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Abstract. The phase of a quantum state comprises information about the ge­
ometry of the state space. For example, in a magnetic field the spin state of a
neutron traces out a particular path in its spherical shaped state space and the
geometric phase acquired during this evolution reflects the curvature of this
sphere. But the geometric phase is not only restricted to the spinor wave func­
tion, also the path of the neutron in an interferometer gives rise to a non trivial
momentum state space and consequently to a geometric phase. Experimental
results for a non-cyclic evolution are presented that are in agreement with theo­
retical predictions derived purely from geometrical considerations. By obeying
a parallel transport condition dynamical contributions could largely be avoided
and the measured phase is of geometric nature.
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1. Introduction

Already in the 50's Pancharatnam [1] investigated the phase change of light when
changing its polarization by use of filters. This change in phase is based on the
spherical shape of the polarization state space. A seminal paper by Berry [2] in
1984 was finally the catalyst for a vast number of investigations in the geometry of
state space. He demonstrated that the adiabatic and cyclic transport of a quantum
mechanical system involves a phase contribution to the final state that is neither
dependent on the evolution time nor on the energies involved. A canonical exam­
ple is a spin-l/2 particle in a slowly changing magnetic field. The spin follows the
adiabatic changes of the field and accumulates a phase in a cyclic evolution that
consists of a dynamical and a geometric part. Simon [3] immediately noticed the
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connection to differential geornetry and the representation of the geometric phase in
terms of a fiber bundle along with a particular connection given by the adiabaticity
condition. Soon after there have been several extensions in various directions, e.g.
to degenerate Hamiltonian systems [4], to non-adiabatic [5] and non-cyclic evolu­
tions [6] and to an off-diagonal geometric phase [7]. A purely kinematic description
has been formulated by Mukunda and Simon [8]. Also for mixed states a geometric
phase can be defined [9-11].

Besides these theoretical work numerous experiments have been performed to
verify geometric phases using various types of quantum mechanical systems, e.g.
polarized photons [12] or NlVIR [13]. The spin-l/2 property of neutrons is particu­
larly suited for explicit demonstrations of geometric phenomena [14-17].

The geometric phase originates from the transport of a state vector in Hilbert
space. It is independent of the particular physical property that is represented
by the Hilbert space, be it a particle's spin or its (angular) momentum. In inter­
ferometry the which-way freedom of the incident particle is also connected to a
two-dimensional Hilbert space in the same manner as the spinor representation.
In general, Feynman et a1. [18] stated that the description of any two-level quan­
tum system is equivalent to the description of a spin-l/2 particle. Exploiting this
equivalence there is in principle no difference between manipulations in the spin
space of neutrons with the orthogonal basis {I i), I l)} as eigenstates of az, and in
momentum space with {Ik), Ik')} as orthogonal basis vectors corresponding to two
directions of the neutron beam in an interferometer. An even more appropriate
description for the interferometric case for the forthcoming discussion is in terms of
"which-way" basis states {Ip), IpJ..)}, namely, if the neutron is found in the upper
beam path after a beam-splitting plate it is said to be in the state Ip), or in the
state Ip..L), if found in the lower beam path.

Some of the authors studied already the cyclic spatial geometric phase experi­
mentally [15], however, their results admit some ambiguities in the interpretation.
The experiment has therefore been criticized by Wagh [20] later. He concludes that
in this setup the phase picked up by a state during its evolution is merely a U(I)
phase factor stemming from the dynamics of the system and not due to the geomet­
ric nature of the subjacent Hilbert space. In [19] the present authors have presented
first results on the extension of the previous setup to non-cyclic evolutions, dismiss­
ing thereby excoriated points. Further details are shown in the following in order
to substantiate the geometric interpretation of the measured results.

2. Theoretical Considerations

A double-loop interferometer as depicted in Fig. 1 (left) has been used in order to
rneasure the geometric phase obtained by the state evolution of 11/72) in the second
loop relative to the reference beam 11/7~). While the state 11/72) is split once 1110re at
the beam-splitter BS3 and is manipulated by an absorber (A) and a phase shifter
(PS2), on the reference beam only an additional phase shift is imposed. The final
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Fig. 1. Experimental setup utilizing a double-loop perfect-crystal neutron inter­
ferometer. One loop is used for the state manipulation with a phase shifter (PS2)
together with a beam attenuator (A) and the other one provides a reference beam
with adjustable phase by use of the phase shifter (PSI)

state of the former is denoted by 17/J/ ). By a rotation of the first phase shifter
(PSI) about an angle T/ interference fringes are recorded which disclose the relative
phase difference ~ == arg('l/Jrl'l/Jj) between /7/J/) and I'l/Jr). By a suitable choice of
attenuator A and phase shifter PS2, ~ is equal to the geometric phase accumulated
by l1Pt) during its traversal of the second loop. Changing the transmission coefficient
T and the phase shifts Xl and X2 in the second loop alters the path of I'l/lt) in its
state space and consequently also the geometric phase.

