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Abstract. We present a first-principles derivation of spatial atomic-sublevel
decoherence near dielectric and metallic surfaces. We find that for small lateral
separations of the atom's possible positions, the spatial decoherence decreases
quadratically with the separation and inversely to the squared atom-surface
distance. In view of potential miniaturization of atom optics, we also present
preliminary results on spin flips times near a metallic carbon nanotube.
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1. Introduction

New physical models for quantum information processing and quantum computation
have been inspired by the recent experimental achievements in controlling ultracold
neutral atoms [1-5]. The creation of microscopic traps and guides for neutral atoms
moving close tosurfaces is possible using nanofabricated structures. The principal
idea of how to design magnetic traps can be traced back to Frisch and Segre [6]
who realized that, when a homogeneous magnetic field is superimposed with the
field created by a current flowing through a wire, the magnetic field vanishes on a
line parallel to the current. Such a configuration is used to trap at0111S in low-field
seeking magnetic hyperfine sublevels. One of the challenges in trapping ultracold
atoms is now to reduce as much as possible the dimension of the atomic traps. It is
well known that carbon nanotubes (CNs) have attractive mechanical and electrical
properties for applications in electronic devices. Due to these promising properties,
CNs used as current carrying wires may be regarded as promising candidates in the
miniaturization of atomic traps.

However, atoms kept in traps are held close to microstructured material sur
faces, which are typically at room temperature. The small separation between the
cold atom cloud and the macroscopic environment raises the question of how strong
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the energy exchange will be, and which minimal distance from the surface can be
ultimately reached. In the materials generating the trapping electromagnetic field,
dissipation processes associated with finite conductivity give rise to electromagnetic
field fluctuations. Such fluctuating fields can be strong enough for an atom close to
the surface to drive rf magnetic dipole transitions that flip its spin causing either its
loss from the trap or decoherence of its quantum state. In [4,7-12], atom loss due
to thermally driven spin flips has been investigated and several experiments have
confirmed the theoretical findings [13-15]. In this article we examine the influence
of thermally-induced spin flips on the lifetime of an atom trapped near a CN and
on the coherence properties of atomic spatial superposition states. Such coherent
superpositions can be thought of being created by tunnelling through a shallow po
tential barrier in either a double-well potential or, more generally, an optical lattice
structure [16-18].

This work is organized as follows: Sec. 2 introduces the basic notions of QED
in dielectric media. In Sec. 3 an expression for the spatial coherence is derived. We
focus on a planarly multilayered structured in Sec. 4, for which the dyadic Green
function is explicitly known and finally, in Sec. 5 we introduce our preliminary
results for CNs.

2. Basic Equations

In the present context it is useful to formulate quantum electrodynamics (QED)
on a dielectric-matter background [19]. Let us restrict our attention to an isotropic
but arbitrarily inhomogeneous medium whose polarization responds linearly and
locally to the electric field. Causality and the dissipation-fluctuation theorem [20]
then require the macroscopic polarization P(r, t) to be a convolution of the dielectric
susceptibility x(r, t) and the electric field E(r, t) plus a noise polarization PN(r, t)
that accounts for the quantum fluctuations of the macroscopic polarization. Us
ing Maxwell's equations in Fourier space, and solving the Helmholtz equation for
E(r, w), we get

(1)

where the Green tensor G(r,r',w) is a second rank tensor determined from the
partial differential equation

2

V" x V" x G(r,r',w) - w
2

c(r,w) G(r,r',w) == 5(r - r') U, (2)
c

with E( r, w) the complex permittivity, Together with the boundary condition at
infinity, this equation has an unique solution. The corresponding solution for the
magnetic field in Fourier space is B(r,w) == (iw)-lV x E(r,w).

The noise polarization is given by

flEa '"
-cI(r, w) f(r, w).

1T'
(3)
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(4)

where the operator-valued bosonic vector field f( r, w) represents the collective ex
citation of the combined system of the electromagnetic field and absorbing matter
and satisfies the equal-time comrnutation relations [f(r,w), ft(r/,w l

) ] == 8(r - r/)x
o(w - w/) U. The Hamiltonian of the medium-assisted electrornagnetic field can be
written as

00

HF = Id3r Idw!iwft(r,w)of(r,w).

o

Such a quantization model provides a valid description of the quantized electro
magnetic field in absorbing dielectric materials. However, it is necessary to point
out that a strictly local response has been assumed which neglects effects stemming
from motion of charge carriers.

