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Abstract. We present a quantization scheme for the electromagnetic field
in nonlinearly responding dielectric materials with dispersion and absorption.
Starting from QED in linear dielectrics, we construct an effective nonlinear in­
teraction Hamiltonian and show the emergence of a nonlinear noise polarization
whose magnitude is related to the magnitude of the pump fields.

Keywords: QED in dielectrics, nonlinear polarization
PACS: 42.50.Nn, 42.50.Ct, 42.50.Lc, 42.65.L111

1. Introduction

Quantum electrodynamics is rightly regarded as one of the 1110St successful theories
in physics. Its predictions have been tested to an astonishing accuracy in, e.g.,
measurement of the anomalous magnetic moment of the electron. In recent years
we have seen remarkable progress in combining the quantum theory of the electro­
magnetic field with (linear) response theories associated with absorbing dielectric
matter.

The usual route to obtain a quanturn theory of light in (linearly) responding
dielectric materials is as follows. The starting point is vaCUU111 quantum electrody­
namics, i.e. the quantized Maxwell equations without matter. Elementary charged
particles are then coupled in a relativistically invariant form to the Maxwell field.
In quantum optics, an approximation is usually made at this point. Often it is not
necessary to keep the theory fully relativistically invariant, but a non-relativistic
approach to the matter suffices. The resulting interaction Hamiltonian describes,
in minimal coupling, the atom-field interaction in leading order of the particles'
velocities.
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In this minimal coupling, the particles are described by their microscopic quan­
tities such as position and momentum. For systems containing many particles, such
a description can be very inconvenient. Power and Zienau [1,2] have shown that
there is an alternative description in terms of collective variables such as polariza­
tion and magnetization which makes the transition to macroscopically large atomic
systems rather straightforward,

The determination of polarization and magnetization itself requires knowledge
about the interaction between the material system under consideration with the
electromagnetic field. Within the framework of (linear) response theory, the po~

larization and magnetization are expanded in (linear) powers of the electric and
magnetic fields, respectively. The response functions connecting polarization and
magnetization on one hand and electric and magnetic fields on the other are known
as the dielectric and magnetic susceptibilities. They have the benefit of being ex­
perimentally accessible so that detailed information of the microscopic properties
of the material system are not needed. Quantization of the macroscopic electro­
magnetic field along these lines has been successfully performed by several authors
[3-8].

The next obvious step is to extend the formalism to include nonlinearly re­
sponding materials. However, standard nonlinear optics typically neglects absorp­
tion associated with nonlinear couplings which is known to be present even in the
nonlinear case as Kramers-Kronig relations also exist for nonlinear susceptibilities
[9]. This observation immediately leads one to conclude that, on a macroscopic
level, standard mode decompositions cannot be performed for all frequencies, and
hence a consistent field theory cannot be built upon them.

In Sec. 2 we will briefly review the main concept of field quantization in linear
dielectrics which serves as the starting point of the following considerations. In
particular, we will show that we can find a bilinear Hamiltonian that generates
the time-dependent Maxwell equations. We then present an effective Hamiltonian
incorporating nonlinear couplings in Sec. 3 and give arguments in favour of the
generality of its analytical form. In Sec. 4 we derive the nonlinear polarization. We
end with some concluding remarks in Sec. 5.

2. Linear Response Theory

Here we briefly describe the scheme for quantizing the electromagnetic field in the
presence of linearly and locally responding dielectric material. For simplicity, we
restrict our discussion to non-magnetic materials. The constitutive relation that
provides the relation between the polarization and the electric field has the general
form

00 .

J (N)PL(r,t)==co drx(r,r)E(r,t-r)+PL (r,t),

o

(1)



(4)
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where a noise polarization p~V) (r, t) has been added to the usual causal response.
This contribution describes a Langevin noise terrn with zero 111ea11 and is there to
preserve Poisson brackets and, in the quantized theory, commutation rules. The
response function x(r, r) is the Fourier transformed dielectric susceptibility, the
latter of which fulfils the well-known Kramers-Kronig relations which states that
its real and imaginary parts form Hilbert transform pairs.

Upon quantization, we associate the (frequency components of the) linear noise

polarization pr) (r, w), apart from a multiplicative factor, with a bosonic vector
field f(r,w) with the equal-time commutation rules [f(r,w),ft(r',w')] == <5(r - r')
8(w - w')I such that

Pt'l(r,w)=i ncocr(r,w)f(r,w). (2)
1r

With this definition it can be shown that the (frequency components of the) electric
field can be expanded as [6,8]

E(r,w)=i/
nco ~2 j d3s VcI (r ,w)G (r , s ,w) . f (s ,w) , (3)

1r C co

where G(r,s,w) is the dyadic Green function of the classical scattering problem,
Le. the fundamental solution to the Helmholtz partial differential equation. The
electric-field operator in the Schrodinger picture is obtained by integrating over all
frequencies, E(r) == Jdw E(r, w) + h.c ..

