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Abstract. We have measured the non-cyclic geometric phase acquired during
a unitary SU(2) evolution of a neutron spinor wave function for the mixed state
case. The data is in good agreement with theory, verifying the predicted values
for the mixed state geometric phase.
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1. Introduction

During the last twenty years the concept of geometric phase, first discovered by
Berry in 1984 [1], has given rise to a variety of research fields. Both, theoretical and
experimental approach have developed from its first verification, for photons in 1986
[2] and later for neutrons [3], to a highly sophisticated theory. Originating from the
geometric phase factor, acquired by transporting a quantal system round a circuit,
generalizations such as non-adiabatic [4], non-cyclic [5], including the Pancharatnam
relative phase [6], off-diagonal evolutions [7-9], as well as the mixed state case [10
12]' have been established within the scope of this concept. Furthermore it has
become apparent, that the Berry phase provides a proper basis for a diversity of
fundamental quantum mechanic experiments [13,14].

At the beginning of Section 2 the concept of geometric phase measurement is
introduced in respect to the current setup. In [15] we reported on a neutron polari
metric experiment for measuring the Pancharatnam relative phase, im plerueutlng a
method described by Wagh and Rakhecha in [16], considering the mixed state case
put forward by Larsson and Sjoqvist [17]. The main modifications of this setup,
now providing higher stability for geometric phase measurement, are explained in
detail in Section 2.1. Finally in Section 2.2 the results of the mixed state geometric
phase measurement are presented followed by a short outlook.
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2. Geometric Phase Measurement

S. Sponar et a1.

Generally the spinor part of a neutron state vector can be seen as a superposition
of 'up' and 'down' spin states referring to an arbitrary quantization axis. In the
described setup a phase shift is implemented by rotations around the x axis which
then consequently is chosen as basis. A schematic view of the setup is shown in
Fig. 1. The incident beam, polarized in the 1+ z) direction, now written as

1
1+ z) = )2[1 + x) + I - x)] (1)

passes two spin rotators (DC coils), with their magnetic fields with same absolute
value but opposite directions (x and -x).
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Fig. 1. Schematic sketch of the neutron polarimetric setup for mixed state
geometric phase measurement, including evolution of the polarization vector

According to the spin rotation formalism using an unitary operator Udenoted
as

" ( 8.5.) " Q (" a) QU(a) == exp -i-
2

- == lIcos 2" - i 8· -;; sin 2"' (2)

the polarization vector P is rotated by an angle TJ after the first coil and returns
back to its initial orientation when passing the second coil. In order to obtain a
Pancharatnam phase caused by a unitary SU(2) evolution given by

USU (2) «, 8,()
- e~i( sin~ )

e- U
) cos ~

(3)

additional coils (SU(2) coils) are displaced between the two DC coils. Hence et

continuous variation of the magnetic fields in the DC coils, resulting in a diversity
of angles 1], automatically yields the desired oscillations of the intensity required to
calculate the Pancharatnam phase.
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Using Eqs. (1)-(3) the intensity I at the detector for a pure state is calculated
as

I == l(z+1 exp ( - i1Bx1J) . USU(2)(~' 6, () . exp [ - i~Bx(21rn - '[])] IZ+/1 2

== cos2~ cos26 + sin2~sin2(( + 7])
(4)

which is the sarne result for the oscillating intensity as developed in [16].
Therefore, the Pancharatnam phase <P == arg(+zl-ool + z) == 8 + arg cos ~ can be

calculated modulo 1r from

;J;. (J c; )~ == arc cos . .
1 - I m ax + I min

(5)

For each SU(2) transformation several maxima and minima were measured by im
plementing a continuous variation of TJ. The values for I n1ax and I nl in are calculated
as an average of these maxima and minima.

The mixed state case is described by a density matrix in form of

(6)

with r being the degree of polarization r along the positive z axis and the mixed
state intensity given by

IQ == !(l - r) + rI (7)

with ~(1 + r) as the probability of finding the system in the up state and ~(1 - r )
for the down state. For r == 1, Eq. (7) is reduced to the pure state intensity. Using
Eqs. (5) and (7) one obtains

~ == arctan (r tan(8 + arg cos~))

finally yielding the Pancharatnam phase for the mixed state case

(8)

<P = arccos ( (9)

which again does not differ from the calculated phases in [17].
For the implementation of the mixed states an additional spin flipper is attached

to the polarizer. Hence the setup can be traversed by the neutron beam weather
with the spin flipper turned on or turned off. Consequently for every angle 1]

two intensities are measured which are denoted as I o ff for spin flipper off and Ion

for spin flipper on. The density matrix for the mixed states is calculated as a
weighted sum of I o ff and Ion referring to a certain degree of polarization r . With a
suitable combination of these two intensities an arbitrary degree of polarization can
be calculated. Two guide fields, located in front and behind the t\VO SU(2) coils,
are used to suppress depolarization which leads to a loss of visibility.
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The Pancharatnarn relative phase can be identified with the non-cyclic geo
metric phase if the evolution is parallel transporting, which can be realized by a
sequence of unitary transformations along great circles on the Bloch sphere. This
can be achieved by an arrangement of several orthogonal wired coils, implementing
rotation axis along the x and £ direction and therefore defining the SU(2) param
eters (~, 6, () introduced in Eq. (3). If USU(2) (~, 6, () is parallel transporting the
Pancharatnam phase is given as <.P = -~n, with n being the solid angle on the
sphere enclosed by transport path and its shortest geodesic closure (see Fig. 2) and
equals the non-cyclic geometric phase.