For the purpose of the present paper we need to calculate certain field correla
tion functions. Let the system of electromagnetic field and absorbing matter be in
thermal equilibrium at some temperature T. Then the thermal correlation function
of the magnetic induction at temperature Treads

'" '" t nJ.Lo [-+ f-](B(r,w)B (r',w')) == --;-Im V x G(r, r',w) x V (nth + 1) 8(w - w'). (5)

with nth the mean thermal photon number at a given frequency w. It is worth noting
that this correlation function gives information about the coherence properties of
the magnetic field fluctuation produced by the medium considered.

3. Spin Flip Rate and Spatial Decoherence

An atom in a magnetic trap is subject to a constant magnetic field with strength
Bo in the centre of the trap. The magnetic sublevels are split due to the Zeeman
effect. In the experiment reported in [13] 87R b atoms are initially pumped into the
hyperfine state IF, mp) == 12,2) in which they are trapped. However, due to ab
sorption in the surface material and the resulting quantum fluctuations, fluctuating
magnetic fields cause the atoms to evolve into states with lower magnetic quanturn
number mF. In sufficiently tight magnetic traps, atoms in the IF, 1nF) == 12,1) state
are also trapped. Spin flips to even lower magnetic sublevels cause the atoms to be
expelled from the trap.

The Zeeman coupling of the atomic magnetic moment to a fluctuating field is
represented by the Hamiltonian Hz == -fL . B(rA), where the magnetic moment
vector is associated with a transition li) -+ If) from the initial to the final state,
as explained in [10,21]. Its modulus is proportional to the expectation value of the
electronic spin operator J..L == gS/LB(iISlf), where /LB denotes the Bohr magneton,
and gs ~ 2 the electron's g-factor. The Zeeman Hamiltonian can be written in the
rotating-wave approximation as [10]

(6)
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where ~ == If) (il denotes the atomic spin lowering operator. Finally, the free atomic
Hamiltonian can be written in the two-level approximation used above as HA ==
nWA~z, where the ~ obey the commutation rules [~(t), ~z] == =F~(t).

Let us consider a system composed of the two-level atom and a fluctuating
magnetic field initially in the vacuum state 10). The Hamiltonian describing the
evolution of the combined system is given by the sum of the three Hamiltonians
if == HF + HA + Hz . To study spatial decoherence in this context, we consider
an atom in a superposition of two different sites and we are going to look at the
off-diagonal term of its density matrix. We can write the system wave function at
a certain time t as [22]

00

+Jd3r Jdw Ch,m(r,w, t)e- i (W- WA/ 2)t lh , Im(r,w))

o
00

+Je-Jdw Ch,m(r,w, t)e- i (W- WA/ 2)t lh , Im(r, w)) , (7)

o

where 10) and /lm(r,w)) denote the electromagnetic field vacuum and single
excitation states, respectively, and the labels 1, 2 refer to the occupied site. Af
ter solving the Schrodinger equation irt8t l1/JAF(t )) = HI1/JAF(t)) as explained in [21]
and defining the coefficients

(8)

and

we can write the time evolution of the coefficients Gin(t) as

(10)

The coefficients fa and 6wa defined in Eqs. (8) and (9) represent the spin flip
rate and the line shift, respectively, and have been derived in a similar fashion
in [10]. In order to investigate spatial decoherence we want to analyse the decay
of the off-diagonal elements of the density matrix of our system written in the
occupation-number basis. After tracing the system density matrix over the field,
the off-diagonal element of the atomic density matrix is given by
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Qdt) = e- r l2t + 2 (1 - e-r 12 t) (J1~gst (iISqlJ)(jISkli)
C--COli

lm [V x G(r2,rl,wA) x V]
x kq

f 12

59

(11)

where f 12 == (f1+f2 )/ 2 is the arithmetic mean of the spin flip rates, Eq. (8), at both
sites. Equation (11) consists of two parts. The first is a (spatially local) exponential
decay that describes the effect of the transition from the initial spin state li) to the
final spin state If)· The second term is a (spatially nonlocal) non-exponential term
which is proportional to the spatial coherence function of the magnetic induction
defined in Eq. (5). It means that by observing the spatial decoherence of our

. system we gain information about the magnetic-field fluctuations produced by the
substrate.

4. Planar Substrates

Up until now, the derivation of all formulas were valid for arbitrary substrate geome
tries. A particular geometric arrangement is fixed by defining the correct boundary
conditions for the dyadic Green function G(r,s,w). In this section, we will concen
trate on the simplest but experimentally important realization in terms of planar
multilayer dielectrics focusing on the spatially nonlocal term in Eq. (11) only. In
particular, we notice that this is equivalent to taking the long-time limit of Eq. (11).
Hence, for now we consider only

The dyadic Green function for this situation can be found in [21,23,24]. Let us
assume that an atom is located at a distance d away fro III a planar interface with
a metallic substrate which we describe by its skin depth 8. In our example, we
have chosen an aluminium substrate with 8 == 110 J-lID and an atomic transition
frequency of f == 560 kHz. Furthermore, the atom can be in two distinct positions
with a lateral separation l.