To justify the geometric nature of the measured phase the path on the Bloch
sphere representing the state space can be devised. The solid angle enclosed by
the path shown in Fig. 1 (right) is proportional to the geometric phase and these
purely geometrical considerations constitute a check whether the claims to measure
a geometric phase are valid. The solid angle can be calculated numerically and
results in the same curves as one finds by calculating the intensity pattern of the
superposed neutron beams in the double-loop interferometer.

Indeed, the interference pattern of the intensity measured by varying "] is de­
termined by

lei
'
T7 I1Pr ) + l1Pf)1 ex I; + It + 21(1Prl1Pf)1 COS("7 - arg(1Prl'1Pf)) (1)

with I; == (1Prl1Pr) and If == (-1/;fl1Pj) is shifted by arg(1/Jrl1/Jj). Explicitly,

n;. (fl/' I ) Xl + X? [(~X) 1 - JT]
'l' == arg 'f/r 7/Jf = 2 - - arctan tan 2 1 + VT ' (2)

and by carefully tuning the transmission T and the phase shifts <I? is exactly the
geometric phase of the state evolution.

What is the condition that the measured value is determined only by the path
on the sphere? According to Mukunda and Simon [8] the geometric phase is defined
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Le. the total phase minus the dynamical phase cPd. For a special choice of the phase
shifting slabs in PS2 dynamical phase contributions cPd are made to vanish so that
cP9 == cl> == arg ('l/Jr I'l/Jf) . More precisely, in order to avoid any dynamical terms the
state has to be parallel transported, that is, the scalar product ('l/Jt(~)I'l/Jt(~+ 8))
between two neighboring states has to be real. In our case the state transport
is accomplished by imposing the phase shift Xl(e) == -Cd1e on the reflected and
X2(e) == Cd2~ on the transmitted beam at BS3, where edenotes the rotation angle
and d1 and d2 the thickness of the phase shifter slab in the beam lpi-) and Ip), re­
spectively. C == N AlbeA with N A l the particle density and be the coherent scattering
length of aluminum. A == 2.715 Ais the mean wavelength of the incident neutrons.
The state in the second interferometer loop is given by

(4)

where we take also the intrinsic absorption along the path lpi-) into account by
introducing the transmission coefficient T l . The scalar product between two in­
finitesimally close states is

The imaginary part vanishes, if -T1sin(Cd18~) + T2 sin(Cd28~) == 0 or

T1dl = T2d2

(5)

(6)

for small 8. This provides the parallel transport condition which guarantees van­
ishing dynamical phase.

If the parallel transport condition is not fulfilled the integral of all the infinites­
imal contributions divided by the norm of the state defines the dynamical phase
[8],

~ == 1~/2 C( -d1T1+ T2d2)sd _ 1n2N b \ (d2T2 - dlTl)~ _ T1Xl + T2X2
Y-'d - S - Y ~ Al eAl.l\ - .

-~/2 (1/7(s)I1/7(s)) T, + T2 T, + T2

(7)

3. Experimental Results

In Fig. 2 the results for different ratios d1/d2 == T2/T1 are shown. The solid line
indicates the fit to the measured phase shift cl> and the theoretical predictions are
represented by the dotted line. The latter also comprises a linear term originating
frorn additional dynamical phase contributions, for example, due to a not perfectly
parallel phase shifter PS2.

The obtained data mirrors the geometric nature of the measured phase. Es­
pecially, we notice the increase of the phase up to ~X == 1r /2 corresponding to an
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Fig. 2. Observed phase shift <I> for a non-cyclic evolution of the state vector
parameterized by the relative phase shift ~X. The dotted line indicates the the­
oretical prediction for the geometric phase assuming hundred percent visibility,
whereas the solid line takes the diminished visibility into account. The dotted
straight line is the measured geometric phase for .6.X == 27[" when remaining dy­
namical contributions are subtracted

increase of the enclosed solid angle. From this point on there is a decrease since
the second part of surface area on the Bloch sphere is compassed in the opposite
direction causing an additional minus sign for the solid angle (cf. Fig. 1 (left)). In
the (d1 / d2 == 1)-setup a phase jump of Jr is observed pertinent to the transport of
the state along the equatorial line with no surface enclosed up to ~X == Jr. For
~X > Jr, n == 27r and therefore the geometric phase <I> == fJ/2 == 7L

The straight line indicate the measured geometric phase for a cyclic evolution
with ~X == 27r. This value has been corrected for the dynamical contribution and
coincides with the measured curve at ~X == 27r in the (d1/d2 == 1)- and (d1/d2 ==
1/8)-setup since in these measurements there is almost no dynamical phase involved.
In the other cases small dynamical contributions lead to an observable difference
between the expected geometric and the measured phase.
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3.1. Discussion on tile edditioue! pliese sbiit«

