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Abstract. The effect of "anomalous" scattering of neutrons and electrons from
protons in the electron-volt energy-transfer range is considered, and related ex­
perimental results are mentioned. A recent independent confirmation of this
effect with a new data analysis procedure is presented. Due to the very short
characteristic scattering time, there is no well defined separation of time scales
of electronic and protonic motions. An outline of a proposed theoretical in­
terpretation is presented, which is based on the fact that scattering protons
represent open quantum systems, thus being subject to clecoherence.
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1. Introduction

Several neutron Compton scattering (NCS) experiments on liquid and solid samples
containing protons or deuterons show a striking anomaly, which is a shortfall in the
intensity of epithermal neutrons scattered by the protons and deuterons. For ex­
ample, neutrons colliding with water for just 100-500 attoseconds (1 as == 10- 18 s)
will see a ratio of hydrogen to oxygen of roughly 1.5 to 1, instead of 2 to 1 corre­
sponding to the chemical formula H20 , cf. [1,2]. The experiments were done at the
1818 neutron spallation facility, Rutherford Appleton Laboratory, UK. Due to the
large energy and momentum transfers applied, the duration of a neutron-proton
scattering event is a fraction of a femtosecond which is extremely short compared
to condensed-matter relaxation times,

This new effect has been confirmed using an independent method, electron­
proton Compton scattering (ECS), at the Australian National University [3, 4].
ECS experiments from a solid polymer showed the exact same shortfall in scattered
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electrons (with energy about 20-35 keY, scattering angle 45°) from hydrogen nuclei,
comparable to the shortfall of scattered neutrons in accompanying NCS experirnents
on the same polymer. The similarity of the results is striking because the two pro­
jectiles interact with protons via fundamentally different forces - electromagnetic
and strong [2-4].

Due to its novelty and far-reaching consequences, however, this effect has been
the focus of various criticisms, cf. [5,6]. Therefore, considerable work to identify
possible sources of experimental and data-analysis errors was made during the last
five years, which succeeded to demonstrate the excellent working conditions of the
spectrometer Vesuvio at 1818 [7]. Moreover, extending these investigations, the
complete "exact formalism" of data analysis [5] was applied to NCS-data by Senesi
et al. [8], for the first time; analysis of time-of-flight (TOF) spectra from solid HCI
revealed the existence of a strong "anomalous" decrease of the scattering intensity
from H (up to 34%). Additionally, this result was found to be in excellent agreement
with the corresponding outcome of the standard data analysis procedure applied at
1818 [8].

Recently, scattering of neutrons in the 24-150 keY incident energy range from
H20 relative to that of D20 was investigated [9]. In clear contrast to the NCS and
ECS results, it was claimed that the measured neutron scattering intensity ratios
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Fig. 1. "Anomalous" scattering from the solid metallic hydride NbHo.8 [12].
Shown is the measured ratio Rex p = <7H/ <7Nb of scattering cross-sections of Hand
Nb normalized with their expected (tabulated) ratio Reanv - Broken line: conven­
tional expectation; "full" symbols: results taken from the original publications
[12]; "open" symbols: results of the model-independent data analysis procedure
invented by Dorner [11](a)
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exhibit no anomalous behavior. However, an improved analysis [10] of the keY data
within the frame of standard theory showed that the considered scattering anomaly
is present at both 5-100 eV and the keV ranges of neutron energies.

Very recently, the mentioned standard NCS-data analysis method [7] was suc­
cessfully compared with a newly proposed (by B. Dorner, ILL) model-free data­
analysis procedure, the latter being independent of the form of the momentum
distribution and the resolution function [11]. In this work, the original results frorn
the metallic hydride NbHo.8 [12] were analyzed. The comparison of results obtained
with the mentioned two independent methods underline the importance of the effect
under consideration, see Fig. 1.

