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Abstract. We study the cooling effect induced by a transversely pumped ring
cavity on the motion of NV linearly polarizable particles, all of which are trapped
in the same cavity. We derive the friction tensor including cross friction terms
and compare it to the friction coefficient of single-atom cavity cooling. We find
that atoms that are not trapped by the cavity field are cooled independently
with the same efficiency as a single untrapped atom. For atoms self-trapped in
the cavity field, however, collective effects kick in. These result in an N-fold
increase of the friction on the center-of-mass mode, however, all other modes of
motion are practically not cooled by the cavity. This shows that cavity cooling
works efficiently for many particles cooled collectively, and allows us to reach
the regime where the particles are deeply trapped in harmonic wells. There it
has to be complemented by other cooling methods, e.g. sideband cooling.
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1. Introduction

Radiative properties of atoms are substantially modified if, instead of being in free
space, the field is enclosed in a resonator. Cavity quantum electrodynamics (CQED)
leads to new phenomena and applications in the subject of manipulating the gross
motion of neutral massive particles by optical means. One example is cavity cooling,
a recently predicted [1] and demonstrated [2] method of efficiently cooling atoms
by means of dynamically varying cavity fields. Cavity cooling can in principle be
applied to an arbitrary particle with linear polarizability and is therefore a major
research topic in several laboratories and theoretical groups today.

Cavity-induced forces on a dilute gas of atoms are distinguished by the inherent
role of many-body effects. The evolution of the whole system of cavity field and
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atoms cannot be interpreted in terms of independent single-atom processes. The
effect of one atom on the field is felt by other atoms in the resonator on the fast
time-scale of the photon round trip time. There is then a cavity-mediated indi-
rect interaction between remote atoms. This intriguing aspect of cavity QED, for
instance can yield a collective behavior of the atoms [3,4]. The status of current
experiments related to the collective light forces in various types of resonators is
reviewed in [5].

Central question to cavity cooling is whether the friction mechanism survives
the indirect atom-atom coupling and whether it can be extended to a cloud of
atoms. One might expect that the cooling relies on delicate correlations between
an atom and the field mode dynamics, which is disturbed by the fluctuating motion
of other atoms. This paper is devoted to this problem, and we determine the linear
friction tensor for a many-particle system in the ring-cavity geometry.

2. Correlated Atom—Field Dynamics

We consider the system composed of a gas of IV polarizable particles coupled to the
electromagnetic field of a high-Q ring resonator. We assume a one-dimensional ring
cavity with two degenerate counter-propagating modes, described by the plane-wave
mode functions fi(z) = e*® and fo(x) = e~%%, with coherent amplitudes ; and
az. This geometry corresponds to the experimental setups in [6-8]. The particles
are driven by a pump laser oriented perpendicular to the cavity axis. The electric
field in the cavity is then given by E(x) = fi(z)a; + f2(z)az + n:/g, where the
last term corresponds to the pumping field with amplitude 7; that is assumed to be
constant along the resonator axis ‘z’, and g is the atom-mode coupling constant.
For simplicity, we consider the system only in one spatial dimension: the atoms are
supposed to be confined near the resonator axis by e.g. a strong dipole trap.

The interaction is in the dispersive regime, i.e. the pump laser is very far detuned
from all the resonance frequencies of the gas particles: no real excitations take place.
In this limit the atoms can be treated as linearly polarizable particles described by
the single atom light shift Uy related to the atomic properties by Uy = —wex’'/V,
where x’ is the real part of the linear polarizability and V is the cavity mode volume.
The atoms redistribute photons by coherent scattering between the two modes and
the pump field. This process feeds the cavity modes with an effective amplitude
n = Upne/g. The dynamics of the cavity modes with the scatterers at z;, j = 1...N
is given by the following differential equations [9]:

N
d ) .
Ea:Aa—-me(xj), (1)
7j=1
using a formal vector notation for the mode amplitudes & = (a;, ag)T, for the mode
functions f(z) = (f1(x), f2(z))T and for the coupling matrix

_ Z(AC - NUo) - K —-’iNUoO’
A= ( —iNUpo* i(Ac — NUp) — n) ' @
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The diagonal terms include the detuning between the pump laser and the cavity
modes, A¢ = w —wg, the cavity decay rate x, and the shift of the cavity resonance
due to the forward scattering of the photons with an amount of Uy per atom.
The total frequency shift due to the polarized gas is NUy. The off-diagonal terms
give the coupling between the cavity modes that stems from the stimulated back
reflection off the gas. This process is heavily dependent on the positions of the
atoms, through the complex parameter o =  3°; e~ 225 describing spatial order.
Similar to the Debye-Waller factor, |o| is 1 if the gas forms a perfect lattice with
period of an integer multiple of A/2, and less than 1 for a non-perfect lattice; for
a homogeneous gas, it is [o] o< 1/v/N. The phase of o gives xo, the “position of
the lattice” modulo A/2, with ‘the definition ¢ = |o|e~%*%0. The importance of
this parameter in a ring cavity, and the conditions of thermodynamic stability for
various spatial distributions are discussed in a recent paper [10].

