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ABSTRACT 
 

The interface between the adhesive toes of geckos and a substrate consists of an array of 
regularly sized, densely packed, and elastically coupled nanoscopic contacts. The velocity-
dependent friction exhibited by this system hints at a convolution of various material and 
structural effects. We explore the dynamics of frictional sliding in these materials using models 
based on arrays of coupled masses driven by external forces that can become pinned and 
unpinned to a potential energy landscape. The model system is driven at normalized velocities 
spanning 6 orders of magnitude, and the output of this model captures both the low-V and high-V 
behavior of the actual gecko materials. We explore modifications to the essential model that 
incorporate features more representative of the structure and behavior of the natural gecko 
system. These results have implications in the design of materials with custom frictional 
properties. 
 
INTRODUCTION 
 

The gecko adhesion system provides these animals with an impressive suite of 
capabilities during climbing, such as robust attachment, easy release, and tolerance to 
contamination [1]. The system is based on the microscale hair-like protrusions on the underside 
of the geckos’ toes; these branched keratinous structures, when suitably deployed, securely 
attach the animal to the underlying surface with weak intermolecular forces acting at the 
nanoscopic contacts. The mechanisms underpinning this adaptation have considerable relevance 
to the evolution and biomechanics communities, but a close study of these physical principles 
can inform the development of synthetic adhesives as well as new theories of tribology [2]. 

Recent measurements of the dynamic friction produced by natural gecko setal arrays and 
synthetic geckolike adhesives [3, 4] require an explanation in terms of fundamental tribological 
principles. Dynamic friction (or rate-dependent friction) is the force response of a system of two 
bodies in contact moving with some relative velocity V. Traditional teaching on the topic of 
friction implicitly recognizes this rate dependence, categorizing the friction force as either 
“static” or “kinetic,” but in general friction forces can vary continuously with V. V-dependent 
stresses (i.e., forces normalized to specimen areas) produced by geckolike materials, both natural 
and synthetic, are shown in Figure 1. The curves show different regimes of behavior associated 
with different domains of V. Previous work [4] attempted to explain these effects using a product 
of functions representing distinct rate and state behaviors of an ensemble of contacts. These 
models are unsatisfying since the rate and state functions are somewhat arbitrary.  

In this paper, I discuss the origins of these different force regimes and illustrate how they 
can arise from the dynamics of a system of externally-driven coupled nanoscale contacts. These 
types of models [5, 6] have been developed to treat friction generally, but the gecko material 
offers an opportunity to test them against systems which possibly conform better to the 
underlying assumptions, namely uniformly sized and spaced nanoscopic contacts. A better  
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Figure 1. Dynamic friction in (a) natural and (b) synthetic geckolike materials, after [4]. Friction 
stress  depends on the imposed velocity V. Different (V) behaviors are associated with different 
velocity regimes. In the case of the natural material, different values of elastic modulus produce 
different low-V behavior. 
 
understanding of this model and the connections between model properties and the behavior of 
real materials systems would simultaneously explicate design principles for synthetic materials 
and advance the science of friction between extended bodies across numerous asperities. 
 



2771

 
Figure 2. Diagram of the 1D coupled sliding nanoblock array and defining model parameters. 
 

THEORY 
 
 During frictional sliding in natural and synthetic geckolike adhesives, individual contacts 
may exist in a number of states: pinned to the surface by some confining interaction potential or 
in the process of slipping across the surface. Additionally, the state of the contacts may change 
with changes in the states of neighboring contacts. A picture of a simplified model of the 
subdivided interface is shown in Figure 2. This system consists of N nanoscopic contact 
volumes, or “nanoblocks,” of size b and mass m whose positions are labelled by the components 
of the vector xi. The nanoblocks are coupled elastically to body at large by idealized springs of 
stiffness k1 at the vector of attachment points i. The blocks are also coupled to each other by 
springs of stiffness k2. The slider is driven at velocity V. 

The equation of motion for block i is 
 
m(d2xi / dt2) + c(dxi / dt) – k2(xi+1 + xi–1 – 2xi) = k1( i – xi), (1) 
 
where c is a damping coefficient that reflects the interfacial dissipation in a sliding nanoblock 
proportional to its velocity vi = dxi / dt. The forces that act on the nanoblocks across the interface 
are represented by a set of rules: 
 

1) A nanoblock with vi = 0 is pinned to the substrate until the elastic forces fi acting on it 
exceed a threshold force f0 (or stress 0 = f0 / b2); and 

2) a nanoblock whose velocity drops to zero under the influence of the combined elastic and 
damping forces becomes repinned with the driving force k1( i – xi) relaxing to 0. 

