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Abstract. The Bell-Clauser-Horne-Shimony-Holt inequalities are considered.
The right-hand side of these inequalities does not depend on the form of any
two-particle spin state. In the case of the generalized Bell-Clauser-Horne
Shimony-Holt inequalities the right-hand sides depend on the form of the con
crete two-particle state. The left-hand sides of these inequalities depend on
four arbitrary vectors defined in three-dimensional space. They define the di
rections on which the spins of particles forming a correlated pair are projected.
Our aim is to find such vectors that the left-hand side of the inequality should
take its maximum value. In other words, by these vectors the inequality trans
forms into an equality. It is shown that it can be done with the help of a special
reduction of the density matrix of the two-state spin state.
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1. Introduction

The Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequalities [1]

IE(a,b) + E(a,C) + E(d,b) - E(d~C)1 ::; 2h (1)

are widely used in analyses of the entanglement property of two-particle spin states.
Their left-hand sides are expressed via the mean values of the spin correlation
operator E(a, b). Each such value depends on two vectors, a, b, and the whole
left-hand side depends on four vectors a, b, e, d~ In the form (1) the Bell-CHSH
inequality is valid for all types of two-particle spin states: factorizable, separable
and entangled. With the help of experimental verification of these inequalities
one can define the type of the state, which is used in concrete situation. For the
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verification it is necessary to measure a mean value of the spin correlation operator
Eiii, b). This value depends on t\VO vectors, ii and b, that define the axis in the
configuration space on which the spins of particles are projected. The aim of this
work is to present a method with the help of which one can find vectors ii, b, C, d
such that the left-hand side of the generalized Bell-CHSH inequality (1) takes its
maximum value.

2. The Generalized Bell-CHSH Inequalities

The generalized Bell-CHSH inequalities were constructed in work [2]. They have
the form

IE(ii, b) + E(ii, C) + E(d, b) - E(d, C)I ::; V2 sup (IP(nI)1 + /P(n2)1) . (2)
fh ,n2

Here
lal == Ibl == ICl == Idl == 1

are arbitrary unit vectors in the 3-dimensional configuration space. P is a 3 x 3
matrix, it is a reduction of a density matrix P == IIPij 11 of the two-particle spin state.
It has the form

(3)

(

(P14 + P23 + P32 + P41)
i(P14 + P23 - P32 - P41)
(P12 + P21 - P34 - P43)

i(P14 - P23 + P32 - P4I) (P13 + P3I - P24 - P42) )
(-P14 + P23 + P32 - P41) i(P13 - P3I - P24 + P42) .
i(P12 - P2I - P34 + P43) (PII - P22 - P33 + P44)

(4)E(ii, b) == Sp (EL 0 bp) == (a, Pb).

With the help of the matrix P the mean value of the spin correlation oper
ator E(ii, b) can be presented in the form of scalar product in the 3-dimensional
configuration space

The verification procedure of the Bell-CHSH inequalities (2) consists of the mea
surernent of the spin projections for various sets of vectors a, b, c, d. The result of
measurements depends on the orientation of these vectors. In order to determine if
theInequality (2) is satisfied or violated it is necessary to find four vectors a, b, c,
d such that the left-hand side of the inequality takes its maximum value. In other
words, one must find such four vectors a, b, c, J that the inequality (2) transforms
into an equality. For this aim let us rewrite the left-hand side of the inequality (2)
using expression (4) for the mean value of the spin correlation operator E(ii,b). As
a result one can get

IE(ii, b) + eis, C) + E(d, b) - E(d~ C)I
== /(ii, Pb) + (ii, PC) + (d, Pb) - (d~ PC) I == /(ii, P(b + C)) + (d, P(b - c))l·

(5)
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It is easy to see that expression (5) takes its maximum value when

1(6 + C)I == I(b - C)I == h, (6, C) == o.
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(6)

Besides, vector 5 must be parallel to vector P(b + 0, and vector d-must be parallel
to vector P(b - ey.