The correlated dynamics of the field and the atoms emerges when we consider
the force exerted by the cavity field on each atom. If the pumping field is far
detuned from the atomic resonance, scattering into other than the cavity modes is
negligible therefore the light force acting on the atoms is solely the dipole force [9]:

pi'= 4hkUp Im[e?*®: oy o] + 2hk Im[n (€™ a; — e )] . (3)

The dipole force originates from the coherent redistribution of photons between the
optical modes. The first term is due to the photon scattering between the two cavity
modes, and the second term comes from the scattering between the pumping mode
and each cavity mode.

3. Friction on Slowly Moving Atoms

Moving atoms can be cooled down through the photon loss channel of a high-Q
cavity via the dipole force Eq. (3). Friction could be explained on the ground of the
coupled atom—field dynamics considering that the influence of the atomic motion
on the cavity field appears with the characteristic time lag 1/x. The back action of
the field on the atom is non-adiabatic, hence a friction force can effectively occur
for certain parameter settings [1,9)].

We intend to reveal the linear velocity dependence of the force in the regime of
small atomic velocities (kv < &), when the atoms move much less than a wavelength
during the characteristic time 1/k of the cavity field dynamics. In this limit we
expand the mode amplitudes a = (ay, a2)T up to first order in each vj, the velocity
of the jth atom:

N
a=a® 4 Zvj agl). (4)
j=1

The field amplitudes depend on the position of the atoms therefore the total time
derivatives are given by the usual expression:
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d N
ziza(t,:rl,...,rN)=%a-l—jz_:lvjaixja. (5)
We substitute Eq. (5) and Eq. (4) into Eq. (1), to obtain the field dynamics up
to first order in the small velocities v;. The quasi-stationary solution of the field
amplitudes can be obtained by setting the partial time derivatives in Eq. (5) to 0.
Since in the “slow atomic motion” limit k! < (kv)~!, the field follows the motion
of the atoms almost adiabatically. The quasi-stationary value a(®) is the adiabatic
approximation, whereas the quasi-stationary value of a(!) furnishes the first order
correction to the adiabaticity, and is the key to obtaining the friction force:

o =in A7t " (z:), (6)

W _aA-19 (0 _ a1 9 A-15 g
a; A 8:c,~a mA ijA ;f(:cl), (7)

where the inverse of the coupling matrix A reads:

A-l _ i i(AC — NUo) — K iNUoO‘ (8)
- D iNUyc™* 1(Ac —NUy)— k)’
and D is the determinant of A:
D =det A = (i(Ac — NUp) — k)2 + N2UZ|o|2. (9)
We express the friction force in the following form,
N
FV = =% 8i;v; (10)
Jj=1

that defines the friction tensor 3;; describing the friction force on the ith atom due
to the motion of the jth one. Substituting the velocity dependent mode amplitudes
Eq. (4) into the expression of the force Eq. (3), and keeping just the leading order
in velocity one can end up with the formal expression for the friction tensor:

0 2ikz; .
Bij = — 4hkUy Im{(a(o))T (_e—2ikz,~ ¢ 0 ) (a§~”) } (11)

— 2hk IIH{T] (eikm; , —e_ik“"" )agl) } )

Investigating the properties of this friction tensor reveals important results on
the cavity cooling of a large ensemble of atoms by a ring cavity.
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4. Collective Cooling

The cooling process of many atoms in a driven single-mode standing-wave cavity
was numerically simulated and a linear slowing down with increasing number of
atoms was obtained in [11]. A closer inspection of the data revealed that the atom
number influenced the cavity photon number in a way which led to the decrease
of the cooling force. With parameters ensuring a photon number closely constant,
the cooling efficiency was predicted not to change. The possibility of collective
cooling has been found for a modified geometry in [3]: there, instead of driving the
cavity, the atoms are directly illuminated from the side. However, no analytical
derivation has been provided to confirm and discuss this effect. For well trapped
particles oscillating closely harmonically, a simplified model has been solved [12]. In
the present article we calculate the friction force on many atoms in a transversely
pumped ring cavity without any assumption on their spatial distribution.