2. On Scattering Time

In the context ofNeS, as provided by the Vesuvio setup, the Impulse Approximation
(lA) is valid [14,15] and the characteristic time scale - often termed "scattering
time", 'sc - of the neutron-proton scattering process is very short [3,7,12,13],

'sc rv 100-1000 as (1)

(as: attosecond). This is a consequence of the large energy (up to 100 eV) and
momentum transfers attained with the Vesuvio instrument [7] and follows from the
theoretical result valid in the lA [14, 15]

'sc qvo ~ 1, (2)

where Vo is the root-mean-square (rms) velocity of the nucleus and n,q is the (ab­
solute value of) momentum transfer from the neutron to the proton. The time 'sc

is given by the t-width of the intermediate correlation function F(q, t), which is
related to the dynamic structure factor S(q,w) by Fourier transform

1 JooS(q,w) == -2 exp (-iwt)F(q,t) dt.
1r -00

(3)

It is interesting to note that the "actual duration" 'act of a neutron-proton
interaction should be even shorter, as a classical estimate indicates. For example,
a neutron with kinetic energy Eo ~ 10 eV will pass a distance of 10-5 A (i.e. the
range of the strong interaction) in a much shorter time, Tact ~ 10-19 s. In the light
of Relativity Theory, this has a crucial consequence: the "actual" (or "effective")
scattering system - Le. a proton and its adjacent electrons - has a linear dimension
not larger than

~Snlax == C . Tact ;S 0.3 A
(c: velocity of light), since the neutron-nucleus scattering dynamics during Tact can­
not be causally influenced by other particles being more than ~8nHtX apart from the
nucleus. Consequently, the scattering system 111Ust necessarily be of "microscopic"



206 C.A. Chatzidimitriou-Dreismann

dimensions: it contains the scattering nucleus and a part of the adjacent electron
density.

However, this is not in conflict with the above estimate, for the following reason.
As standard theory shows [15], S(q,w) is peaked around the nuclear recoil energy
Eq = n,2q2/2m. The scattering time T sc is also given by the inverse of the width
~E of S (q,w), and S (q,w) plays the role of the probability density distribution
for transferring energy fiw from the neutron to the proton, when the momentum
transfer is hq. That is, Tsc ~ 11/6.E. (Interestingly, as Gidopoulos [16] showed,
Ts c is also about the inverse of the energy spread of the proton wavefunction after
collision.) For a typical value ~E ~ 10 eV, one gets Tsc ~ 10-16_10- 17 s. In other
words, the scattering time Tsc gives a statistical measure of the length of the time
interval during which an actual neutron-proton collision may occur - in the same
way that the spatial extent of a particle wavefunction gives a statistical measure of
the extent of the region in which the particle may be found.

To shed more light upon the issue of "relevant scattering time", one may also
refer to the celebrated Margolus-Levitin theorem [17]. Let us consider the neutron­
proton system during the collisional process. Obviously, the initial and final states
of it are very different and so they can safely be assumed to be orthogonal. This
theorem asserts that it takes at least a time T1. ~ (7rIi)/(2E s ) for the system to
evolve from its initial to any orthogonal final state. E; is the system's average
energy minus its ground state energy. T1. provides a strict bound for the considered
dynamical process [17]. Note that in NCS one has E; ~ Iu» with nw taken at the
peak center, and thus E; is of similar order as the aforementioned energy spread
6.E. Thus it is revealing that also this time T.l is very similar to the aforementioned
scattering time Tsc .

3. Theoretical Model - NCS from Open Quantum Systems

In the following we present an outline of a recently proposed theoretical interpre­
tation of the considered effect, which is based on the general theory of scattering
from open quantum systems [18]. As explained above, the scattering system must
necessarily be of "microscopic" dimensions (Le. it is of the order of one A or less),
and since it is embedded in condensed matter it represents an "open" quantum
system [21]. This point is crucial, since standard neutron scattering theory always
assumes a condensed matter scattering system to be closed, see e.g. [19,20].

3.1. Scattering from closed systems

First let us consider neutron scattering from a closed system consisting of N particles
with the same scattering length b, and the N-body Hamiltonian Htotal = Ho + V
with the interaction

V(r) = An(r) , with (4)



Attosecond Scattering from Protons

m is the neutron mass, n(r) is the particle density operator

1 N

n(r) = vL8(r-Rj),
j=l

207

(5)

(6)

where V is the volume, and R j is the position of the jth particle, cf. the textbook
[20].

In the interaction picture, the Schrodinger equation is now (setting for simplic­
ity Ii == 1) i8t w== An(r,t)W, with the perturbative solution

llJ(t) = IlJ(O) - i)..lt

n(r, t') dt'IlJ(O) .

