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Abstract. vVe give a short introduction to the topics of decoherence, neu
tron interferometry and entanglement for single neutrons. We introduce two
theoretical modes of decoherence for an entangled two qubit system via spe
cial Lindblad generators for the quantum master equation. The experimental
realization of the decoherence modes is achieved within neutron interferom
etry where the clecoherence is modeled by fluctuating magnetic fields in the
interferometer.
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1. Introduction

Quantum systems have to be regarded as open systems due to the fact that any
realistic system is subjected to a coupling to an uncontrollable external environment
which influences it in a non-negligible way [1-3). The phenomenon of decoherence
arises which 111eanS that quant Ul1l correlations and interferences are destroyed in
course of time, The reduced dynamics of open quantum systems can be described
either by a quantum master equation with Lindblad generators [4,5] or by et cly
namical map represented with Kraus operators [6].

Neutron interferometry [7] is an almost ideal tool to investigate the evolution
of a spin-~ system. In particular, when using a polarized beam vee can create
entanglement between different degrees of freedom, Le. the spin and the path of the

1589-9535/ $ 20.00
© 2006 Akaderniai Kiado, Budapest



182 R.A. Bertlruann et al.

neutron. In this case it is physically rather non-contextuality than locality which is
tested experimeutally [R, 9].

The article is organized as follows. The next section, Sect. 2, introduces and
discusses clecoherence and how it can be described theoretically (Linclblad gener
ators and Kraus operators). vVe continue in Sect. 3 with neutron interferometry
where the entanglement of a single neutron is introduced. Sect. 4 is devoted to
the discussion of two special decoherence modes for an entangled two-qubit system
which can be realized within neutron interferometry via random magnetic fields
which represent the environment [10]. In Sect. 5 the conclusions are formulated.

2. Decoherence

2.1. Ope11 quenium S}'Bten1S - decohereiice

In physical applications of quantum theory one has to take into account that there
will never be a perfect isolation of a quantum system. Thus the concept of open
quantum systems has to be introduced.

We suppose our system S of interest is coupled to an external environment
E. This interaction causes on the one hand dissipation which is the energy flow
between Sand E. On the other hand we have decoherence which destroys the phase
information in the system and thus the ability of the system to produce interferences
is lost. Decoherence can serve as an explanation for the classicality of our world.

The unitary evolution U of the closed S + E complex is governed by the total
Hamiltonian HS+ E whereas the dynamics of the system S is given by a non-unitary
evolution, the reduced dynamics

(1)

where the environmental degrees of freedom are traced out. The problem is that
the environmental degrees of freedom are either not accessible or unknown. There
fore the reduced dynamics are better described by some effective evolution. There
are t\VO approaches for this: on the one hand the quantum master equation with
Lindblad generators and on the other hand the method of Kraus operators. These
t\VO approaches are not independent of each other (see Ref. [11]).

2.2._ Quantulll tuesiet equation

The quantum master equation is an effective differential equation for the dynamics
of the open system given by

(2)

where the Liouville - von Neurnann equation with the Hamiltonian H is modified
by a non-unitary operator D(pt). The most general form [4,5] of the so-called
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(3)

with the Lindblad generators A k . Let us assume that the Lindblad generators are
projection operators Ak == ·.jXPk satisfying Pf == Pk and Lk Pk == :n.. This provides
us with the simplified form of the dissipator

1)(Pt) == A(Pt - ~ PkPtPk) .
k

(4)

The strength of the interaction is parameterized by the decoherence para-meter A.

2.3. Kreus operators

The other possibility to model the state change of an open system is to introduce
the dynamical map

V(t) : Po ~ Pt == V(t)po . (5)

The most general form of the complete positive dynamical map is given in terms of
Kraus operators [6] defined by

with (6)

The Kraus operators are sometimes called jump operators.

2.4. Exemples

Two very often used examples of open systems are the phase damping channel and
the depolarizing channel for one qubit.

The phase damping channel has no classical analog because it describes the
loss of quantum information without loss of energy. Phase damping can happen,
for example, due to random phase kicks or scattering processes occurring with a
probability p. We can model this channel by the Kraus operators ]tIo == [1- ~p ]1/2 :n.,

Fig. 1. The action of the phase
damping channel and the depo
larizing channel on the Bloch
sphere for a certain value of p is
shown
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and 1111 == [~p] 1/20-;;, which corresponds to a deformation of the Bloch sphere to an
ellipsoid oriented along the z direction (see Fig. 1).