4.1. Single atom friction

For reference, let us first derive the friction coefficient for a single slowly moving
atom in the cavity. This also supplies us the diagonal elements of the friction tensor
of the N-atom case. We are interested in the limit where the coupling between the
atom and the resonator modes is small, meaning that |Up| <« k. To leading order
in the small parameter Uy/k, we find that the friction coefficient, averaged over one
wavelength, is given by:

_ 8k n|2k(=Ac)

b= (k2 + AZ)?

Remembering that n = Upn; /g, the friction constant is proportional to UZ. Similar
results have been obtained for a symmetrically pumped ring cavity [14], and also
for other geometries [13].

The friction coeflicient 3, of Eq. (12), is depicted in Fig. 1 in the limit |Up| < &
as a function of the cavity detuning Ac, in units of 84k2n?/x2. The result shown
in Fig. 1 supports a simple view of the cooling mechanism. When Ag < 0, ie.
w < we, the frequency of the photons scattered from the pump to the cavity is
converted slightly upwards at the expense of the kinetic energy of the atom — this
results in a cooling force on the atoms. For blue detuning with respect to the cavity,
Ac¢ > 0, pump photons lose energy when scattered into the cavity, and therefore
the scattering atoms are heated. Note, however, that this simple interpretation of
the cooling mechanism can be invoked only in the limit of large atomic detuning.
We also remark that BA¢ < 0 is also valid if the first-order corrections to Eq. (12)
in Up/k are taken into account. ’

As seen in Fig. 1, a good choice of the cavity detuning that warrants effective
single-atom cooling is A¢ =~ —k. Let us now compare the friction obtained with
that choice to free-space Doppler cooling. Substitution into Eq. (12) gives:

(12)

D)

2 2
Ac=—-k = f= 2hk2‘7Z-L.— - 2hk2pe%. (13)



146 D. Nagy et al.

L —_ 1 1 1

-0.4 L——
4 3 2 -1 0 1 2 3 4

Adx
Fig. 1. The averaged one atom friction as a function of A¢/x under the assump-
tion |Up| < k. B is in arbitrary units

Neglecting a constant factor we obtain friction g2/x? times larger than the friction
force of the Doppler-cooling in free space, 2ik?P,, where P, is the mean excita-
tion of the atom. The factor g?/sk? can be much larger than 1 in the so called
strong coupling regime, where the cooling process is thus accelerated owing to the
resonator.

4.2. Collective friction for many atoms

Loading many atoms into the cavity, they determine together the total cavity field,
therefore the friction force on any single atom is influenced by the motion of the
other atoms. Cross friction terms occur as expressed by Eq. (10). The linear friction
force on the ith atom as a function of the velocity of the jth atom is defined by the
elements of the friction tensor §;; that is given by Eq. (11).

For more than one atom the determinant D of the coupling matrix becomes
dependent on the position of the atoms. However, performing our calculations in
the regime |Uy| < & and further assuming that NUp/x is still a small parameter
(even collective coupling is weak), the determinant D would depend only on the
atomic positions in second order of NUp/« that could be neglected.

Up to the lowest order of Uy/k and NUp/k the friction tensor has the following
form:

i = 8hk*n?k(—Ac)
LV ( 52 + A% )2

which is the main result of this paper. The elements depend on the positions as the
cosine function of the distance between the corresponding atoms ¢ and j. One can
easily deduce the following important consequences.

cos k(z; — z;), (14)

e The diagonal elements (;; up to this order are the same as the one atom
friction coefficient, see Eq. (12), that is depicted in Fig. 1.
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e The matrix §;; is symmetric and real, thus it has an orthogonal eigenvector
system, and furthermore it is a positive semidefinite matrix, so it has non-
negative eigenvalues. This last property ensures that none of the eigenmodes
of the atomic motion would be heated.

o The trace of the friction tensor is N times the one atom friction coefficient,
so in average the one atom friction is recovered. However, as we see later, for
deeply trapped atoms this average is not representative: the center-of-mass
mode is cooled N times more efficiently than a single atom, all other modes
are cooled only poorly.

