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Abstract. Dispersion forces, which material objects in the ground state are
subject to, originate from the Lorentz force with which the fluctuating, object
assisted electromagnetic vacuum acts on the fluctuating charge and current
densities associated with the objects. We calculate them within the frame
work of macroscopic QED, considering magnetodielectric objects described in
terms of spatially varying permittivities and permeabilities which are complex
functions of frequency. The result enables us to give a unified approach to
dispersion forces on both macroscopic and microscopic levels.
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1. Introduction

As known, electromagnetic fields can exert forces on electrically neutral, unpolar
ized and unmagnetized material objects, provided that these are polarizable and/or
magnetizable. Classically, it is the lack of precise knowledge of the state of the
sources of a field what lets one resort to a probabilistic description of the field, so
that, as a matter of principle, a classical field can be non-fluctuating. In practice,
this would be the case when the sources, and thus the field, were under strict de
terministic control. In quantum mechanics, the situation is quite different, as field
fluctuations are present even if complete knowledge of the quantum state would
be achieved; a strictly non-probabilistic regime simply does not exist. Similarly,
polarization and magnetization of any material object are fluctuating quantities in
quantum mechanics. As a result, the interaction of the fluctuating electromagnetic
vacuum with the fluctuating polarization and magnetization of material objects in
the ground state can give rise to non-vanishing Lorentz forces; these are commonly
referred to as dispersion forces.
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(1)

III the following we will refer to dispersion forces acting between atoms, between
atoms and bodies, and between bodies as van der Waals (vd W) forces, Casimir
Polder (CP) forces and Casimir forces, respectively. This terminology also reflects
the fact that, although the three types of forces have the same physical origin,
different methods to calculate them have been developed. The CP force that acts
on an atom (Hamiltonian RA) in an energy eigenstate la) (RAla) == nwala)) at
position rAin the presence of (linearly responding) macroscopic bodies is cornmonly
regarded as being the negative gradient of the position-dependent part of the shift
of the energy of the overall system, ~Ea, with the atom being in the state la) and
the body-assisted electromagnetic field being in the ground state. The interaction
of the atorn with the field, which is responsible for the energy shift, is typically
treated in the electric-dipole approximation, Le. Hint == -d.E(rA) in the multipolar
coupling scheme, and the energy shift is calculated in leading-order perturbation
theory. In this way, one finds [1,2]

/-l 100 w
2

b,.Ea==-~LP dw dab·ImG(rA,rA,w)·dba
1r b 0 Wba + w

(P, principal value; Wba==Wb-Wa), where G(r,r',w) is the classical (retarded) Green
tensor (in the frequency domain) for the electric field, which takes the presence of
the macroscopic bodies into account. It can then be argued that, in order to obtain
the CP potential Ua(rA) as the position-dependent part of the energy shift, one
may replace G(rA,rA,w) in Eq. (1) with G(S)(rA,rA,w), where G(S)(r,r',w) is the
scattering part of the Green tensor. Hence,

(2)

(4)

(3)UO f ( ) - 1 ~ 100 dC Wab~2 cl G(S)( 'c) cl
a r A - - --2 L-,; ~ 2 C? ab' rA, rA, 'l~ . ba »
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U~(rA) = -~L e(W(lb)w~bdab' ReG(S)(rA,rA,Wab)' d ba,
cOC b

where Ua(rA) has been decomposed into an off-resonant part U~f(rA) and a resonant
part U~(rA), by taking into account the analytic properties of the Green tensor as a
function of complex w, and considering explicitly the singularities excluded by the
principal-val ne integration in Eq. (1).

Let us restrict our attention to ground-state at0111S. (Forces on excited atoms
lead to dynamical problems in general [2]). In this case, there are of course no
resonant contributions, as only upward transitions are possible [Wab <0 in Eq. (4)].
Thus, on identifying the (isotropic) ground-state polarizability of an atom as

. 2 '"" Wbl 2n(w) == lun -; L-,; 2 2' Icl1bl,
{:--4>0 f1, b W b1 - W - 'lWE

(5)
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we may write the CP potential of a ground-state atom in the form of (see, e.g.
Refs. [1-6])

U(rA) =~ l" d~ea(i~)Tr[G(S)(rA' rA, i~)],
27fcac'" la .

from which the force acting on the at0111 follows as

(6)

(7)

Now consider, instead of the force on a single ground-state atom, the force
on a collection of ground-state at0111S distributed with a (coarse-grained) nUInber
density ''7(r) inside a space region of volume Vr-iI. When the mutual interaction of
the atoms can be disregarded, it is permissible to simply add up the CP forces on
the individual atoms to obtain the force acting on the collection of atoms due to
their interaction with the bodies outside the volume Vrv1, Le.

Since the collection of atoms can be regarded as constituting a weakly dielectric
body of susceptibility XNI(r, i~),

(9)

(10)

Eq. (8) gives the Casimir force acting on such a body. Note that special cases of
this formula were already used by Lifshitz [7] in the study of Casimir forces between
dielectric plates. The question is how Eq. (8) can be generalized to an arbitrary
ground-state body whose susceptibility XrvI (r, i~) is not necessarily small. An answer
to this and related questions can be given by means of the Lorentz-force approach
to dispersion forces, as developed in Refs. [8,9].