For the depolarizing channel the qubit gets totally mixed with a certain prob
ability ~p due to the occurrence of three possible errors (spin flip (J'x, phase flip
o-z or both ay) and with 1 - ~P the qubit remains unchanged. The corresponding
Kraus operators are llIo == [1 - ~P ]1/2:u., NIl == rip ]1/2ax, lYf2 == [ip ]l/2 ay, and
lYf3 == [~p] 1/2a z : The Bloch sphere shrinks uniformly towards the totally mixed
state (see Fig. 1).

3. Neutron Interferometry

Neutrons are massive particles (m == 939.6 Me'V) with a finite lifetime of about
15 minutes. A perfect single silicon crystal interferometer for neutrons [7] (beam
separation of about 5 cm), which is topologically identical to a Mach-Zehnder in
terferometer, operates with thermal neutrons with a wavelength of A == 2 A and a
velocity of v == 2000 ta]«. The time of flight across the interferometer is approxi
mately 100 ps thus the neutrons can be considered stable in the interferometer.

The measured intensity of the interference fringes depends on the phase shift
.6.X between the two paths of the interferometer and is given by 10 t'J 1 + cos .6.X
for the so-called a-beam.

3.1. Entanglement etu! Bell uiequelity for neutrons

Entanglement is a feature which arises in a multi-partite Hilbert space. In the
"classical" situation the bipartite Hilbert space under consideration, 'H == 1{spin Q9
1{spin, describes the spin degree of freedom of two particles, e.g. photons. There
one can construct Bell inequalities to test the non-locality of the system [2].

One can also consider a Hilbert space of the form 'H == Hspin Q9 Hpath where both
degrees of freedom (spin and path) belong to the same particle. This corresponds,
for example, to a neutron with certain spin states in an interferometer. As it turns
out the construction of a Bell-like inequality is also possible but now one tests the
contextuality of the system [8,9].

In close analogy to the spin-! case the maximally entangled state for a neutron
is given by

1\l1-) = ~(I-U-) 011) -IM o Ill)) , (7)

where /1'1, -ll.) and 11,11) denotes spinor and spatial degrees of freedom, respectively.
The entangled state of a neutron is created via a special kind of a spin flipper which
is inserted in one path of the interferometer (see Fig. 2).

The Bell-like inequality for neutrons is given by

S(X,xl,~,~/) == IE(X,~) -E(X,~/)I + IE(X',~) +E(X',~/)I ~ 2, (8)

where E(X,~) denotes the expectation value of a joint measurement of the path
and the spin observable. The experiments show a clear violation of the Bell-like
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Fig. 2. Schematical setup of the neutron interferometer where an entangled
state of a neutron is created via the spin flipper in one path. The path degree
of freedom is parameterized with the phase shifter X and the spinor degree of
freedom is measured with the spin rotator ~

inequality with a value of Sexp = 2.051 ± 0.019 [9]. The small amount of the
violation, which is nevertheless significant, is because of the reduced contrast in the
interferometer due to the additional spin flipper.

4. Decoherence Modes

4.1. Theory

In the following we want to consider two different modes of decoherence for an
entangled system composed of two spin-~ particles, see Ref. [10]. We start with
the quantum master equation where the dissipator is given by the simplified form,
Eq. (4),

a
8tPt = -'D(Pt) = ->"(Pt - L PkPtPk) 1

k

where we neglect dynamical effects induced by the Hamiltonian H. vVe choose four
projection operators as Lindblad generators such that: in the first case (A) the
operators Pk project onto the eigenstates of the Hamilton operators H of the undis
turbed system and in the second case (B) the projections are onto rotated states.

Case (A) can be called "E 0 E" because the projection operator is just the

product of the projections onto the eigenstates of the subsystems Pi; == p~l) 0

p~2). The solution for this case with the initial condition of the maxirnally mixed
antisymmetric Bell state Po == Iw-) (w-I is given by

o
1

-1
o

o 0)-1 0
10'
o 0

(A) _ ~ (~
Pt - 2 0

o

o
1

_e- At

o

o
_e- At

1
o

(10)
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For case (B) the projection operators are rotated in the first subspace accord

ing to Pk == [Jp~l)Ut ® pi2
) where the unitary rotation U just creates an equal

snperposition of the subspace-eigenstates. This justifies the name "R 0 E". The
solution of the master equation with the same initial condition Po is given by

1 - e->..t 0 0 0
(B) 1 0 1 + e- At -2e- At 0

(11)Pt == 4 0 -2e- At 1 + e- At 0
0 0 0 1 - e- At

We can calculate the Kraus operators for both modes. They are given by 11. 0 11.,

11. 0 (J' z, (J' z 0 11., (J' z 0 a z for mode E 0 E and by 11. 0 11., :n. 0 az, a x 0 :n., a x 0 a z for
mode R @ E (with some scaling factors in front, see Ref. [10]).

