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Abstract. This is a brief review of recent achievements in the theory of non-
stationary Casimir effect in non-ideal cavities and of existing proposals to ob-
serve this effect in a laboratory. In this connection, a model of quantum damped
oscillator with arbitrary time-dependent frequency and damping coefficient is
developed and the influence of different parameters on the photon generation
rate is analyzed.
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1. Introduction

We consider the problem of photon generation from vacuum in a selected mode
of electromagnetic field of a closed high-Q cavity due to periodical variations of
the conductivity of a thin semiconductor layer deposited on the plane surface of a
cavity wall. Fast and significant changes of electric properties can be achieved in
semiconductors illuminated by laser pulses. The suggestion to use this scheme to
simulate the so-called Unruh effect was put forward by Yablonovitch [1]. Man’ko
(2] proposed to use semiconductors with time-dependent properties to produce the
analogue of the non-stationary Casimir effect (see also [3,4]). A more developed
scheme, based on the creation of an electron-hole ‘plasma mirror’ inside a semicon-
ductor slab, illuminated by a femtosecond laser pulse, was proposed in [5]. The idea
of experiment on observation of the non-stationary Casimir effect, which is under
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preparation in the university of Padua [6], is to use an effective electron—hole ‘plasma
mirror’ created periodically on the surface of a semiconductor slab by illuminating
it with a sequence of short laser pulses. If the interval between pulses exceeds the
recombination time of carriers in the semiconductor, a highly conducting layer will
periodically appear and disappear on the surface of the semiconductor film, thus
simulating periodical displacements of the boundary. Quite recently, some other
schemes were also proposed (7,8], but we consider here only the setup of [6].
Quantum effects caused by the time dependence of properties of thin slabs
were studied by several authors [9-13]. However, only very simple models of the
media were considered in that papers: ideal dielectrics or ideal conductors, suddenly
removed from the cavity [9, 10|, infinitely thin conducting slabs, modeled by 4-
potentials with time-dependent strength [11], or lossless homogeneous dielectrics
with time-dependent permeability [12,13]. Our goal is to give estimations of the
number of photons which could be produced inside the cavity with a semiconductor
time-dependent ‘mirror’, taking into account the internal dissipation in the slab.

2. Photon Generation in the Presence of Losses

An immediate consequence of the time variation of electromagnetic properties of the
cavity walls is the time dependence of the eigenmode frequencies. Hence it follows
the simple idea that one could understand the main features of the behavior of the
quantum field in the cavity by considering a single selected mode, describing it as a
quantum oscillator with ‘instantaneous’ time-dependent frequency [14,15]. Later on,
it was justified (see, e.g. [16-18]) for three-dimensional cavities without an accidental
degeneracy of the eigenmode frequency spectrum and for harmonical variations of
the effective frequency (for numerical verifications of the accuracy of analytical
approximations see [19]). We assume that even in the presence of dissipation and
non-monochromatic periodical variations, the field problem still can be reduced
approximately to the dynamics of the single selected mode, described in the classical
limit as a harmonic oscillator with time-dependent complez frequency Q(t) = w(t)—
iy(t), which can be found from the solution of the classical electrodynamical problem
with the instantaneous geometry and material properties.

We use the model developed in [20-22]. It consists in the description of the
dissipative quantum systems within the framework of the Heisenberg-Langevin op-
erator equations. In the case concerned these equations can be written as

difdt =p—y()E+Fo(t),  dp/dt =—y(O)p— (O3 +Fp(t), (1)

(B E(t)) = o(t —t)xu(t), G k=1p, (2)
Xap(t) = =Xpa(t) = 17(t) . Xpp(t) = Xaa(t) =7v(t)G, G =1+2(n)e. (3)

Here 2 and p are dimensionless quadrature operators of the selected mode, normal-
ized in such a way that the mean number of photons equals N = %([)2 + 22 —1)
(in other words, in the subsequent formulas w and -y are the frequency and damping
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coefficient normalized by the initial frequency w;); (n);, is the equilibrium mean
number of photons for the selected mode at the given temperature. The noise oper-
ators Fz(t) and Fp(t) do not commute between themselves, but they commute with
# and p. The choice of coefficients in (1) and (3) was justified in [20].

