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Trapping States of a Trapped Ion, Revisited
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Abstract. The vibration of ions in the potential well of an ion trap has served
for the first demonstration of laser cooling and is an essential ingredient of
concepts for quantum information processing. The ion motion couples to a
driven internal ion resonance such that the system obeys a Jaynes-Cummings
(J-C) model that predicts coherently generated "trapping states" of the oscil­
latory excitation known from micro-maser dynamics. In the past, metastable
states of the vibrational excitation of an individual trapped Ba ion had been
observed. They were tentatively identified with the trapping states of the J-C
model. Recently, an extension of this model including the spatial distribution
of the light field has been shown to give rise to another type of trapping states
that are robust under decoherence. The characteristics of these novel trapping
states better represent the previously observed metastable vibronic states.
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1. Introduction

Ions confined in various configurations of electrodynamic or electromagnetic traps
and interacting with radiation are currently used as building blocks for quantum
information processing (QIP) [1,2]. Localized at local minima of the trapping
potential, they are subjected to vibrations around these points of stability, and
the vibrational modes are being used as carriers of information, in addition to
the internal degrees of freedom [3, 4]. Ions in vibronic states may be selectively
addressed by pulses of radiation that are resonant with a vibrational side band of an
electronic resonance of the ions [5,6]. A pulse whose time-integrated Rabi frequency
- its dimensionless "area" - is well defined, discriminates vibronic states since the
transition probability depends on the vibrational quantum number. Also, certain
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manipulations require that et particular vibronic state is 'inert upon the interaction
with the radiative pulse. or rnerely changes the sign of its wave function. In the past,
such a condition had been implemented on an electronic resonance when shining,
upon a gas of atoms, pulses of resonant radiation whose area is an integer multiple
of 27r. This arrangement warrants the atoms, having undergone a full absorption­
emission cycle, eventually to be left in their original ground state, provided that
radiative loss is negligible during the cycle (Fig. 1). This kind of process is the
basis of what is known as "self-induced transparency" of radiation (SIT) in the
transmission of light pulses through a resonant absorber [7,8]. Even the light pulses
have been shown to become stable: Back action by reemitted light does shape the
transmitted pulses and allows deviations of both the input pulse shape and pulse
area fronl their steady-state value. Partial dissipation forms each pulse to approach
a train of stationary pulses whose total area equals a multiple of 27r: a particular
type of "solitons".

Fig. 1. Resonant interaction of a two­
level atom with a light pulse of area
21r (schematic): self-induced trans­
parency. Reemission in general would
shape the pulse and generate loss, but
there is a stable pulse shape that sur­
vives multiple interaction

The interaction of a field mode of radiation - representing an oscillator ­
with a "two-level" atom equivalent to a spin is described in terms of the Jaynes­
Cummings model (J-C) [9]. In particular, J-C has been operative upon modelling
the dynamics of a micro-maser field [10, 11]. Here, special excitation numbers of
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the field 1110de in a microwave resonator have been predicted and later observed
[12] that resist the further growth of that rnaser field upon increased pumping by
a beam of inverted atoms. These "trapping states" of the field represent states of
dynamic metastability of the coupled system made up of "spin" and field.

2. Vibrational Trapping States

It has been noticed some time ago that the vibrational dynamics of a two-level atom
that moves in a potential well and also represents an oscillator - a mechanical one
- coupled to a "spin" , is likewise governed by J-C. Thus, vibrational trapping states
have been expected to show up' upon vibronic sideband excitation to an electronic
resonance of such atoms, e.g. ions in a trap [13-16]. From a solution of J-C, the
probabilities of excitation and survival of such an at0111 in state n upon resonant.
side band excitation are

and

w(n + 1\ n) == sin 2 (In + 1 Os/2) (1)

w(n ln) == cos2 (v'Ti+lBs/2) , (2)

respectively, where es == \nsITs, and ns == iT]n is the Rabi frequency on the first­
order red-shifted sideband in the Lamb-Dicke limit, rJ «: 1 [17]. This limit requires
the spatial extension of the atom's vibronic vacuum wave function not to exceed
the wavelength of the radiation. Thus, the trapping condition reads

esvno + 1 == 27rm (3)

for any trapping state no, and m integer.
In a series of experiments on a single barium ion, localised in an electrodynamic