4.2. Decobetetice via tendota magnetic fields

"Ve want to test the above discussed modes of c1ecoherence within neutron interfer
ometry. Thus we have to find a source of clecoherence which allows for experimental
control. This can be done by using randomly fluctuating magnetic fields.

The action of a magnetic field B == Bii on the spin of a neutron is determined
by a unitary rotation U(a) = ei!fn.a where ii determines the direction of the field
and the rotation angle a == 2/-lBBt is given by the length and the duration of the
field. For example, a spin-up state in z direction 111) enters a magnetic field oriented
along z direction which results just in an ordinary phase shift, 111) ~ U(a)llI) ==
ei!fCTz 111) = e+ i ¥ 111). If the field is oriented along x direction we get a superposition
of spin-up and spin-down state, 111) ~ U(a)llt) == ei¥a;r 111') = cos ~11I) + i sin ~1-lJ,)·

Now suppose each neutron in the interferometer feels a different strength of
the magnetic field which results in different rotation angles for the neutrons. If
we integrate over the whole distribution of rotation angles we get a non-unitary
evolution of the whole ensemble of neutrons passing through the interferometer

p~p'=J~P(a)da.
pea)

(12)

We suppose the distribution P(a) to be a Gaussian with standard deviation a.

4.3. Expetunetitel teelizetiot:

The experimental realization of the decoherence modes discussed in Sect. 4.1 can
be done within neutron interferometry, Figure 3 shows the experimental setup for
mode E ® E.

The incoming polarized neutron beam I-U-) is split at the first plate of the in
terferorneter. In path I the neutron experiences an arbitrarily fluctuating magnetic

field B~I) (o~) oriented along z direction and operating with a rotation angle a.



Decoherence Modes in Neutron Interferometry 187

IJJ)

In)

If)

SF

Fig. 3. Schematical setup decoherence experiment for mode E@E, case (A). In
both paths there are arbitrarily fluctuating magnetic "fields, B~I) (Q) and B~II) ({3),
oriented in z direction

In path 11 there is the additional spin flipper which creates the entanglement and
another fluctuating magnetic field B~II) ({3) oriented in z direction with the rotation
angle (3. Both magnetic fields act independently but we assume that the distribu
tions of both fields have the same deviation a.

The action of the magnetic fields can be seen as a conditioned operation de
pending on the spin state

l7Pspin) ® Ill) ~ U({3)I1fJspin) ® Ill), (13)

where U(a) and U({3) denote the unitary rotations corresponding to the magnetic
fields. Applying this conditioned operation to each neutron in the initial state (7)
and performing the integration over all possible rotation angles we get the state of
the neutron ensemble after passing the interferometer

p' = Jpio; (3) P(a) P(t3)da d(3 = ~ (~
o
1

o

o

1
o

(14)

This state can be compared with the theoretically predicted decoherent state p~A) ,

Eq. (la), which immediately leads to the conclusion

(15)

This means the width of the distribution a of the random fields determines the
strength of the decoherence which is given by At.

The experimental realization for mode R ® E will not be discussed here because
of its analogy to rnode E 0 E; details can be found in Ref. [10].
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5. Conclusions

R.A. Bertlmann et al.

We have presented a theoretical model of decoherence for an entangled system
which can be tested experimentally within neutron interferometry. The important
result, Eq. (15), relates a theoretical parameter - the decoherence parameter A 
to an experimental parameter, the deviation 0". The time t corresponds to the
time of flight through the magnetic fields and is fixed in the experiments. Thus
it is possible to confirm experimentally the predicted exponential decrease e-)..t of
the off-diagonal elements of the density matrix p~A), Eq. (10), due to decoherence
by measuring the density matrix elements, e.g. via state tomography [12,13], for
different distributions with different deviations 0".

The experimental realization is work in progress.
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