The Effect of Glass Composition Containing RE Oxide Waste Glass on Liquidus Temperature

CrossMark

S. Mohd Fadzil^{1,2} and P. Hrma^{1,3}

¹ Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, South Korea

² School of Applied Physics, Faculty of Science and Technology, The National University of Malaysia, 43650 Bandar Baru Bangi, Selangor, Malaysia

³ Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, The United States

ABSTRACT

The liquidus temperature (T_L) of rare earth (RE) was determined for alumino-borosilicate glasses for treating americium and curium that have been studied previously. Their work covers a wide range of glass composition with various crystalline phases as primary phase. Present work is aimed at understanding the effect of glass composition on T_L for waste glasses designed for vitrifying RE oxides wastes. In a sufficiently narrow composition region, this effect can be represented by a first-order model fitted measured T_L versus composition data. Test glasses were formulated by varying of component fractions one-at-a-time. The glasses contained SiO₂, B₂O₃, and Al₂O₃ as glass formers and Nd₂O₃ with CeO₂ as simulated RE waste. Twenty glasses were made to investigate crystallization as a function of temperature and glass composition. The primary crystalline phase was Ce-borosilicate (Ce₃BSi₂O₁₀), secondary phases were Alcontaining crystals (Al₂O₃ and Al₁₀Si₂O₁₉), and crystalline CeO₂. A first-order model was fitted to crystal fraction versus glass composition data. Generally, SiO₂ and B₂O₃ tend to suppress crystallization, Al₂O₃ has little effect, and, as expected, RE components (Nd₂O₃ and CeO₂) promote it. The correlation coefficient, R^2 , was 0.89 for the primary crystalline phase T_L as a linear function of composition.

INTRODUCTION

Rare earth alumino-borosilicate (LABS) glasses have been developed for treating Am and Cm in the Savannah River Site's (SRS) F-Canyon [1,2]. Based on excellent waste loading of these glasses for over 40 mass%, a similar glass composition was adapted to accommodate the lanthanide oxides CeO₂ and Nd₂O₃. These lanthanides were representative for mixed lanthanides waste stream that will be generated from reprocessing of spent nuclear fuel using pyroprocess technology. This technology has been tested in pilot scale study since 2012 in Korean Atomic Energy Research Institute (KAERI) [3]. We formulated and produced 20 glass compositions by modifying the baseline glass composition of 19.73 SiO₂ – 7.97 B₂O₃ – 19.30 Al₂O₃ – 20.24 CeO₂ – 32.76 Nd₂O₃ in mass%. The waste loading ranged from 49.5 to 56.5 mass%. The components varied one at a time while keeping remaining components in equal proportions. A similar approach has been used before to study the component effects on spinel crystals [4]. In this paper, we discussed the effects of composition of these glasses on crystal fractions and the liquidus temperature (*T_L*).

EXPERIMENTAL DETAILS

Twenty glasses were fabricated by mixing boric acid and oxides of silicon, aluminum, and rare earth elements. The batches were mixed in the agate mill and melted in covered Pt/Rh crucibles for 1 hour. The melting temperature ranged from 1325 to 1475°C. The melts were poured on a steel plate and air quenched. The glasses were ground in the tungsten carbide mill and remelted at similar conditions to assure homogeneity. The glass compositions are listed in Table I with both melting temperature (T_m) and waste loading as sum of CeO₂ and Nd₂O₃ content (in mass%).