2. Lorentz Force

Let us consider macroscopic QED in a linearly, locally and causally responding
medium with given (complex) permittivity c( r, w) and perrneability p( r, w). Then,
if the current density that enters the macroscopic Maxwell equations is

IN(r) = 1= clwlN(r,w) +H.c.,

the source-quantity representations of the electric and induction fields

read as

E(r) = 1= clw~(r,w) +H.c., B(r) = .l= clwB(r,w) +H.c. (11)

(12)
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(13)

where the retarded Green tensor G(r,r',w) corresponds to the prescribed medium.
In Eqs. (12) and (13), it is assumed that the medium covers the entire space so that
solutions of the homogeneous Maxwell equations do not appear. Free-space regions
can be introduced by performing the limits E~ 1 and J-L~ 1, but not before the end
of the actual calculations.

Because of the polarization and/or magnetization currents attributed to the
medium, the total charge and current densities are given by

where

j)(r) = 100 dwe(r,w)+ H. c., J(r) = 100 dWJ(r,w) +H. c., (14)

e(r,w) = -EOV" {[E(r,w) -ljE(r,w)} + eN(r,w)

iw J3' ( , ) -; (' )== c2 V· cl r G r, r ,W . IN r ,W , (15)

[EN(r, w) = (iw)-1 V ·IN (r, w)] and

l(r,w) == -iwEo[E(r,w) -l]E(r,w) + V x {J-Lo1[1- J-L- 1 (r , w)]B (r , w)} +IN(r,w)

= (V' x V' x - ~:) Jd3 r ' G(r, r', w) ·IN(r',w). (16)

As we have not yet specified the current density IN(r) in any way, the above formu
las are generally valid so far, and they are valid both in classical and in quantum
electrodynamics, In any case, it is clear that knowledge of the correlation func-

tion (IN(r,w)l~(r''w')), where the angle brackets denote classical and/or quan

turn averaging, is sufficient to C0111pute the correlation functions (e(r,w)Et(r',w')),

(t(r,w),E(r',w')), (l(r,w)Bt(r',w')) and (t(r,w)B(r',w')), from which the
(slowly varying part of the) Lorentz force density follows as

fdr) = 100 dw 100 dw' [(e(r,w)Et(r',w')) + a(r,w) x Bt(r',w'))

+(et(r,w)E(r',w')) + (It(r,w) x B(r',w'))L--->r' (17)

Vl here the limit r'~ r must be understood in such a way that divergent self-forces,
which would be formally present even in a uniform (bulk) medium, are omitted.
The force on the matter in a volurne Vf\,l is then given by the volume integral

(18)
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which can be rewritten as the surface integral

FL= r daoT(r),
i-;

7

(19)

where T(r) is (the expectation value of) Maxwell's stress tensor (as opposed to
Minkowski's stress tensor), which is (formally) identical with the stress tensor in
microscopic electrodynamics. Note that in going from Eq. (18) to Eq. (19), a term
resulting from the (slowly varying part of the) Poynting vector has been omitted,
which is valid under stationary conditions. If IN (r) can be regarded as being a
classical current density producing classical radiation, IN (r) ~ jclass (r, t), then the
Lorentz force computed in this way gives the classical radiation force that acts on
the material inside the chosen space region of volume Vl'vl (see also Ref. [10]).

3. Dispersion Force

As already mentioned in Sec. 1, the dispersion force is obtained if IN(r) is identified
with the noise current density attributed to the polarization and magnetization
of the material. Let us restrict our attention to the zero-temperature limit, Le.
let us assume that the overall system is in its ground state. (The generalization
to thermal states is straightforward.) From macroscopic QED in dispersing and
absorbing linear media [11,12] it can be shown that the relevant current correlation
function reads as

(IN(r,w)]Nt (r/,w/) = l!:- J(w _W/){w: Im c(r,w)IJ(r - r")
- - f.-lo7f C'"

- V x [Im p-l(r, w)IJ(r - r/)] x VI}, (20)

(I, unit tensor). Combining Eqs. (12), (13), (15), (16) and (20), and making use of
standard properties of the Green tensor, one can then show that

and

" nw2

(p(r, W )~t (r", wl
) ) == - -2 5(w - w l

) V . Im G(r, r", w)
- 7fC

(21)

(l(r,w)f3t(r',w') = -~J(w -W')(V x V x - ~:)ImG(r,r"w) x V' (22)

[note that (.et (r, w).E(r", w l ) ) == (It(r, w ):8(rI, w l ) ) == 0 in the ground state]. Insertion
of Eqs. (21) and (22) in Eq. (17) eventually yields the dispersion force density, from
which, according to Eq. (18), the dispersion force acting on the Inagnetoclielectric
material inside the chosen space region can be computed.
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(23)

Let us consider, for instance, an isolated dielectric body of volume Vl\rI and
susceptibility XrvI(r,w) in the presence of arbitrary rnagnetodielectric bodies, which
are well separated from the dielectric body. In this case, further evaluation of
Eq. (18) leads to the following formula for the dispersion force on the dielectric
body:

n J 3 100 2 ( .) [( I.]F == --22 cl r d~ ~ XM r, ~~ VTr GIvI r, r ,~~) r'-r,
7rC Vr-,'I 0

where GrvI(r, r', i~) is the Green tensor of the system that includes the dielectric
body. When the dielectric body is not an isolated body but a part of some larger
body (again in the presence of arbitrary magnetodielectric bodies), Eq. (23) must
be supplernented with a surface integral,

which may be regarded as reflecting the screening effect due to the residual part of
the body.