The result of Eq. (14) leads to further conclusions concerning the effectiveness
of cavity cooling in a ring cavity. Atoms in a thermal cloud not trapped by the cavity
field move with random velocities with respect to each other. This already decreases
the importance of cross-friction. Furthermore, note that as the atoms move freely,
it is justified to average Eq. (14) over the positions of the atoms. Since the off-
diagonal terms of the friction coefficient matrix are proportional to cos k(z; — x;),
these disappear after averaging. Thus, untrapped particles cool independently with
the rate of the single atom friction coefficient. Cavity cooling is suitable to remove
the kinetic energy of the atoms until their motion is synchronized, allowing them to
radiate energy into the cavity in phase and be self-trapped in the dipole potential
wells (see Refs. [4,10] for an analytical treatment of this interesting phase transition).

Once the atoms are trapped by the cavity field, they are localized in a lattice,
such that z; = zo + n;\ + &;, with n; integer and |£;| < A for every j =1,...,N.
The parameter x¢ fixes the position of the lattice, and the order parameter is |o| =~ 1.
Now all elements of 3;; are equal to the single atom friction coefficient 8 (but not
to the position-averaged formula of Eq. (12) up to first order in the §;. Such a
square matrix with all elements identical can be written into the form of a dyadic
product, 3 = BdT o d, where d is the N-dimensional vector consisting of 1’s:
d = (1,...,1). The only nonzero eigenvalue of the matrix corresponds to this
eigenmode. Physically, this means that only the center-of-mass X = 3, z; of the
atom cloud is subjected to friction, albeit to a very strong one, with coefficient V3.
All the other modes are undamped (but not heated) as the atoms are more and
more localized in the lattice.

5. Conclusions

On studying the friction tensor of a many-particle system in a transversely pumped
ring cavity, we found that cavity cooling remains efficient until the particles are
strongly trapped in the harmonic oscillation regime. This cooling mechanism can
therefore be used for ensembles to reach the strongly bound vibrational regime
where further cooling can be provided, e.g. by sideband cooling method [15,16].



148 D. Nagy et al.

Acknowledgments

The work was supported by the National Scientific Fund of Hungary (Contract Nos.
T043079, T049234) and the Bolyai Program of the Hungarian Academy of Sciences.

References

1. P. Horak, G. Hechenblaikner, K. Gheri, H. Stecher and H. Ritsch, Phys. Rev.
Lett. 79 (1997) 4974; G. Hechenblaikner, M. Gangl, P. Horak and H. Ritsch,
Phys. Rev. A 58 (1998) 3030.

2. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse and G. Rempe,

Nature 428 (2004) 50.

P. Domokos and H. Ritsch, Phys. Rev. Lett. 89 (2002) 253003.

J.K. Asbéth, P. Domokos and H. Ritsch, Phys. Rev. A 70 (2004) 013414.

5. A.T. Black, J.K. Thompson and V. Vuletic, J. Phys. B: At. Mol. Opt. Phys.
38 (2005) S605.

6. D. Kruse and C. von Cube and C. Zimmermann and Ph.W. Courteille, Phys.
Rev. Lett. 91 (2003) 183601.

7. S. Slama, C. von Cube, B. Deh, A. Ludewig, C. Zimmermann and
Ph.W. Courteille, Phys. Rev. Lett. 94 (2005) 193901.

8. Th. Elsésser, B. Nagorny and A. Hemmerich, Phys. Rev. A 69 (2004) 033403.

9. P. Domokos and H. Ritsch, J. Opt. Soc. Am. B 20 (2003) 1098.

10. D. Nagy, J.K. Asbé6th, P. Domokos and H. Ritsch, Europhys. Lett. 74 (2006)
254.
11. P. Horak and H. Ritsch, Phys. Rev. A 64 (2001) 033422.
12. M. Gangl and H. Ritsch, Phys. Rev. A 61 (2000) 011402.
13. K. Murr, S. Nussmann, T. Puppe, M. Hijlkema, B. Weber, S.C. Webster,
A. Kuhn and G. Rempe, Phys. Rev. A 73, (2006) 063415; K. Murr, Phys.
Rev. Lett. 96 (2006) 253001.

14. M. Gangl and H. Ritsch, Phys. Rev. A 61 (2000) 043405.

15. S. Zippilli and G. Morigi, Phys. Rev. Lett 95 (2005) 143001; S. Zippilli and
G. Morigi, Phys. Rev. A 72 (2005) 053408.

16. A.D. Boozer, A. Boca, R. Miller, T.E. Northup and H.J. Kimble, Phys. Reuv.
Lett. 97 (2006) 083602.

=W