(Paul) trap, laser light at 492 nm, being slightly down-tuned from resonance, excited
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Fig. 2. Binary detection of resonance fluorescence from a single barium ion,
excited by blue (493 nm) and red (650 nm) laser light
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the ion's Sl/2-Pl/2 line, and the resonance scattering was detected [18]. In order to
counteract optical pumping into the 2D3/2 state, irradiation by laser light at 650 nrn,
resonant with the 2D3/ 2_ 2Pl/2 line, repumped the ion from its D3/ 2 level into its
ground state. The ion's laser-excited resonance scattering was recorded via two
channels (Fig. 2). In the first one, the scattered light was focussed onto a pinhole of
35 /-Lm diameter before being detected as the "local" signal. This signal showed its
full extent only when the ion was "cold" , Le. pointlike, and distributed over its lowest
vibronic levels; upon higher vibrational excitation, the signal was cut down. In the
other channel, a corresponding diaphragm was some 200 usx: wide, such that the
full signal was detected even when the ion was vibrationally excited and the image
of its orbit had grown to substantial size. This signal served for the discrimination
of light fluctuations. Then, the ratio of the two signals represented a measure
of the extension of the vibrational orbit of the ion. An example of the temporal
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Fig. 3. Left: Total signal (a), local signal (b) vs. time, pitch of red laser (c),
and power of irradiated radio frequency resonant with secular motion of ion
(d). Signal level 1 corresponds to optimum cooling the ion, levels 2, ... , 4 to
metastable vibronic states (Ib = 12 W /cln2

, I; = 25 W /cm2
) . Right: Local

signal normalized by total signal, vs. time, Various perturbations (RF: pulsed
rf heating, QJ: quantum jump, OH: incremental variation of red-laser tuning,
se: spontaneous onset of laser cooling) take the ion to various metastable orbits
(Ib = 12 W /cm2

, I; = 20 W /crn2
) (from Ref. [18])

variation of this ratio is shown in Fig. 3. Instantaneous perturbations either took
place spontaneously (for instance, by off-resonant electronic Raman excitation of
the dark state 2Ds/ 2, causing a break in the light scattering and laser cooling), or
they were applied intentionally (pulsed rf heating, or incremental detuning of the
red repump laser). The recording of the normalized local signal while perturbations
took place resulted in four reproducible signal levels, the highest of which was
attributed to the optimally cooled state of the ion, whereas the other three signal
levels were considered metastable vibrational states. The latter ones have been
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tentatively attributed to SIT-like trapping states, according to Eq. (3). A rough
estimate of the quantum numbers corresponding to the metastable levels, however,
showed them to somewhat exceed the lowest expected trapping numbers.

Although this experiment involved continuous light, the ion had to alternate
between the Sl/2 ground state and the D3/ 2 metastable level in a stochastic sequence
of excitations and deexcitations. A sequence of regular cycles can be achieved when
pump-laser pulses are made alternating with pulses that drive the dipole-forbidden
resonance to the D3/ 2 metastable level. In what follows it is shown that a cold ion
in a trap, subjected to alternated pumping and vibronic-sideband driving, not only
gives rise to metastable vibronic states of SIT type. In addition, there is another
type of "trapping states" that result from the spatial structure of the light field.

3. Dynamics of a Laser-Pumped and Laser-Driven Ion in the
Trapping Potential

The ion is described as a three-level atom with ground state 11) and an excited state
12), typically of same parity as 11) (Fig. 4). Pumping the ion to this state 12) via
a resonance level 13) is considered to alternate with the ion's return to the ground
state 11), driven on a vibrational sideband. The system is modelled by the equation
of motion of the vibronic density operator [19]

p= -* [Ho + Hr(t),p] + relaxation terms,

3

fIo == nvata==L hwA'ii ,
i=l

where r == p, s for the intervals of pumping and sideband driving, respectively,

'" 1 " . tHp == 2IinpA31e-~wp + h.c. ,

iI - ~ ~nA e'i(kx-wt) + h cs - 2 It 21 . ..,

(4)

(5)

(6)