The solution of the system of equations (1) under the condition (2) can be
expressed in terms of the function e(t), which satisfies the classical equation of
motion of the harmonic oscillator with time-dependent frequency

E4+wi(t)e=0 (4)

and the initial condition £(t) = exp(—it) for ¢t — —oco. Note that £(¢) does not
depend on the damping coefficient y(t). If initially (at t — —o0) the field mode was
in the thermal state, then the mean number of photons at the instant ¢ equals [20]

N(t) = Ge"”‘”{%Et + / " (e (BE- ~Re[EE]) } - % ®)

e +1e(n?],  Er =5 [e2(r) +£%(n)].

DN =
D]~

I'(t) = / N(r)dr, E,=

—0Q

Formula (5) is ezact for arbitrary functions w(t) and v(t). However, we are
interested here in the special case when the functions w(t) and «(t) have the form
of periodical pulses, separated by intervals of time with w = 1 and v = 0 (we neglect
the damping of the field between pulses, supposing that the quality factor of the
cavity is high enough). Moreover, the relative change of the frequency w(t) during
pulses is very small: w(t) = wp[l + x(¢)] with |x| < 1. Under these conditions, the
integral in (5) was calculated in [20-22]. The maximal number of photons which
can be created after n > 1 pulses equals

exp[2n(v — A)] + ¢t ) (6)

N, = 5

4(v — A)

where .
I ,
[ woxtetar, (7)
t

i

tr
A =/ y(r)dT, v=
¢

<

(t: and ts are the initial and final time moments of any pulse). Formula (6) holds,
if the ratio v/(v — A) is not too big and if the periodicity of pulses T satisfies the
resonance condition T = T = %TO (m — p/7), where Tj is the period of oscilla-
tions in the selected field mode and ¢ = wq f:’ x(t)dt. Under realistic conditions,
the parameters v and A are very small. '

3. Complex Frequency Shift of the Cavity Mode

We consider a cylindrical cavity with an arbitrary cross section and the axis parallel
to the x direction, supposing that the main part of the cavity is empty, except for
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a thin slab of a semiconductor material. Thus we write the dielectric function €(x)
as e(x) = 1 for —L <z < 0 and e(z) # 1 for 0 < z < D, where D is the thickness
of the slab and L is the cavity length. We assume that D <« L and the dielectric
permeability depends only on the longitudinal space variable x.

For the TE modes, Maxwell’s equations give rise to the usual three-dimensional
Helmholtz equation AE + (/c)%¢(z)E = 0 for the monochromatic component of
the electric vector E(r,t) = E(r)exp(—iQt). In this case one can factorize any
scalar component of the electric field as E(z,r1) = (x)®(r.), where the function
®(r ) obeys the two-dimensional Helmholtz equation A ® + k2® = 0. Conse-
quently, the problem is reduced to solving the one-dimensional Helmholtz equation
'+ [(Q/c)%(z) - k_QL] 1 = 0. Its solution in the domain —L < z < 0, satisfying the
boundary condition ¥(—L) = 0, is ¢¥(z) = F; sin[k(z+ L)], where the constant coef-
ficient k is related to the field eigenfrequency Q2 and the corresponding wavelength in
vacuum A as Q = c(k? + &2 )12, X\ = 2n(k% + k2 )~'/2. The conditions of continuity
of the function ¥ (z) and its derivative at z = 0 result in the transcendental equation
for the wave number k of the form tan(kL) = kv (0; %)/’ (0; k), where ¥, (z; k)
is the solution of the Helmholtz equation in the domain 0 < x < D, satisfying the
boundary condition 91 (D) = 0. In the case of thin slab with D <« A ~ L, the value
of k£ must be close to w/L (for the lowest mode of the cavity). Thus we can write
k= (1+¢&)m/L with |§] < 1 and replace tan(m€) simply by 7£. With the same
accuracy we can identify k£ with 7/L in the right-hand side of the equation. Thus
we arrive at the formula £ = nAR(0), where the function R(Z) = z/;+(§:)/zzq_(i:) of
the dimensionless variable £ = /D satisfies the boundary condition R(1) = 0 and
the first-order nonlinear generalized Riccati equation for 0 < Z < 1,

dR A 2D

ar _ 2A2 (5 21 p2 _ A _ <L
= 1+72A% [e(2) — 1 +n*] R?, n 2L<1, A /\<<1. (8)