Glass	SiO ₂	B_2O_3	Al ₂ O ₃	CeO ₂	Nd ₂ O ₃	Sum	T_m (°C)	Waste loading
HS5	24.73	7.47	18.10	18.98	30.72	100	1325	49.7
HS3	22.73	7.67	18.58	19.49	31.53	100	1325	51.0
LS3	16.73	8.26	20.02	21.00	33.98	100	1325	55.0
LS5	14.73	8.46	20.51	21.50	34.80	100	1350	56.3
HB5	18.66	12.97	18.25	19.14	30.98	100	1350	50.1
HB3	19.09	10.97	18.67	19.58	31.69	100	1350	51.3
LB3	20.37	4.97	19.93	20.90	33.82	100	1365	54.7
LB5	20.80	2.97	20.35	21.34	34.53	100	1385	55.9
HA5	18.51	7.47	24.30	18.99	30.73	100	1475	49.7
HA3	19.00	7.67	22.30	19.49	31.54	100	1425	51.0
LA3	20.46	8.26	16.30	21.00	33.98	100	1365	55.0
LA5	20.95	8.46	14.30	21.50	34.79	100	1375	56.3
HC5	18.49	7.47	18.09	25.24	30.70	100	1375	55.9
HC3	18.99	7.67	18.58	23.24	31.53	100	1375	54.8
LC3	20.47	8.27	20.03	17.24	33.99	100	1375	51.2
LC5	20.97	8.47	20.51	15.24	34.81	100	1400	50.1
HN5	18.26	7.37	17.87	18.74	37.76	100	1375	56.5
HN3	18.85	7.61	18.44	19.34	35.76	100	1375	55.1
LN3	20.61	8.32	20.16	21.15	29.76	100	1375	50.9
LN5	21.20	8.56	20.74	21.75	27.76	100	1385	49.5

Table I. Glass compositions in mass%, melting temperature (T_m) , and waste loading (in mass%)

Liquidus temperature was measured following the ASTM C1720-11 procedure, specifically the crystal fraction extrapolation method [5,6]. Selected samples were heat-treated in duplicate for reproducibility. After heat-treatments to various temperatures range of 900-1200°C, portions of air-quenched samples were crushed in the tungsten carbide mill to a fine powder. A known amount of CaF₂ was added to each sample as an internal standard. The samples were analyzed with a Bruker[®] D8 Advance (Bruker AXS Inc., Madison, WI) x-ray diffractometer (XRD) and crystalline phases were identified using the DIFFRAC^{plus} EVA (Bruker AXS) and quantified with whole pattern fitting TOPAS 4.2 (Bruker AXS) software.

RESULTS AND DISCUSSION

The T_L is the maximum temperature at which the primary crystalline phase is at equilibrium with the melt. If a single RE crystalline form exists in equilibrium with a RE-containing molten glass at a certain temperature below T_L , the temperature at which the original glass was equilibrated equals the T_L of the matrix glass. For a reasonably small composition region, we can model the T_L as a linear function of composition using the relationship [1,2,4]

$$T_L = \sum_{i=1}^{N} T_{Li} g_i \tag{1}$$

where T_{Li} is the *i*-th component coefficient, N is the number of components in the model, and g_i is the mass fraction of the *i*-th component. The T_L in Equation 1 is the true T_L only for the primary crystallization phase.

Accordingly, when the crystal fraction, *c*, versus *T* data for which the *T* is sufficiently close to T_L to allow linear fitting, one can represent the *c* versus *T* data set with the relationship $c = \sum_{i=1}^{N} b_i g_i \left(\sum_{i=1}^{N} T_{L_i} g_i - T \right)$, or equivalently $T = \sum_{i=1}^{N} T_{L_i} g_i - c \sum_{i=1}^{N} B_i g_i$. Commonly, several crystalline phases coexist in a glass at equilibrium. Then we can write

$$c_{j} = \sum_{i=1}^{N} b_{ij} g_{i} \left(\sum_{i=1}^{N} T_{L_{ij}} g_{i} - T \right)$$
(2)

where c_j is the *j*-th crystalline phase mass fraction, b_{ij} is the *i*-th component coefficient for the *j*-th crystalline phase, and T_{Lij} is the T_L coefficient for *i*-th component of *j*-th crystalline phase. Similarly,

$$T = \sum_{i=1}^{N} T_{L_{ij}} g_i - c_j \sum_{i=1}^{N} B_{ij} g_i$$
(3)

where B_{ij} is the *i*-th component coefficient for the *j*-th crystalline phase. Note that the *j*-th crystalline phase "liquidus temperature", T_{Lj} , is given by the equation

$$T_{Lj} = \sum_{i=1}^{N} T_{Lij} g_i \tag{4}$$

where T_{Lij} is obtained from Equation 2 and 3 for each crystalline phases. Equation 2 and 3 were fitted to data for which the linear regression allowed obtaining the sets of the T_{Lij} , b_{ij} and B_{ij} coefficients.