3. Examples

Let us consider some examples, First of all we consider the so-called scalar state
1. \l!o,o == ~(I+)I-) -1-)1+)). For this state

(
0 0 00)

1 0 1 -1 0
PO,o == "2 0 -1 1 0 '

o 0 0 0

PO,o == (-~ -~ ~).
o 0-1

It is easy to see that for the P matrix the maximum value of right-hand side of the
inequality (1) is equal to 2~

This value can be achieved at every pair of vectors fi 1 , fi 2 that are orthogonal to
each other: (nI, n2) == o. The four unit vectors 5, b, c, d can be expressed via the
vectors Pi1, n2 as follows

- - b- 1 (- - )a == n1 , == ~ nl + n2 ,

One can get the same result for the state
2. \lJ 1,0 == ~(I+) 1-) + 1-)1+))· For this state

(
0 0 0 0)

1 0 1 1 0
Pl,O == "2 0 1 1 0 '

o 0 0 0

PI,o == (~~ ~).
o 0 -1

For the state \lJ 1,0 the vectors 5, i, e, d-can be expressed via the vectors n., 112
in the same manner as in the case of the state '11 0 ,0 .

-+ - b- 1 (- -)a == 'n1 , == J2 11,1 + n2 , - 1 (- -) d- -c == J2 n 1 - n2, == n2 .

The vectors ill, Fi2 are arbitrary with the only restriction ('rh, n2) == o.
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3. Up till now we considered only pure states. Let us consider now the Werner
state [3]. It is a mixed state described by the density matrix

1
PW ==

8

1 0 0 0
o 3 -2 0
o -2 3 0
o 0 0 1

(7)

For the state (7) the P matrix (3) has the form

PW==(~ ~ ~).
o 0 -1

With the help of the matrix (8) one can find that for the state (7)

RH(nI' n2) == 2J2,

(8)

and this maximum value is achieved at every pair of vectors nI, n2 that are orthog
onal to each other: (nI, n2) == o. The four unit vectors a, b, c, d can be expressed
via the vectors nI, n2 as follows

- 1 (- -) d- -c == yI2 n 1 - n2, == n2 .

4. Let us now consider a mixed state that is described by a density matrix

(

0 0 00)
1 0 1 -p, 0

PIL == 2' 0 -p, 1 00 '
000

For the state (9) the P-matrix (3) has the form

(9)

In this case

PJ.L == (-~ -~ ~) .
o 0-1

(10)
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5. In all the previous cases we considered pairs of correlated spin states in
which both states of the pair had the definite values of spin projections at the same

axis. Let us consider now a state wg,\)k2 that is analog to the scalar state Wo,o. It is
formed by two states, one state has a definite value of spin projections at the axis
defined by the vector i., and the other state has a definite value of spin projections
at the axis defined by the vector k2 . In the case when

the density matrix of such state has a form

2sin2 If) sin f) - sin f) 2 sin2 lf)
2 2

1 sin f) 2 cos2 so -2 cos2 If) sin f)

Po == 4 2 2

- sin () -2 cos2 If) 2 cos2 lf) - sin f)
2 2

2sin2 If) sin f) - sin f) 2 sin2 !f)
2 2

For the state (11) a P matrix (3) has the form

(11)

For this state

Pe = (
- cos f)

o
sin f)

o
-1

o

- sinB )
o .

-cose
(12)

RH(rh,ih) = 2V2, rh = ( !),
(

coosa ) ,
fi 2 ==

sin o

a == nl , _ 1 (cosa)
b=- 1 ,

J2 sin o

1 (- cos a )c= - 1
J2 -sina '

Here a is an arbitrary angle.
6. Let us now consider the decoherence process that transforms a state (11)

into a state described by a density matrix PBJ-L

2sin2 ~e f-l sine -f-lsin e 2f-lsin 2 le2

1 J.L sin f) 2 cos2 If) -2f-l cos2 ~f) J-t sin f)2 (13)PBJ..L == -
-J.Lsin e -2J-t cos2 ~e 2 cos2 le -J-tsin e4

2

2j.L sin2 If) j.Lsine - J.L sin () 2 sin21f)2
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For the state (13) a P matrix (3) has the form
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(

-J.-L cos () 0

Pop, == 0 -J.-L
J.-L sin () 0

If the angle () == ~ 1r one can show that

-J.-L sin () )
o .

- cos ()
(14)

_ 1 (cosa)
b== - 1

V2 sin o '

1 (-casa)c== - 1
V2 -sina '

4. Conclusions

It was shown that with the help of the matrix P, that is a reduction of a density
matrix, one can find the vectors a, b, c, d-such a way that the left-hand side of the
generalized Bell-CHSH inequality (1) takes its maximum value.
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