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Abstract. Coherent states on von Neumann lattice, which form complete but
not overcornplete set, are orthogonalized using Lowdin procedure and corre­
sponding coefficients arising in orthogonalization are tabulated. So obtained
states may be interpreted as eigenstates of operators of optimal unsharp mea­
surement of coordinate and momentum, in a slightly modified von Neumann
sense. Using the obtained results the most important statistical characteristics
of these operators are calculated on coherent states and compared with corre­
sponding values of standard quantum mechanical operators of coordinate and
momentum.
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1. Introduction

A partitioning of phase space in rectangular pieces of the size of the Planck constant
h - now known as the von Neumann lattice - was for the first time introduced
by von Neumann himself in 1932 [1]. He used it as a ground to define quantum
mechanical operators, completely in accord with the rigorous quantum mechanical
rules for operators and their interpretation, for simultaneous measurement of quan­
tum observables q and p, with maximal accuracy allowed by the laws of quantum
mechanics.

His idea was to bridge an enormous gap between quantum and classical me­
chanics present in the context of noncommutativity of these observables. Namely,
in quantum mechanics it is assumed that it is impossible to measure nOnC0111111uting
observables simultaneously and also, in an extreme interpretation, that they do not
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exist before observation and measurement and are really created in the act of the
measurement itself. On the other hand, in the classical mechanics it is assumed that
all quantities exist independently of whatever measurement and observation and, if
they can be measured at all, they can be measured simultaneously with unlimited
accuracy.

Von Neumann argued that in fact the accuracy of classical measurements never
reaches the region where quantum mechanical uncertainty relations are relevant
and that, due to this the classical standpoint may be based on strictly quantum
mechanical foundations in the following way. Quantum mechanical simultaneously
measurable operators Q and ft, generically related to the operators ij and p may
be defined so that their simultaneous measurement represents in some sense simul­
taneous measurement of their originators ij and p. None of them, of course, with
absolute accuracy, but with maximal accuracy allowed in quantum mechanics for
their simultaneous measurement. These unsharp measurements of ij and pbut exact
measurement of Q and ft, in the world of objects of classical physics and accura­
cies of corresponding measurements, will be perceived as a simultaneous and exact
measurement of classical coordinate and momentum.

Coherent states of a harmonic oscillator minimize uncertainty relations. In this
sense in these states both coordinate and momentum are simultaneously defined
with the best accuracy allowed in quantum mechanics. This is the reason why they
are the best candidates for construction of eigenstates of operators for unsharp
measurement of coordinate and momentum. Taken as they stand they cannot fulfill
this role because of the two following reasons: they form not a complete but an
overcomplete set in Hilbert space, and they are not orthogonal.

To remove the first obstacle von Neumann introduced the mentioned lattice in
phase space and took from each cell in phase space one coherent state claiming that
it was easy to see that so obtained set is complete but not overcomplete, Then he
orthogonalizecl this set by the Cramm-Schmidt procedure.

Von Neumann's claim about completeness, considered as obvious by himself
was for the first time rigorously proved almost forty years later by Perelornov, who
was obliged to consider many related mathematical subtleties [2].

It seems that von NeU111ann'S approach to simultaneous coordinate and mo­
mentum unsharp measurements is known less broadly so that for example in the
well-known book from Omnes, about the interpretation of quantum mechanics,
these results are not mentioned [3].

We considered it worthwhile to revisit the problem and to reaffirm von Neu­
manu's ideas and in our first related paper we treated this problem on a general level
and improving Borne particular points where it seemed desirable [4]. So, instead of
the Gramm-Schmidt orthogonalization procedure used by von Neumann we used
Lowdins procedure in which all the states to be normalized enter the procedure on
equal footing [5].

In the present work we further elaborate and concretize our earlier results. In
the next section we describe shortly the mathematical background of our analysis.
In Section 3 we give our more concrete results. So, we present tabulated coefficients
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obtained in the process of orthonorrnalization of coherent states on the lattice, using
Lowdiu's procedure. With their help, we analyze some iuain characteristics of the
operators Cd and P whose eigenfunctions are vectors of the orthogonalized basis
obtained in this procedure. In the last section we shortly discuss our results.

2. Mathematical Background

Phase space is a natural framework for all our further considerations. The most
convenient representation of coherent states in which they can be easily related to
the q,p phase plane is

. ex:> n

la) = e-otlal2 L ~In).
n=O JnT

In units h = rtuo == 1, it holds

(alqla) = !f(a + o"},

(aliila) = -i{f(a - a*).

Hereafter, we identify the phase plane q + ip with complex plane a, so that apart
from the factor V2 average values of coordinate and momentum are equal to the
real and complex part of a, respectively.