final
spin state

initial
spin state

final
spin state

initial
spin state

~-_._.~
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Fig. 2. Path on the Bloch sphere corresponding to the parameter set (~, 6, () =
(~,~, _3;) == a = (3= rr/2, for r = 1 (left) and r < 1 (right)

2.1. lVfodincatioll of tile setup

We have already measured the Pancharatnam relative phase, which is reported in
[15], this experiment considered the mixed state case as well. However, it is possible
to perform the phase measurement by implementing a different, more sophisticated
and robust version of the setup.

First, the extra phase-shift TJ can be achieved not only by translating the pair of
1r j2-flippers at distance Lo in a homogenous magnetic field, but also by substituting
this variation of distances Land L' that correspond to the angles 'T] and 21rn - 'T]

by rotations through the same angles in two DC coils situated directly in front and
behind the SU(2) coils. Inaccuracies due to the manual translation of the flipper
pair at constant distance Lo = L +L' and magnetic field deviations of the capacious
guide field are the major difficulties in performing the measurements described in
[15]. The distance n.- Lo was chosen to implement an integer multiple of a full
rotation through 21r.
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Suppose that the coils are designed equally and connected in series with the
poles exchanged at the second coil, i.e. the direction of the current and therefore
of the field in the second coil is inverted at constant absolute value. A variation of
the coil current automatically yields the phase-shift T} that causes the oscillations
required to calculate the Pancharatnam phase <I> without the need to 1110Ve C0111
ponents of the setup. Generally the spinor part of a neutrons state vector can be
denoted as a superposition of 'up' and 'down' states referring to the chosen quanti
zation axis, which was the z axis in the case of the Wagh setup [16]. In the modified
setup without the 7r /2-flippers, where the additional phase shift is implemented by
rotations around the x-axis, it is appropriate to change to a description of the state
vector by the superposition of 'up' and 'down' referring to the x axis, Le. I+x) and
1- x).

Furthermore, it is not necessary to rotate the polarization into the x,y plane.
All the physical predictions of [16] remain correct for the implementation of TJ simply
by rotations in the y,z plane. Thus, the pair of 7r j2-flippers can be omitted, avoiding
again loss of intensity and accuracy, caused by absorption and limited adjustment
ability.

2.2. Results

The experiments were carried out on the tangential beam tube of the 250 kW
TRIGA research reactor of the Atomic Institute of the Austrian Universities,
Vienna. The out coming neutron beam is monochromatized by a mosaic crystals
made of pyrolitic graphite, selecting a wavelengths of 1.65 A. A typical sinusoidal
oscillation, defined by a given SU(2) parameter set, is depicted in Fig. 3. This
oscillation was obtained by tuning the current in the DC coils.
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Fig. 3. Intensity fringes of the SU(2) parameter set (~, 8, () = (J' ~,- 3;) caused
by the variation of the magnetic field in the DC coils
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Fig. 4. Results for geometric phase corresponding to the parameter set (~, 8, () =
('i, "i, - 3:) == a = /3 = 1r /2, for a diversity of polarization degrees

For r = 1 the geometric phase equals 7r / 4 for the given parameters ((e, 8, () =
("i,~, _347r ) == Q = /3 = 1T/2). However, in practice it is impossible to obtain r = 1,
our initial degree of polarization was determined as 0.981 ± 0.0027. This value
and the flipping ratio of the zr-fiipper (48.043 ± 1.5968) are taken in consideration
for all further calculations. The decline of the geometric phase versus the degree of
polarization in respect to the calculated distribution, given by Eq. (8), is depicted in
Fig. 4. The measured values and the theoretical predictions show a high correlation
over a wide range of the polarization degree.

3. Future Perspectives

We are well aware of the fact that the above described method for creating a neu
tron beam in a mixed state does not fulfill all criteria that are considered crucial
with respect to depolarization. There is no element of randomness in the mixing
procedure since the relative frequencies for finding the system in either one of the
pure states I+ z) or I- z) are well known.

Nevertheless the states are based on measurements on the ensemble undergoing
SU(2) transformation and can be described by a density operator pof the form of
Eq. (6), thereby fulfilling the predictions developed by Sjoqvist et al. [10].

Hence we are now focusing on different methods for the creation of the mixed
states. For instance placement of a randomly magnetized material in the beam
trajectory, where the beam is completely depolarized up to the degree of covering
of the beam cross section. Alternatively we are considering a slightly detuned RF
flipper, thereby arbitrarily diminishing the degree of polarization.
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4. Conclusions
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The geometric phase acquired during a unitary SU(2) evolution of et spin-1/2 state
was measured for the mixed state case using a neutron polarimetric setup. The
results are in good agreement with theory, verifying the predicted values for the
mixed state geometric phase.
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