In Fig. 1 we show the decay of the spatial coherence as measured by the func
tion S (r1' r2, wA) for varying separation l in uu: for three different atom-surface
distances d. As a function of separation, the decay of the spatial coherence starts off
rather slowly. We attribute this behaviour to the fact that for separations below the
coherence length of the magnetic-field fluctuations the spin flip is driven coherently
at both sites.

In order to investigate the small-separation limit in some more detail, we take a
closer look at the expansion of the scattering Green tensor and in certain asymptotic
regimes in which r 12 can be expressed as a monomial cx.d-n of the atom-surface
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Fig. 1. Spatial coherence function of the fluctuating magnetic field S (rI, r2, WA),
Eq. (12), as a function of the lateral separation l in uu: with the parameters
f = 560 kHz, 8 = 110 J..lIll for three different distances from the surface: d = 20 iuu

(solid line), d = 10 J..lm (dotted line), and d = 5 uu: (dashed line)

distance d (see, e.g. [8,12]), Eq. (12) can be rewritten in the form

517I(n+1)l2 4
S(rl,r2,WA)=1- 96d2 +O(l). (13)

In addition to the planar half-space we consider the experimentally relevant situa
tion in which a thin metallic layer of thickness h has been brought onto a dielectric
su bstrate. In order to see how the time scale is related to the expected lifetime
we can expand the exponential in Eq. (11) for short times as [21] and substitute
Eq. (13) obtaining

(14)

where e12(O) = 1 and T = f 121 and with 0: = 1 for thick films and 0: = 3 for
thin films. The left-hand side in Eq. (14) can be thought as a proper measure of
decoherence clue to spin flips in terms of physical parameters such as the spin flip
lifetime T, the separation l and the distance from the surface d. This means that it
is possible to maximize those experimental parameters while the decoherence rate
is under control. Hence, Eq. (14) turns out to be particularly interesting from the
quantum information point of view when a certain degree of spatial coherence has
to be maintained.

5. Spin Flips near Carbon Nanotubes

One of the aims of atom optics is to miniaturize its devices to even smaller scales. It
is well known that eNs are useful in the miniaturization of many different devices
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such as electronic, mechanical, electromechanical, chemical and scanning probe de
vices. A metallic CN may be considered as an infinitely thin conducting cylinder.
Ideally, one can think of miniaturizing atom chips by using a metallic CN as a
conducting wire to trap an atom.

In order to describe the interaction of an atom with the eN, we adopt the theory
of QED in dielectrics as before for bulk materials, [25]. The use of this theory is
correct if a CN may be considered as a mesoscopic object. CNs are probably at the
limit to what we can actually describe with this macroscopic theory. If an atom
is placed far enough from the surface, say a few nanometers, the CN is seen as
an homogeneous object by the probe atom so that the detailed structure from the
surface cannot be resolved and QED in dielectrics safely can be used.

It is interesting to look at the actual lifetime of an atom trapped close to a eN
in the same fashion as in [10]. The Green function with the appropriate boundary
conditions at the surface and the conductivity are. given in [25,26]. We evaluate
Eq. (8) for three different distances d from the surface of a metallic CN: d1 == 1 nm,
d2 == 10 nm and d3 == 100 nm and we obtain for the respective Iifetimes (at room
temperature) the following results 71 == 0.089 s, 72 == 2.623 sand 73 == 178.8 s [27].
From these preliminary values, the trapping of atoms a few nm away from a eN
seems feasible when taking into consideration thermal spin flips.

6. Conclusions

In summary, we have investigated the loss of spatial coherence of atomic super
positions due to thermally driven spin flips. The consistent quantization of the
electromagnetic field in absorbing dielectrics and metals allowed us to employ a
first-principles approach to decoherence in this particularly simple physical system.
For small lateral separation i of the at0111'S two possible positions we found that the
spatial coherence decreases quadratically with l and inversely proportional to the
squared atom-surface distance d [Eq. (13)].

We believe that these results are important for the design of microstructured
devices in which spatial coherences are used to encode quantum information. In
particular Eq. (14) shows how the decoherence rate depends on experimental pa
rameters such as lifetime, lateral separation and atom-surface distance.

Finally, our estimations for CNs seem to suggest that the trapping of atoms a
few nanometers away from a CN surface is achievable.
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