Equation (3) can be regarded as a generalization of the familiar mode expan­
sion with the role of the creation and annihilation operator being taken on by the
dynamical variables f(r,w) and rt(r,w) which, in contrast to the vaCUUUl case, de­
scribe collective excitations of the electromagnetic field and the absorbing matter.
The time-dependent Maxwell equations are then the Heisenberg equations of 1110­
tion for the magnetic induction and dielectric displacement fields generated by the
bilinear Hamiltonian

00

ih= j dw j d3rnwft(r,w).f(r,w).

o

It is worth noting that a Hamiltonian equivalent to (4) has been derived by explicitly
diagonalizing a (bilinear) model Hamiltonian [10-12].

Using the representation (3) and the properties of the dyadic Green function
(being a response function), one can show that the equal-time commutation relation
known from vacuum QED,

[coE(r), B(r')] = -i/fCV x o(r - r')I , (5)

is still valid. Furthermore, the linear fluctuation-dissipation theorem is respected
and takes the specific form

nw2
I _ I

(OIE(r, w)Et (r', w')IO) == --')Ill1G(r, r ,w)o(w - w ) .
KEQC'"

(6)
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3. Nonlinear Interaction Hamiltonian
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In order to make the step to non linear interaction processes, we immediately face
several problems. For a start, there is no clearly visible way to extend Eq. (1) to
incorporate nonlinear response, in particular, it is by no means clear how to define

the nonlinear extension to the noise polarization P~'2 (r, t). Moreover, apart from
nonlinear response theories corresponding to a X(2) nonlinear process, the extensions
to the fluctuation-dissipation theorem do not 'contain contributions from the fully
retarded Green function only [13].

Faced with these conceptual difficulties, we argue that a sensible way to proceed
is to look at an effective interaction Hamiltonian, with the Hopfield model [14] of
linearly absorbing dielectrics [10-12] in mind. Let the reader be reminded that
in this model the free electromagnetic field is coupled in bilinear fashion to an
harmonic-oscillator polarization field which in turn is coupled to a continuum of
harmonic oscillators modeling a heat bath. The explicit diagonalization of this
model yields an expression of the dynamical variables f (r, w) in terms of a linear
combination of the original variables.

An effective non linear interaction Hamiltonian for absorbing matter can now
be obtained by first treating the interaction between the electromagnetic field and
a collection of N-level atoms without coupling to a heat bath. Considering multi­
photon processes that are non-resonant with any atomic transition, the resulting
effective interaction Hamiltonian will contain monomials in the creation and anni­
hilation operators for photons only [15]. Hence, the detailed atomic level structure
becomes invisible in this approximation. This observation allows us to again treat
the atoms as harmonic oscillators in the spirit of the Hopfield model. Thus, the
bilinear parts of the Hamiltonian can be diagonalized as before which, yet again,
results in the introduction of the dynamical variables f(r, w). The photon creation
and annihilation operators in the effective (nonlinear) interaction Hamiltonian can
then be (re-)expressed in terms of the f(r,w) and ft(r,w). As the dynamical vari­
ables of the new theory depend linearly on the creation and annihilation operators
of the original theory, the same is true in reverse. Hence, the nonlinear interaction
Hamiltonian must be of the same form containing the same monornials,

This observation is sufficient to justify an ansatz for an effective interaction
Hamiltonian corresponding to a X(2) nonlinear process as [16]

(7)

where the integration over k == (Sk,Wk) runs over all the space and all the frequen­
cies. The unknown tensor function Ciijk(l, 2, 3) has to be determined by consistency
with requirements from standard nonlinear optics. In particular, we require it to
be linear in the nonlinear susceptibility X(2).
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4. N onlinear Noise Polarization
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(8)

With the help of the Harniltonians (4) and (7) we are in the position to derive an
expression for the nonlinear polarization. First note that Faraday's law V x E(r)

== -13(r) == -[B(r), HL + HNL]/Cin) implies that

[B(r),HN L ] = 0

per construction of 13(r).
By splitting up the total dielectric displacement into its linear part, DL (r), and

the nonlinear polarization PNL(r), Amper~'s law can be written in the form

.. ..