At this point it should be mentioned that if Minkowski's stress tensor were used
to calculate the force on a dielectric body, Eq. (24) would be replaced with

F ( lVlink ) - It 100 d"'" c2 J 13 [V' ( 'C)] T [G ( I 'C)]- ?2 I.:, I.:, c r XIvI r, ~I.:, r lVl r, r ,'ll.:, r'-r'
"-J7rC 0 vrvr

(25)

Although both Eq. (24) and (25) properly reduce to Eq. (23) when the dielectric
body is an isolated one, they differ by a surface integral in the case where the body is
S0111e part of a larger body. In the latter case, Minkowski's tensor is hence expected
to lead to incorrect and even self-contradictory results [9,13]. It should be pointed
out that the differences between the Lorentz-force approach to dispersion forces and
approaches based on Minkowski's tensor or related quantities are not necessarily
small, For instance, the ground-state Lorentz force (per unit area) that acts on
an almost perfectly reflecting planar plate in a planar dielectric cavity bounded by
almost perfectly reflecting walls reads

(26)

provided the distances di. and dR of the plate to the left and right cavity walls,
respectively, are sufficiently large. (Note that, as a consequence of these simplifying
assumptions, only the static value e == c(w ---+ 0) of the permittivity of the cavity
medium appears in the formula.] In contrast, the corresponding result on the basis
of Minkowski's stress tensor is [14]
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F(l'vlink) == nC1f
2

_1_ (~ _ ~) (27)
240 Vi d~ dt '

which can indeed noticeably differ from Eq. (26).
Let us return to Eq. (23) and assume that the (isolated) dielectric body is well

described by a susceptibility of Clausius-Mossotti type, Xl'vl(r,w) == co 1''7(r )a (w)/
[1 -1](r)0(w)/(3co)], so that the force on the body becomes

F==-fi/-L°l d3 r rX)d~e7](r)a(i~)[l+~XM(r,i~)]VTr[GM(r,r/,i~)]r/->r. (28)
21r VM lo

In the case of weakly dielectric material, the leading-order contribution to the force
is obviously

which is nothing but Eq. (8). Needless to say that performing in Eq. (29) the limit
VM -40 0, 1]~ 00 in such a manner that VM 1J~ 1 leads to the CP force acting on a
single atom, as given by Eq. (7) together with Eq. (6). Note that Eq. (8) has been
the outcome of microscopic considerations, whereas Eq. (29) has been derived from
a macroscopic treatment. lVloreover, Eq. (28) [or, more generally, Eqs. (23) and
(24)] also contain, as limiting cases, well-known expressions for vdW interactions,
which are commonly derived by treating the interaction between the atoms on a
microscopic level. To see this, one may resort to the Dyson-type integral equation
obeyed by the Green tensor GM (r, r', w) and the iterative (Born series) solution
of this equation. Specifically, let us consider two ground-state atoms and allow
for the presence of magnetodielectric bodies. The two-atom vdW force acting on
a ground-state atom [polarizability 01 Ci~)] at position rl due to the presence of
another ground-state atom [polarizability Q2 (i~)] at position r2 is obtained from
the first Born approximation of the Green tensor as

in full agreement with Refs. [15-17].

4. Summary

We have shown how dispersion forces on ground-state objects can be calculated
within a unified and conceptually transparent macroscopic framework, which is
based on QED in linear, causal rnedia. In this context, we have identified the
dispersion force on an object as the Lorentz force with which the fluctuating elec
tromagnetic vacuum acts on the charge and currents densities associated with the
induced (by the fluctuating electromagnetic vacuum) polarization and magnetiza
tion as well as the noise polarization and magnetization of the object. As a result,
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we have presented very general formulas for dispersion forces-s-forrnulas which ap
ply to macro- and micro-objects and even to single atoms, In particular, they have
enabled us to derive, in a 'top-down' manner, from the Casimir force acting on a
dielectric body in the zero-temperature limit the CP force acting on a ground-state
atom, which is usually derived microscopically from the ground-state energy shift
calculated in leading-order perturbation theory, with the atom-field interaction be
ing treated in electric-dipole approximation. Similarly, the formulas also contain,
as lirniting case, the well-known vdW interaction between ground-state atoms, so
that the Lorentz-force approach may indeed be said to provide a unifying basis for
the description of dispersion forces within the framework of QED in media.
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