temperatures (Fig. 5).43 On its basis, for
example, anomalous structural dependence of silicon
segregation at grain boundaries of a stainless steel (i.e.,
maximum silicon segregation at special {013}, {012},
and {023} grain boundaries) was explained.8,43

The enthalpy–entropy compensation effect is a very
important phenomenon and is of general thermodynamic
validity. It has been observed in many other areas of
material science, chemistry, biology, etc. Examples of
these processes are not only solute segregation at free
surfaces and grain boundaries but also grain boundary
diffusion and migration, dislocation glide, hydrogen
bonding, crystal melting, formation of van der Waals
complexes, solubility, micellization, adsorption, enantio-
mer separation, gas and liquid chromatography, water
sorption, solvation, thermal transitions, solution extrac-
tion, polymer degradation, conformational equilibrium,
ionic hydration, dielectric relaxation, antibiotic dissocia-
tion, enzyme binding, catalysis, thermal death of micro-
organisms, depolymerization of food saccharides,
cucumber tissue softening, nonenzymatic browning of
potato strips, and conductance of transistors.8,117

The above considerations have a very important
consequence—they clearly emphasize the necessity to
consider entropy in the grain boundary segregation albeit
it has been frequently omitted. The segregation entropy
was already shown to be important in the above men-
tioned reversion of the anisotropy of grain boundary
segregation which has serious consequences, e.g., for the
classification of individual high-angle grain bound-
aries8,43 and prediction of grain boundary segrega-
tion.8,41,117,132 In our opinion, it is necessary to find
effective procedures for computing the segregation en-
tropy and determine the missing values: only in this case,
we will be able to deal reasonably with grain boundary
segregation. Let us document it on the classical example
of phosphorus segregation at grain boundaries in ferritic
iron. The data were measured by Erhart and Grabke133

for various bulk concentrations of phosphorus at temper-
atures ranging between 400 and 900 °C. The correlation
of the temperature dependence of phosphorus grain
boundary concentration for the bulk concentrations XP

5 0.0017 provides us with the values of segregation
enthalpy, DH0

P ¼ �36 kJ/mol, and segregation entropy,
DS0P ¼ 22 J/(mol K). (Erhart and Grabke give the values
DH0

I ¼ �34:3 kJ/mol and DS0I ¼ 21:5 J/(mol K) which
were averaged for all bulk concentrations used.) This is
documented in Fig. 6 by red circles and solid red line. If
the segregation entropy is neglected and the correlation of
the experimental data is done only by “effective” segre-
gation enthalpy, DHeff

P ¼ �55 kJ/mol, representing the
“best fit” of the experimental data (blue dashed line in
Fig. 6), we see that this line does not fit the experimental
data properly. This comparison shows that the segrega-
tion entropy cannot be neglected in the case of accurate
considerations. From this point of view, the calculations
of the grain boundary concentration based exclusively on
the use of the segregation energy calculated for 0 K by
DFT methods as it is sometimes presented,90,124,134 are
doubtful and thus unreliable.

FIG. 5. Dependence of atomic fraction of phosphorus at [100] sym-
metric tilt grain boundaries, XGB

P , in an Fe–3.55 at.% Si–0.0089 at.%
P–0.014 at.% C alloy on misorientation angle, h, at various temperatures.
45° [100], {0kl} is the incommensurate symmetrical tilt grain boundary
for which k/l is irrational. Reprinted with permission from Ref. 43.
Copyright 2010 Elsevier.
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Additionally, consideration of the entropy enables us
to shift the understanding of the grain boundary segre-
gation and all connected fields to a higher level as it is
indispensable in explanation of many effects, which have
not been solved yet.

IV. CONCLUSIONS

The progress achieved in the field of the grain
boundary segregation during last five years (2013–
2017) was presented and discussed in this paper.
Fundamental progress has been achieved mainly in
stabilization of nanocrystalline structures by grain
boundary segregation, in the concept of grain boundary
complexions and in GBE where a new branch of grain
boundary segregation engineering was formulated.
Great attention was also paid to the development of
both experimental techniques to study grain boundary
segregation and computational procedures of determi-
nation of the segregation energy. In the latter case, the
combination of the MD and QM seems to be the most
promising tool for overcoming many objections con-
nected with calculations of the segregation energy. The
study of the segregation is not limited to metallic hosts
but has been gradually extending to other materials like
ceramics, multiferroics, semiconductors, oxides, and
silicon. However, every progress opens new questions

which need to be addressed. Here we did touch three
problems: (i) comparison of the theoretical calculations
of the segregation energy and experimental results of the
segregation enthalpy; (ii) site preference of metalloids in
the grain boundary core; and (iii) the role of entropy in
the grain boundary segregation. In these areas, we show
possible reasons of difficulties but we are aware that
they require further effort to reach final explanation. We
demonstrate here that a great attention should be paid to
reliability of the obtained data. A special problem is the
segregation entropy: it can be determined experimen-
tally but theoretical information about it is very rare.
However, it is a very important thermodynamic param-
eter which cannot be omitted in treatments of solute
segregation as many questions cannot be answered
without considering this quantity.
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