V x V x E(r) == -poDL(r) - poPNL(r). (9)

Each of the second time derivatives constitutes a double commutator with the sum
of the Hamiltonians (4) and (7). The linear part of the dielectric displacement field is
linear in the dynamical variables, whereas the nonlinear polarization corresponding
to a X(2) nonlinear process is bilinear. Hence, the double commutators produce
terms ranging from being linear to quadrilinear in the dynamical variables. This in
turn means that we obtain a hierarchy of contributions to different order. In order to
compute the nonlinear polarization corresponding to a given XCn) non linear process,
in principle one has to include contributions from lower-order nonlinearities. For our
current discussion this means that we neglect all double commutators that result
in terms containing more than bilinear combinations of dynamical variables, all
higher-order terms in principle contribute to higher-order nonlinearities. Collecting
all relevant terms, we obtain

(10)

The first term on the right-hand side of Eq. (10) is just equal to the left-hand
side as can be easily checked, noting that the frequency components of the linear
dielectric displacement field can be written as f>L (r, w) == V x V x E( r, w)/ (pow2

) .

The second term on the right-hand side of Eq. (10) vanishes by virtue of the con­
straint (8). This means that we are left with a relation of the form

(11)

As has been shown" explicitly in [17], the general solution to it is just the single­
COlIl111Utator relation
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(12)

as all cornmutants with fI L that are not included in (12) have to strictly vanish.
Since the frequency components of DL(r,w) are composed of a reactive term,

coc(r,w)E(r,w), and a noise contribution, pr)(r,w), by the structure ofEq. (12)
the same is true for the nonlinear polarization. Hence, in this way we have derived a

nonlinear noise polarization which is a solution to [pW2 (r), .EfL] == -[pr) (r),.EfNL]'
Equation (12) can be solved by using well-known techniques for inverting Liouvillian
superoperators to obtain for the positive-frequency component [16,17]

'(++) 1)I1£OJ y€i(i)PNL,l (r) == -.-;; - dld2d3 (Xmjk(l, 2, 3)
. 'In 1r W2 + w3

2
W '"' '"' '"'(N,++)

X ~c(r,w)Glm(r, 1)fj(2)fk(3) + PNL,l (r) (13)

with the nonlinear noise polarization

(14)

Equation (13) has to be compared with the expressions known from standard
nonlinear optics. The nonlinear polarization is defined in the framework of response
theory as

t

J (2)
PN t.: (r, t) == co d71 d72 Xl m n (r, t - 71, t - 72)

-00

(15)

where P~~)l(r, t) is the non linear noise polarization that is commonly disregarded
in classical' nonlinear optics. However, because the validity of the approximate
interaction Hamiltonian (7), as described in Sec. 3, is restricted to certain frequency
regions far away from any atomic resonances, we can treat the electric field in the
slowly-varying amplitude approximation and expand it in a set of non-overlapping
functions centered at the mid-frequencies ni . If we perform this approximation for
the process of second-harmonic generation with D1 == D2 +n3 , we can write Eq. (15)
as

where all the appearing quantities are assumed to be slowly varying with ni .

At the same time, for consistency, the slowly-varying amplitude approximation
has to be made for the dynamical variables, details of which can be found in [16,
17]. So equipped, we can find et linear functional relation between the coupling
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tensor a'mjk(r, nI, S2, n 2, S3, [23) in Eq. (13) and the nonlinear susceptibility tensor

Xi~:n(r, [22, [23) in Eq. (16) [16,17]. Inserting this relation into Eq. (14) yields the
sought expression for the nonlinear noise polarization in terms of the non linear
susceptibility as

where Hli(r, n1 ) == OlOi - 6li6. - ni/c2c: (r , f21 )6li is the Helmholtz differential op­
erator, Le. the inverse of the Green tensor.

Equation (17) puts us in the situation to estimate the strength of the nonlin­
ear noise. Disregarding the vector character of the quantities appearing in it and
neglecting the precise frequency dependence of the relevant quantities, we can es­
timate the order of magnitude of the nonlinear noise relative to the linear noise as
IPNL/PLI r-v IX(2) /c:IIEI, where IEI denotes the strength of the pump field. Simi-

larly, for higher-order nonlinearities we would obtain IPt~/PL I r-v Ix(n) / c:IIEln-l.
These results state that for strong pumping the nonlinear noise polarization can
indeed become important and is not to be neglected.

5. Conclusions

We have shown how to quantize the electromagnetic field in the presence of non­
linearly responding, absorbing dielectric materials. Based on the theory of QED in
linear dielectrics which is proven to be consistent with quantum-theoretical and sta­
tistical requirements, we have constructed an effective non linear interaction Hamil­
tonian from which a nonlinear polarization could be derived. This nonlinear polar­
ization automatically includes a contribution associated with nonlinear noise which
is commonly disregarded in nonlinear optics. We could show that the strength of
this nonlinear noise grows monotonically with the strength of the pump field and
may ultimately limit the performance of nonlinear quantum optical processes.
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