The small relative shift of the resonance frequency can be expressed as
Xo = [ —wol/wo = n* (£ — &) = n*A[R(0) — Ro(0)],

where & corresponds to the non-excited semiconductor with €(Z) = €; = const.
In this case Eq. (8) has an exact solution, which shows that for €; ~ 10 (typical
values for semiconductors), Rp(0) =~ —1 with an accuracy better than 0.01. When
the semiconductor slab is illuminated by the laser pulse, the absolute value of the
function €(Z) = €; + ie2(Z) can attain very big values, so that m2A2|e(Z)| > 1
in some region 0 < £ < Iy near the surface of the slab. Obviously, to create an
effective ‘plasma mirror’ one needs the material with o ~ (aD)™! <« 1, where
o is the absorption coefficient of the laser radiation. In the region 0 < Z < Zg
we can neglect the first term 1 in the right-hand side of Eq. (8), as well as the
term 1 — 7%, The simplified equation can be integrated immediately, resulting the
following interpolation formula for the complex frequency shift:

w=rPAzTr, E=(rA? [ dwar (9)
E—1 ;
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Here &(Z) means the change of dielectric function caused by the laser excitation.
The upper limit of integration in (9) is extended formally to infinity, because the
function €(Z) quickly goes to zero outside the interval (0, Zo).

In Ref. [21] we supposed that the creation of carriers in the semiconductor slab
influences the imaginary part e2(Z) of the dielectric function only. However, this
assumption can be questioned in the case of high frequencies and a big interval
between collisions 7.. For example, the simple Drude model gives the complex
mobility at frequency w in the form b(w) = er./[m(1 + iw.)], where e is the electron
charge and m the effective mass. Thus we can write

E=(i+mA,  Alt) = (4nAleb|/c) /oon(:r,t)da:, (10)
0

where n(z,t) is the volume concentration of electron-hole pairs created inside the
slab, ¢ = fo) is the velocity of light, b is the total mobility of carriers for each
electron—hole pair (in the CGS units) and u is the dimensionless parameter charac-
terizing the ratio €;/€&; in the photo-excited slab. For the Drude model, u = wre.
Then we can express the real and imaginary parts of the complex frequency shift
as

_ PA[A%(1 4 4P) — pA] B nAA

TR+ —2pA+1’ T AR+ —2uAr 1

Equation (11) shows that big values of x can be achieved asymptotically for A >
1. If 4 < 1, then the maximal value of v is achieved for A = 1, and vy« is only twice
smaller than xmax, S0 that the influence of damping by no means can be neglected.
However, the situation can be different for 4 > 1, because in this case ymay is
suppressed as 113, and one can expect that the negative contribution of coefficient
A to the photon generation rate (6) can be reduced in the same proportion.

(11)

4. Evaluation of the Photon Generation Rate

The dependence n(z,t) can be found from equations which take into account, be-
sides the photo-absorption, the effect of diffusion and different recombination pro-
cesses. We use the simplified version of the equation introduced in [23,24],

/ot =V - (YVn) + (a(/E)I(t)e™* — By,  Ydn/dz|,_, = Rn(0). (12)

Here Y is the coefficient of ambipolar diffusion, « is the absorption coefficient of the
laser radiation inside the layer, E is the energy gap of the semiconductor (which
is close to the energy of laser photons), I(t) is time-dependent intensity of the laser
pulse which enters the slab, ¢ <1 is the efficiency of the photo-electron conversion,
B1 is the trap-assisted recombination coefficient and R is the surface recombination
velocity. The simplification made consists in omitting the nonlinear terms in the
right-hand side of (12). This assumption can be justified for materials with high
concentration of impurities, which result in very small recombination times, of the
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order of T, ~ 20 + 30 ps. Since Eq. (12) is linear, it can be solved analytically [25].
The maximal rate of photon generation is achieved for a small surface recombination
(as one could expect), so we consider here the case R = 0.