The qualitative agreement with the theoretically expected value is quite good for
all these setups, however, one notices two different modifications. First, there is
a flattening of the curves and second there is a compression along the ordinate.
Hence, to fit the data Eq. (2) is inapt as it stands, but

F(c·C D) - Xl(~)+X2(~) _ t [t (~X(~)) vr;-CP2] +Dc (8)
~" - 2 arc an an 2 vr; + C P2 ~

has to be used instead. C is responsible for the flattening and D is an extra linear
term that takes additional dynamical contributions leading to the compression into
account. The latter term is mainly due to a slight mismatch in the adjustment of
the ratio d1T1 == d2T2 as demanded by the parallel transport condition (6) as well
as a deviation in the initial position of PS2. If the angle between the forward beam
direction and the surface of the plates is not exactly 450 the effective thicknesses
change and the parallel transport condition is not fulfilled completely.

What is the physics behind the additional phase shift represented by the fit co­
efficient C? On the one hand side the neutron beam is neither perfectly monochro­
matic nor collimated, hence, a plane wave approximation is not fully valid. Instead,
a particular momentum distribution is attributed to the coherent neutron wave­
packet. This wave-packet structure comprises the coherence properties [21]. The
beam is only coherent up to a certain coherence order and consequently unequal
phase shifts in the beam paths lead to a loss of coherence. From another point of
view, the wave-packet is spatially displaced by a beam splitter and if finally the
partial beams do not overlap anymore, the visibility vanishes. For large displace­
merits so-called Schrodinger cat states are formed [22]. In our experiment phase
shifting plates of unequal thickness are placed into the different beam paths and
consequently unequal phase shifts of many orders difference are imposed on the
different beam paths. This causes the flattening of the experimental curve.

In particular, the intensity comprises contributions from the superposition of
three beams, each with a different phase factor and an attenuation factor,

I = le'i'1J + vT;e1X 1 + VT;e i X212 (9)

= 1 + T1 + T2 + 2JT1T2cos ~X + 2vT; cos(1] - Xl) + 2VT; cosCl] - X2).

The three cosine terms denote the interference oscillations between each beam pair.
Varying 1] causes a sinusoidal interference pattern. Indeed the two 1]-dependent
cosine terms can be subsumed into one and we find,

I = 1 + T1 + Tz + 2JT1Tz cos .6.X + 2 [JTf + T? + 2T1Tz cos .6.Xcos (TJ - <I»]

with <P given by

if,. Xl + X2 [(~X) vr; - P2]
'¥ == 2 - arctan tan 2 vr; + P2 ' (10)
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(12)

Le. the shift of the interference pattern is determined by the transmission coefficients
T1 and T2 as in Eq. (2).

Now, for the reasons discussed above the cosine terms in Eq. (9) are exponen­
tially damped due to the different spatial displacement in the different beams and
the intensity reads,

t' == 1+T1+T2+2~e-rl cos(1]-Xl)+2JT;e-r1cos('T]-X2)+2JT1T2e-r 12 cos 6.X.
(11)

Although all the discussion about the parallel transport remains valid, because the
state transport itself is still the same, it becomes evident that there appears an
additional phase shift due to the r factors. The new <I> I is different from <I> in
Eq. (10) whenever e-r1=1= e-r2:

Xl+X2 [(6.x)JT;-(e-r2/e-rl)JT;]
<I>' == 2 - arctan tan -2 JT; JT; .

T1 + (e-r2/e-r1) T2

In other words, only if the displacements are same in both Ip) and Ip..L) relative to
the reference beam I'l/'~) there is no influence from the finite coherence length. But,
since we have phase shifting slabs of different thicknesses and therefore different r 1

and f 2 , an additional phase shift is natural. This effect is more pronounced for
neutrons of lower incident energy.

4. Conclusions

We have extended the discussion on the spatial geometric phase in a double-loop
interferometer to non-cyclic evolutions. Different paths accompanied by different
geometric phases have been implemented to investigate the state-space geometry of
the underlying two-dimensional Hilbert space spanned by the path eigenstates. vVe
have identified dynamical contributions and provided a parallel transport condition
which has to be fulfilled in order to avoid them. A proper choice of transmission
coefficients and phase shifts in the second-loop gives a purely geometric phase, hence
information about the state space geometry, In all settings systematic deviations
from the theoretical curve are observed. These effects have been explained 011 the
basis of the finite coherence length of the neutron beam. The exponential damping
factors of the visibility between the individual partial waves lead to an observable
additional phase shift. This does not affect the geometric nature of the measured
phase, since the state evolution is not affected and still fulfills the parallel transport
condition.
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