(7)
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Fig. 4. Preparation of a trapping
state: Intervals of pumping the ion,
by laser light (Rabi frequency Op),
to level 12) alternate with intervals of
laser-driving the first vibrational side­
band of line 1-2 directly (Rabi fre­
quency Os), or Raman-like (dashed ar­
rows)
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Aij == Ii) (j I generates transitions between the electronic states i and j, x ==
(at + a)TJc/W ~ and CL and CL t are the annihilation and creation operators of a vi­
brational quantum, respectively. The relaxation terms include photonic recoil on
the centre-of-mass motion of the ion. With the pumping interval being long enough,
a stationary state is approached, when the population is accumulated in level 2. The
corresponding matrix element fJ22 = (2IfJI2) still operates on the vibrational degree
of freedom in the subsequent radiative driving, e.g. on the first red-shifted sideband,
W == W21 - t/, This driving induces transitions between the vibronic states 12, n) and
11, n + 1), where n labels the ion's vibronic eigenstates in the potential well of the
trap. In the interaction picture, and with the rotating-wave approximation in the
vibration frequency, the drive Hamiltonian turns into

(8)

where fl s == i7]fl is the Rabi frequency on the first-order red-shifted sideband in the
Lamb-Dicke limit [19]. The (normally ordered) operator function

(9)

of the number operator it = ata takes care of spatially more extended vibronic
states that may violate the Lamb-Dicke condition, and J1 is the first-order Bessel
function.

4. Coherent Generation of Trapping States

The temporal evolution of the system during the kth driving interval is modelled
by a time-evolution operator acting on the vibronic density operator [19]. The
expectation values of the occupation density of the vibronic states are shown to obey
a recurrence relation whose coefficients represent the probabilities for vibrational
excitation, or survival, in one pump-drive cycle. It turns out that in Eqs, (1) and
(2), the argument nsJn + 1 must be replaced by

such that the probabilities of excitation and survival become

'Wcoh(n + Iln) == sin2 (n~,n+1Ts/2) ,
wcoh(n/n) == cos2 (n~,n+lTs/2) ,

(11)

(12)

respectively, and L~l) is an associated Laguerre polynomial. Thus, there exist two
independent types of trapping conditions for a particular vibronic state n to become
a trapping state no:

(13)
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('Tn integer) that is of SIT type, modified only by the factor f CnD; "7)' This trapping
requires coherent interaction of light and atomic polarisation. In addition, further
vibrational excitation also discontinues when

(14)

holds. This condition is associated with the zeroes of the Laguerre polynomial
in (10). It results from a Franck-Condon-type overlap integral of neighbouring
vibronic eigenstates.

In order to make a particular eigenstate a trapping state, it may be addressed by
properly choosing the driving pulse area Bs := OsTs according to the SIT condition
(13). Alternatively, one may pick an arbitrary, so far non-trapping value of Bs and
select an effective Lamb-Dicke parameter TJ that matches condition (14). Setting TJ
may be achieved when two laser beams drive the ion in a Raman-like configuration:
the angle subtended by the beams determines the effective Lamb-Dicke parameter.

Transition probabilities for vibrational sideband excitation according to trap­
ping conditions (13) or (14) being matched, and with no = 50, are shown in Fig. 5.
Note that the probability values below the trapping state, derived from Eq. (14)
and shown in plot (b), exceed the corresponding values in plot (a). Thus, although
the ion's continued excitation slows down close to no anyway, this approach will
be faster with the Franck-Condon type of trapping. Moreover, whereas SIT trap­
ping requires coherent dynamics, the F-C type is supposed to show up even in the
presence of decoherence.
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Fig. 5. Coherent transition rates Wcoh(n + 11n) for (a) TJ = 0.1, 10sl/s = 1.149
[trapping state condition (13) for no = 50], and for (b) TJ = 0.268 [trapping state
condition (14) or no = 50), and 10sl,s = 1f/2 (from Ref. [19])

5. Incoherent Generation of Trapping States

The above approaches to the generation of trapping states require any kind of cle­
phasing to be negligible, e.g. the effects of phase fluctuations of the driving lasers,
spontaneous emission of the ion, and collisions with background gas atoms. This re­
quirement poses a substantial challenge in any experiment. Fortunately, in contrast
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with SIT trapping, the dynamics of Franck-Condon trapping turns out indepen­
dent of the coherence of the interactions. Thus, the actual demonstration of this
trapping scheme seems far easier, and the involved states are supposed more robust
than with an approach sensitive to decoherence.

The rate constant of dephasing, ~, may depend on the vibrational quantum
number n for certain relaxation processes [20-22]. Here we neglect such a compli­
cation, and also the radiative recoil exchanged in the ion-light interactions. The
latter effect is included, however, in the numerical calculations whose results are
shown below.