Table 2 summarizes the component coefficients (b_{ij} , B_{ij} , c_i and T_{Li}) from applying models to data. Equation 1 was applied for primary crystalline phase to find the true T_L ; the correlation coefficient (R^2) was 0.893. By applying Equation 2 to Ce-borosilicate (Ce₃BSi₂O₁₀) crystalline phase produced R^2 and root mean square error (s) values of 0.869 and 0.98, respectively; while applying Equation 3 produced R^2 and s values of 0.849 and 1.03, respectively. These equations were also applied to other crystalline phases separately. Corundum (Al₂O₃) and mullite (Al₁₀Si₂O₁₉) were combined as Al-containing crystals since only the combined data allowed the first-order models to be fitted rather than the corundum and mullite data treated individually. Fitting Equations 2 and 3 to Al-containing crystals resulted in R^2 values of 0.852 and 0.846, respectively; while produced s values of 0.61 and 0.63, respectively.

With Ce-borosilicate primary phase, the measured T_L values ranged from 1094°C to 1280°C. For LABS-Sr glasses, the T_L values were between 1153 and 1405°C with either RE₃BSi₂O₁₀, Al₂O₃, or $Al_6Si_2O_{13}$ as the primary phases [1,2]. The Ce-borosilicate was the dominant crystalline phase in our LABS glasses. As the T_{Li} coefficients shown in Table 2 as $T_{Li,r}$, $T_{Lij,b}$, and $T_{Lij,B}$ (using three different methods of fitting) indicate, increasing fractions of SiO2 and B2O3 in glass have a decreasing effect of T_L whereas Al₂O₃, CeO₂, and Nd₂O₃ promote crystallization (increase T_L). In the LABS-Sr glasses [2], the T_L decreased as SiO₂ and B₂O₃, and also Al₂O₃, increased, while the RE components had similar effects on T_L as in the LABS glasses under study. In case of Al-containing crystal, the T_L values, which ranged from 1025 to 1398°C, were obtained by extrapolation based on Al-containing crystal fractions. A previous study [2] reported measured T_L of Al-silicate crystals within the range from 1164 to 1255°C and for Al₂O₃ crystals from 1242 to 1305°C. On the other hand, Al-containing crystal model fitting showed better agreement with the data for Equation 2 than Equation 3, as well as for Ce-borosilicate model fitting, given by high R^2 and low s values. As the coefficients indicate for Al-containing crystals, adding SiO₂ and B₂O₃ to glass has a tendency to decrease T_L , an increased Al₂O₃ content has a moderate tendency to increase T_L , and CeO₂ and Nd₂O₃ have a strong tendency to increase T_L . In all glasses, CeO₂ crystals appeared at a nearly constant fraction, indicating that they might form during cooling. The models described previously were applicable to several major phases, but the CeO₂ crystalline phase was an exception. Its content was virtually independent of temperature, but was affected by glass composition. The following equation was used:

$$c_j = \sum_{i=1}^{N} c_{ij} g_i \tag{5}$$

where $j = \text{CeO}_2$. Equation 5 was fitted to 136 data points ($R^2 = 0.77$ and s = 0.33). The coefficient values (shown in Table II) indicate that CeO₂ crystallization decreased with increasing SiO₂ and B₂O₃ fractions and, as expected, increased with increasing CeO₂ fraction, whereas Al₂O₃ and Nd₂O₃ fractions had a moderate effect.