We write the transition probability W (t) between initial states 'l/J'i (with prob­
ability Pi) and final states 1/Jf of the scattering system to be given by

(7)

It should be noted that 'l/Ji and 'l/Jf are eigenstates of the N-body Hamiltonian Ho
omitting the probe system [19,20]. The transition probability is then given in the
form

W(t) = )..2it

dt' it dt" L('l/Jf In(r,t') pn(r,t") I 'l/Jf), (8)
o 0 f

with P == Li l1/Ji)Pi(1/Ji I, where we have noted that n t (r, t) == n(r, t).
In an actual scattering experiment from condensed matter, ,ye do not measure

the cross-section for a process in which the scattering system goes from a specific
initial state 1/Ji to another state 1/Jf' both being unobserved states of the many- body
system. Therefore, one takes an appropriate average over all these states [19,20],
as done in Eq. (7).

Given the initial (ko) and final (kj ) momenta of an impinging neutron and
introducing the momentum transfer q == k o - k , from the probe particle to the
scattering system, the Fourier transform of the particle density reads

n(r, t) = (2:)3 Jdqn(q, t) exp (i q . r) ,

where, in the case of neutron scattering, cf. Eq. (5),

n(q, t) == L exp [-iq . Rj(t)] .
j

(9)

(10)

Since n(r, t) is Herrnitian, we have nt(q, t) == 1l(-q, t) and one obtains from Eq. (7)
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Assuming as usual that ~fl1Pf)(?Pfl :=: 1 [19,20] we get

L (7Plln(q, tf) Pn(-q, t") I?PI ) :=: Tr [11,( q, tf) p11,( -q, t")] . (12)
f

If the integration in Eq. (11) is extended over all times (Le. t ~ (0), this ensues
over-all energy conservation. This reproduces the well-known result of standard
neutron scattering theory, cf. [19,20]. Here, however, it is important to retain the
finite duration of the scattering time, t < T sc . This introduces an additional freedom
into the theory, because we may be able to observe the influence of the decoherence
on the scattering yield; see below. The result will be expressed in terms of the
correlation function

C(q,r) = Tr[n(q,t)pn(-q,t+r)] :=:Tr[n(q,O)pn(-q,r)] , (13)

where we have utilized the fact that the scattering system is stationary. By intro­
ducing the so-called scattering time rsc , representing the time interval in which the
scattering process may happen, we find

T"'U: 'T.'fC 'T.'fC t'

W(Tsc) =,X2 Jdt' Jdt"C(q, t" - t') =,X2 Jdt' Jdn [C(q,"1) + C(q, -"1)]. (14)
o 0 0 0

Here we use the stationarity of the correlation function [20]. If we assume this
function to be real, and that C(q,,,.,) ~ 0 for "., ~ rsc , we obtain the result

rs..

W(Tsc) ~ 2,X2Tsc Jd"1C(q,"1)·

o

Now we can introduce the transition rate, ltV say, which is defined as

(15)

(16)

Here the correlation function is analogous to the so-called intermediate function of
neutron scattering theory [20]. This result for the scattering yield is analogous to
that of standard theory.

3.2. DY11al11ics of open systems and scetteiixig

We now consider the scattering system to be open and strongly interacting with
its environment. vVe introduce a set of preferred coordinates {I~)}, cf. [21-23],
representing the relevant system's degrees of freedom coupled to the neutron probe.
The density matrix p in (13) is then the reduced one in the space spanned by these
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states, and it is obtained by tracing out the degrees of freedom of the "environment"
[21-23]. For simplify, throughout this section, let us denote this reduced density
matrix by P, too.

In the subspace spanned by the preferred coordinates (also terrned "pointer
basis"), let us assume a Lindblad-type equation [24](a) of the form

8t p == -i [H, p] + Tcp == Ep (17)

which has the formal solution p(t) == e.L:tp{O). Let us look at a time-dependent
expectation value

(A{t)) == Tr (p{t)A) == Tr (e.L:tp(O)A) == Tr (p(O)e.L:tt A) , (18)

where Z! is defined by Tr((.eX)Y) == Tr(X(.ety)). Thus it holds 8t A(t )
.etA(t), cf. [24](a). Here is assumed that .e is time independent.

For the correlation functions like the one in Eq. (13) it then holds

(A(t)B) == Tr[p(O) (e£ttA)B] == Tr [Ae.L:t (Bp(O))] == Tr(ApB(t)) , (19)

where PB{t), as defined in Eqs. (19), obeys the equation atPB{t) == £'PB(t) with the
initial condition PB(O) == Bp(O). Thus, except for the initial condition, we have to
solve the same equation of motion as for the density matrix, Eq. (17).