 
Because the interfacial potential implied by these rules has no simple representation and the goal 
is to simulate a large number of contacts, a numerical approach with discrete time steps is 
required. Additionally, I solve the system using units that nondimensionalize the problem. Time 
is measured in units of (m/k2)1/2 and position in units of f0/k2. The damping ratio  is defined as  
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Figure 3. Normalized average nanoblock force vs. slider velocity. The data for V = 3 are off of 
the scale; plotting the data this way reveals more clearly the qualitative shift in behavior at V*  
0.03. At velocities less than V*, the system is essentially static; the blocks are predominately 
pinned. When the degree of coupling n is reduced, the F/f0(V) curves shift to lower force levels, 
seemingly uniformly at all V. 
 
c/2(mk2)1/2. Taking these steps transforms Eq. 1 into 
 
(d2xi / dt2) + 2 (dxi / dt) + (k2 / k1)(xi+1 + xi–1 – 2xi) + xi – i = 0. (2) 
 
 My solutions to Eq. 2 incorporated N = 100 blocks and employed m = 1, k1 = k2 = 1, and 
c = 1. Additionally, b = 1 and f0 = 1. The initial block driving forces xi – i were randomized and 
uniformly distributed between 0 and 1.  The blocks have size b = f0/k2, and I generated solutions 
for driving velocities 0.00003 b/t  V  3 b/t. The solutions – i.e., block positions and velocities 
at each solver step – were generated using a custom MATLAB procedure (incorporating the 
ode45 solver) for 0  t  2000. I calculated the net block forces Fi at each step, as well as the 
descriptive parameter h (t), defined as the fraction of blocks with vi > 0 at time t. 
 I also generated a second set of solutions with the same parameters as above but an 
additional modification: the degree of coupling between the blocks was reduced. In the natural 
gecko material, the hairs are bundled hierarchically. This means that adjacent contacts might 
only be elastically coupled several levels removed in the hierarchy. Since the pathway for elastic 
energy return between these otherwise adjacent contacts is so torturous, the contacts are 
effectively decoupled. The degree of coupling n is the number of nanoblocks that are serially 
coupled to each other but uncoupled from the next n blocks. I.e., k2(xi+1 – xi) = 0 if i mod n = 0. 
This additional set of V-dependent simulations took n = 10. 
 

DISCUSSION 
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The resulting F and h data vary continuously with V and possess a number of distinguishing 
features. Figure 3 shows the average normalized force F/f0 on the blocks during the simulation  

 
(a) 

 
(b) 

Figure 3. (a) Creeplike (V = 0.01) and (b) transitional (V = 0.0) system behaviors reflected in the 
parameter h. The low-V data indicate a system that is pinned, overall, and essentially static. 
When driven near the critical velocity V*, the initially pinned system gradually transitions to a 
state where the blocks move freely. When the block move freely 
 
against the driving velocity for both the fully coupled case and n = 10. In both cases, the force 
data are approximately constant at low V., drop slightly somewhere in the range 0.01  V  0.1, 
then rise rapidly. This transition corresponds to a qualitative change in behavior near some 
characteristic velocity I call V*. A comparison of the F/f0 vs. V curves for the two different n 
treatments indicate a reduction in friction force levels. This reduction is presumably the result of 
removing some elastic elements from the system. V* appears to be unchanged with n in this case. 

Figure 4 shows the function h(t) for driving velocities of 0.01 and 0.03 b/t.; these data 
capture the nature of the shift in system behavior at V*. At V < V* the number of blocks in 
motion at any given time is typically small: h < 0.15. The behavior in this region of the force vs. 
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velocity curve is creeplike, since the system behavior is defined by the jumping motion and 
subsequent relaxation of individual nanoblocks or clusters of blocks. Although highly correlated 
motions of clusters of blocks appear as spikes in h(t) that rise as high as 0.5, the overall state of 
the system is essentially statically pinned. 

Near V*, the collective motion of large numbers of blocks occurs, and the system evolves 
toward a state where block motions are continuous with little repinning. The nanoblocks are 
essentially advected along with the rest of the body at approximately the imposed velocity V. 
This change in dynamics is reflected in the force data; the elastic stresses decrease as more 
blocks become free, though the dissipation (via the damping ) is still too small to make up the 
difference. As V increases further, the dissipative forces dominate the system behavior. 

The results of these simulations have a striking resemblance to those for the natural gecko 
material in Figure 1(a). (The fact that the real experiments are essentially 2D while the 
simulations are 1D can be reconciled if we think of the simulations as providing the dynamic 
friction forces on a per-unit-width basis.) The flat, creeplike regions at low V are congruent in 
both the real and simulated force data, as are the high-V regions where the forces are rate 
sensitive. The weaker overall coupling introduced by the choice of n = 10 does not appear to 
have a readily interpretable meaning in the real data, indicating there are effects that are 
unaccounted for in current modeling efforts. 
 

CONCLUSIONS 
 

A physical model of friction at a sliding interface based on coupled masses driven at a 
velocity V has the features required to explain the performance of the regular, hierarchical gecko 
attachment system. Because the masses can become individually pinned to the substrate by static 
friction forces, there is an interaction between the rate at which the system is driven and the 
overall relaxation rate of the depinning and repinning contacts; this interaction produces the rich 
system behavior observed across a logarithmic span of imposed rates. When a degree of 
decoupling (representing coupling at a higher hierarchical level) is introduced, the static and 
dynamic friction forces are altered significantly. 
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