CONCLUSION

First-order models were fitted to the experimental dataset to obtain the fractions of individual crystalline phases as functions of temperature and glass composition (mass fractions of oxides), determining the T_L as the maximum temperature at which the crystal fraction was zero at equilibrium. Generally, the T_L increased as SiO₂ and B₂O₃ fraction decreased and CeO₂, Nd₂O₃, and Al₂O₃ increased. These components had a similar effect on the crystallization of CeO₂, which, however, was not affected by temperature and is suspected to precipitate during glass quenching. The models treat the coexisting major crystalline phases individually (except Alcontaining phases, whose fractions were summed up), ignoring their interactions through their effects on matrix glass composition.

Crystalline phase	Component	b _{ij}	B _{ij}	c_i	$T_{Li,r}$	$T_{Lij,b}$	$T_{Lij,B}$
	SiO ₂	0.008	-2005	-	344	167	317
	B_2O_3	0.010	-2875	-	-448	-1585	-1327
Ce ₃ BSi ₂ O ₁₀	Al_2O_3	-0.001	1537	-	1355	1516	1410
	CeO ₂	-0.002	3001	-	1701	1716	1738
	Nd_2O_3	-0.001	1400	-	1751	2055	1940
	SiO ₂	0.004	-3909	-	-	210	609
	B_2O_3	0.003	-2234	-	-	-1994	-1856
$Al_{10}Si_2O_{19} + Al_2O_3$	Al_2O_3	0.001	-3919	-	-	2827	2492
	CeO ₂	-0.002	11456	-	-	1547	1664
	Nd_2O_3	0.000	3613	-	-	1582	1435
	SiO ₂	-	-	-0.084	-	-	-
	B_2O_3	-	-	-0.193	-	-	-
CeO ₂	Al ₂ O ₃	-	-	0.013	-	-	-
	CeO ₂	-	-	0.183	-	-	-
	Nd_2O_3	-	-	0.030	-	-	-

Table II. Component coefficients $(b_{ij}, B_{ij}, c_i \text{ and } T_{Li})$ for crystalline phases

(Subscript: r = fitting to first-order model (Equation 1), b = fitting to obtain b_i coefficients (Equation 2), B = fitting to obtain B_i coefficients (Equation 3))

REFERENCES

- D. Peeler, T.B. Edwards, I.A. Reamer, J.D. Vienna, D.E. Smith, M.J. Schweiger, B.J. Riley, J.V. Crum. WSRC-TR-99-00055, Rev. 0, Westinghouse Savannah River Company, Savannah River Site, Aiken, South Carolina (1999).
- B.J. Riley, J.D. Vienna, M.J. Schweiger, D.K. Peeler and I.A. Reamer. In *Proceedings of* the Scientific Basis for Nuclear Waste Management XXIII, 608, pp 677-682, Materials Research Society, Warrendale, PA (1999).
- J.-H. Yoo, C.-S. Seo, E.-H. Kim & H. S. Lee. Nuclear Engineering and Technology 40 (7): 581-592 (2008).
- 4. P. Hrma, B.J. Riley, J.V. Crum, J. Matyas. J. Non-Cryst. Solids. 384, 32-40 (2014).
- ASTM C1720-11, Standard Test Method for Determining Liquidus Temperature of Immobilized Waste Glasses and Simulated Waste Glasses, ASTM Int., West Conshohocken, PA (2011).
- B.J. Riley, P.R. Hrma, J.D. Vienna, M.J. Schweiger, C.P. Rodriguez, J.V. Crum, J.B. Lang, J.C. Marra, F.C. Johnson, D.K. Peeler, C. Leonelli, A.M. Ferrari, I. Lancellotti, J.-L. Dussossoy, R.J. Hand, J.M. Schofield, A.J. Connelly, R. Short, and M.T. Harrison, *Int. J. Appl. Glass Sci.* 2 (4) 321-333 (2011).