For simplicity of the further derivations, let us assume here a simple Lindblad­
type ansatz for the master equation having only one Lindblad variable X. (In the
real system we would have a multitude of such variables.) Thus

atp == -i [H, p] - K [X, [X, p]] == Cp , (20)

where the constant K is real and K > 0, H is the reduced (or relevant) Hamilto­
nian of a microscopic scattering system, and the double commutator term describes
decoherence (and/or dephasing). For simplicity of the further calculations, we fur­
ther assume that we can take the preferred coordinates to commute with the total
Hamiltonian

H I ~) == £~ I ~) , X I ~) == ~ I ~) . (21)

This time evolution is now introduced into the correlation function C(q, T),
Eq. (13). A short straightforward calculation (see Ref. [18] for full details) yields
for the transition rate the result

fV = 2,\21T

" . L exp [ - i (Et,' - EE) T] exp [ - K (( - ~)2 T]
o ~,~' (22)

x (~ I n( -q, 0) I ~')(~' I n(q, 0) p(O) I ~) dr .

The decoherence-free limit of this result (Le. K == 0) corresponds to the con­
ventional result of scattering theory. The oscillatory terms exp [--i (Et,' - E~) T] are
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clue to the unitary dynamics caused by the commutator part -i [H, p] of the master
equation (20) for p. These factors have the absolute value 1. If decoherence is
present (I{ > 0), and especially if K- 1

rv Tse, the additional contractive factors
exp( -1< (~' - ~)2 T) ~ 1 can be seen to cause a decrease of the transition rate and
thus of the associated cross-section. This can be illustrated as follows.

Let us first assume that the reduced density operator p(O) can be chosen to be
diagonal in the preferred ~-representation (which corresponds to the usual random
phase approximation). Then each term of Eq. (22) contains the factor

In the more general case with p(O) being not diagonal in the e-representation, one
may proceed as follows. The decoherence factors exp(-K (e' - e)2 r) imply that
only terms with e ~ e' contribute significantly to the transition rate. Thus we may
conclude that, by continuity, all associated terms with e~ e' in Eq. (22) should be
positive, too. The further terms with e being much different from e' can be positive
or negative. But they may be approximately neglected, since they decay very fast
and thus contribute less significantly to W, cf. [22].

The main conclusion from the preceding considerations is that the time average
over rse in Eq. (22) always decreases the value of }V == W(rsc)/rsc, due to the
presence of the contractive factors exp( -K (e' - e)2 r) ~ 1. In other words, the
effect of decoherence (and/or dephasing) during r sc plays a crucial role and may
lead to an "anomalous" decrease of the transition rate and the associated scattering
intensity. This result is in line with that of Ref. [25], which investigated the standard
expression of the double differential cross-section of neutron Compton scattering
theory [14,15] by assuming decoherence of final and initial states of the scattering
system.

For further illustration let us consider the following two specific limiting cases:
(A) For ''vanishing'' decoherence, K ~ 0, the above contractive factors go to 1
and thus the anomalous scattering effect disappears. That is, the preceding result
(22) agrees with the conventional theoretical results [15,20]. (B) In the opposite
case, K ~ 00, only the "diagonal" terms with e == e' survive in Eq. (22) and the
related contractive factors go to 1; additionally, the oscillating factors become equal
to 1. Consequently, the time-integration in Eq. (22) has no effect and the rhs of
this equation goes over to the standard expression Eq. (16). Also this result is in
line with conventional expectations.

4. Conclusions

Theoretical considerations suggest the presence of attosecond quantum entangle­
ment of the scattering protons and the surrounding electrons [1,3, 12, 13,25]. Fur­
thermore the usual Born-Oppenheimer approximation is not applicable [13,16, 25,
26]. Moreover, recent NCS results from liquid HD and the equimolar H2-D2 mixture
showing identical anomalous scattering, provided strong evidence that quantum ex-
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change correlations between proton pairs cannot be the main physical reason for
the effect [27]. For further theoretical discussions, see [25].

In contrast to standard scattering theory [19,20] of thermal and/or cold neu­
trons, in which decoherence plays no role at all, our theoretical treatment of NCS
is based on the physical fact that micro- and/or mesoscopic scattering systems in
condensed matter are open quantum systems. This was shown to follow from the
ultrashort scattering time of NCS and ECS. The revealed "anomalous" effect, which
has no interpretation in the frame of standard theory [19,20], indicates that atto­
second entanglement (and its decoherence) involving protons are quantum phenom­
ena of broader significance and relevance than realized so far.
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