Supposing that the duration of laser pulse is much less than the recombination
time, we approximate the function I(t) by the delta function: I(t) = (W/S)d(t),
where W is the total energy of the laser pulse and S is the area of the surface of
the semiconductor slab (we assume that the energy is distributed uniformly over
this area). Then the time-dependent function A(t) in equation (11) turns out to be
equal to A(7) = Agexp(—7/Z) (we assume that n(z,t) = 0 for t < 0), where

_wo 27T, A — 472|eb|CW A

A T * 7 T (cE,S) (13)

T=w0t, Z

According to (6), the rate of photon generation is determined by the difference

V_A=773AF(A07Z7,U')) F(A(),Z,[J,)=D—A (14)

The numerical analysis of function F(Ag, Z,u) in the case 4 = 0 was done in
[21]. If we fix the number of photons to be created after n pulses, then the total
energy of all pulses is proportional to the quantity J = 49S/[n3A%F (Ao, Z, p)]. It
was found that the minimum of J for the fixed values of  and A is achieved for
Ap = 10 and Z = 0.3 (this value corresponds to the recombination time T;. = 20 ps
for fo = 2.5 GHz, which is quite realistic from the point of view of the available
technology). For the rectangular cavity with the excited lowest TE,;9 mode, the
ratio S/n3 is proportional (for the fixed resonance frequency) to the function [22]
f(n) = n*\/1 —n2, whose minimum is achieved for ny = v/3/2 = 0.866, when
f(no) = 0.325. However, this minimum is rather flat, and even the value n; =
V2/2 = 0.7 is still admissible, because f(7;) = 0.25. In this case the shape of the
cavity wall, which is perpendicular to the electric field vector, is close to a quadrat
(but it must be slightly different from the quadrat, in order to avoid excitation of
other field modes [18]). For the optimal choice of parameters Ay, Z, 7, the number
of photons created after n pulses is given by a simple formula A, & G exp(nA/5).

For the semiconductor slab of thickness 2mm (A = 1/30) we need about 1400
pulses to create 104 photons from the initial vacuum state of field (G = 1). Taking
a realistic value of the mobility of carriers b ~ 3m?/(Vs) and Es; = 1.4eV (as for
GaAs), we find that the value Ap = 10 corresponds to the energy density of each
laser pulse W/S = 1073 J/cm? and the effective surface concentration of carriers
immediately after the pulse about 5-10'3 cm™2. For the illuminated area 10 x 2 cm?,
we obtain IV = 0.2 mJ and the total energy of all pulses 0.3 J. The necessary number
of pulses and total energy can be significantly reduced in the case of initial thermal
state with nonzero temperature [22,26], due to the factor G in formula (6). For
example, taking the temperature T = 14K, we have G =~ 240, so that the same
number 10 photons can obtained after only 800 pulses with the total energy 0.2 J.

In Fig. 1 we show, what can happen if the parameter u in formula (11) is
different from zero. The left-hand side plot gives the dependence F'(u) for Z = 0.3
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Fig. 1. Left: The amplification coefficient F' versus the parameter u for the fixed
value Z = 0.3 and different values of parameter Ag. Right: The dependence of
the amplification coefficient F' on the parameter B (17) for Z =03 and p =1

and three fixed values of Ay. Since variations of parameter y are accompanied by
variations of mobility (which is proportional to the mean time between collisions
Tc), the coefficient A in formulas (10) and (11) can depend on p. For p = w7, we
have

. g 2B exp(—2z) — exp(—z)
= 9BZ 2 d 2iZzx
Y H ,/0 ve 1+ p2 + 4Bp? [Bexp(—2z) — exp(—z)] |’ (15)
1 = exp(—z)
A =2BZ d 16
N/O T2+ 4Bu? [Bexp(—2z) — exp(—z)]’ (16)

where the new dimensionless parameter B is defined according to the relations

2uB B TACe2WA

- P = 17
1+ p?’ E,Sc?meg’ (17)

0

meg being the effective mass of carriers. The right-hand side plot in Fig. 1 shows
the dependence of the amplification coefficient on B for p = 1, when the real part
of conductivity assumes the maximal possible value in the Drude approximation.
We see that reasonable values of the amplification coefficient can be obtained for
B > B, = 10. Taking the same values of parameters as above and meg = 0.1me,
we obtain for the corresponding energy density of single pulse the value W, /S ~
7-1077J/cm?, which is smaller than the estimation for 4 = 0 by more than one
order of magnitude. The value p = 1 corresponds to an extremely high mobility
by = e/(2mw) ~ 50m?/V's, which, perhaps, cannot be achieved. However, this
example shows that looking for semiconductor materials with specific properties
one could reduce the necessary energy of laser pulses to a sufficiently low level.
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