The system is still assumed to obey the condition of resolved sidebands such
that we have now Ds < ~ < u, Solution of the master equation (4) under this
condition results in the recurrence relation [19]

(15)

for the distribution over the vibrational states

(16)

which is similar to the recurrence relation upon decoherence lacking. However, the
probabilities for excitation and survival are now

and
1 1

Winc(n In) == 2" + 2" exp [-~n(1J)rs] ,

respectively. The effective damping coefficients

(17)

(18)

(19)

now depend on the vibrational quantum number non-linearly in general, but linearly
in the Lamb-Dicke limit (I ~ 1). The trapping condition

requires

W (n + 1 In) == 0 , if n == no (20)

"In (1]) ex [L~l) (1]2)r= 0, (21)

and this relation shows the trapping states being determined by the zeroes of the
Laguerre polynomial. From the recurrence relation (15), the vibrational distribution
emerges as a sum of binomial distributions

(22)
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to Fig. 6. A vibronic vacuum state at to
evolves into a distribution of three corn­
ponents after the first pump-drive cycle
(tl), and into a binomial distribution of
more components after k cycles (tk)
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Fig. 7. Temporal evolution of the vibronic vacuum state at increasing number
k of pump-probe cycles (a-f: k = 5, 60, 120, 180, 240, 300). The trapping state
no = 50 accumulates 60 percent of the occupation. Light recoil, included in the
numerical calculations, generates spillover that accumulates in higher trapping
states
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each of which derives from a particular component of the initial distribution and
is characterised by a mean value l + k/2 and variance k / 4 (Fig. 6). After many
iteration cycles, Le. after long time, the variance of the total distribution

(23)

approaches 1/2, and this sub-Poissonian level signals amplitude squeezing. Close to
a trapping state no, the limiting variance even approaches zero, as it is compatible
with a vibronic number state.

The evolution of an ion initially in its vibronic vacuum state is shown in
Figs. 7a-f. Notice the spill-over beyond the first trapping state no == 50, most
of which accumulates in the next trapping state. This phenomenon results from
imperfections of the trapping introduced by including, in the computation, the ra­
diative recoil on the absorbing or emitting ion. Further calculations using various
amplitude values of the sidebancl-clriving light have shown the system to develop
into an almost pure number state upon higher saturation.

In Fig. 8, the evolution of the variance of the vibrational distribution is shown
for three intensities of the sideband driving light, parameterized as 4/08 1

2
T /"1.

The variance remains non-zero, for the same kind of imperfections, caused by the
radiative recoil.

Fig. 8. Variance vs. number of cy­
cles, k, for incoherent trapping no = 50,
17 = 0.268. Spontaneous recoil included.
Saturation parameter 20;7s / , = 0.2
(dotted), 1.0 (solid), 2.0 (dashed) (from
Ref. [19])
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6. Summary

A quantum system characterised by an internal resonance, or "spin" resonance,
coupled to a harmonic oscillator shows a fundamental peculiarity: Continued exci­
tation of the oscillator degree of freedom via sidebands to the spin resonance does
not smoothly continue to arbitrarily high values of excitation, but stops at certain
"trapping states" of the oscillator. This phenomenon has been analysed for an ex­
ample of potential application in QIP, namely an ion vibrating in the potential well
of an ion trap. It is well known [17] that the excitation probability periodically
varies with the quantum number of the vibrational excitation. The probability van­
ishes when the system, driven on a particular side band - say, the first red-shifted
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one, 12, T/,O) ---? 11, no + 1) - undergoes an integer number of Rabi cycles in configu­
ration space, during the time of interaction with the light. Light pulses propagating
in a resonant gas have been shown to lock to such cycles and yield the phenomenon
of "self-induced" transparency.

On top of this, there is an alternative mechanism for making vanish the excita­
tion probability at certain vibrationally excited states, when the spatial structure
of light field is taken into account. Now, the emergence of trapping states derives
from the interference of overlapping vibrational wave functions, as in molecular
Franck-Condon factors. This novel mechanism has been shown insensitive against
decoherence, drastically relieving the preconditions for demonstration in a real sys­
tem. During the iterative excitation of the ionic motion, say, from the vacuum state,
a binomial distribution over vibronic states emerges that is amplitude-squeezed and
approaches a number state, when the ion's vibrational excitation comes close to
trapping. Former observations of metastable vibronic states of single barium ions
in a miniature Paul trap are now attributed to having demonstrated this incoherent
mechanism.
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