Consider two complex numbers Wl and W2 which in complex plane represent
sides of a parallelogram with an area S. Perelomov [2] rigorously proved that the
system of coherent states

lakl) = Ikwl + lW2) ,

where k and l are integers, depending on the value of S, fulfill the following condi­
tions:

a) if S < 1T, the system lakL) is overcomplete,
b) if S > 1T, the systern is noncomplete,
c) if S == 1T, after exclusion of the one, and only one whichever vector from the

system, the system becomes complete,

It is convenient to choose Wl and W2 such that la,ld) == I ft(k + il)) and exclude
la == 0). Let N be the matrix of scalar products

then, by Lowdiu's procedure we have

lal) == L laJ)(N- 1
/
2)Jl ,

J

(a](IaL) == cS!(,L .
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Matrix elements of N- 1
/

2 can be calculated as
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N == I + N', N- 1/ 2 == I - ~N' + ~N/2 - ...
2 8

if the Taylor expansion converges.
Following von Neumann, apart from the normalization procedure, we define

operators for unsharp measurement of coordinate and momentum

Q== J2Rea k l L /akl)(akll,

kl
(k,l)#(O,O)

P == J2I ma k l L /akl)(akL!.

kl
(k,l)#(O,O)

They commute, [Q,.P] = o. It is interesting to compare mean values of q, p, q2
and fJ2 for coherent states on the lattice against orthonormalized states lakl)' This
is done in the next section together with the presentation of our other numerical
results.

3. Results

"Ve have calculated /akl) for a finite square where 2 < k < 22 and 2 :S l < 22. The
1110st precise calculated /Ok,l) is for (k, l) == (12,12) since it is the furthest from the
edges. The result for this vector is presented below:

22 22

la12,12) == L L Ck,lIQk,l) ==
k=2l=2

+0.0003908241 a22,22) -0.001593371a21,21) -0.0007886771 Q22,21) +0.003691231 (120,20)
-0.00242131 Q21 ,20)+0.001196181 Q22,20) -0.006862791 Q19, 19)-0.005017111 (120,19)
-0.0032763/Q21,19)-0.00161428Ia22,19)+0.011458/QlS,lS)-0.00881945I a19,lS)
+0.00639478I a 20,18 ) -0.00415227Ia21, IS)+0.00203909Ia 22,IS)-0.0181655/a17,17)
-O.0143018I a18,17)-0.01086081(119,17) -0.00779765I a20, 17)-0.00502953Ia 21,17)
-0.00246041I a 22 ,17)+0.0284228IaI6, 16)-0.0224095Ia I 7 ,16)+0.017272I a1S,16)
-0.01291341 a19,16) +0.009170081 a20, 16)-0.005872151 a21, 16)+0.002860851 Q22,16)
-O.0456351IalS,lS) -0.0351894I a16, IS)-0.0268201I Q17,lS)-0.0201845I a1S,lS)
-0.01484431a19,1s) -0.0104248/a20,1S) -0.00662823I a21,lS) -0.00321641Ia22, IS)
+0.0799610:14,14) -0.0577968/0:15,14) +0.0420692!a16,14) -O.0309143Ia17, 14)
+0.0227285/a18, 14) -0.0164639I a19,14) +0.0114492/a20,14) -0.00723513I Q21,14)

+0.00349912/0:22,14) -0.179714I a13,13) -O.107065Ia14,13) -0.0691597/a1S,13)
-0.0475942Ia16,13) -O.0339262IQ17,13) -0.0245031ja18, 13) -0.0175565j a19,13)

-0.0121257IQ20,13)-O.00763067Ia21,13)-O.00368206Ia22,13)+1.21707I a12,12)

-0.26439110'1:3, 12)+O.122833/a14,12)-0.0741906!a15, 12)+0.0497779Ia16,12)
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-0.03505051 017,12) +0.02514471018,12) -0.0179441019,12)+0.01236281020,12)
-0.00776831021,12)+0.003745461022,12) + s.t.,

where the symmetrical terms, s.t. for short, can be found from the symmetry prop­
erties

C12-a,12-b == C12-a,12+b == C12+a,12-b == C12+a,12+b ,

C12-b,12-a == C12-b,12+a == C12+b,12-a == C12+b,12+a ,

- 10 ::; a.b ::; 10.

If one needs a orthonormalized vector for another node in the lattice, then
another square should be set. Such a node should be in the center of the square.
Orthonorrnalization should be performed for the new square again.

Using the above development we calculated average values in this state for the
operators q, p, q2, p2 and compared them with the average values of the same
operators in the corresponding coherent state. The results are presented below.

(012,12Iqla12,12) == 30.079539295572

(&12,12Iq!&12,12) == 30.079539295572

(a12,12Ipla12,12) == 30.079539295572

(012,121131012,12) == 30.079539295572

(012,12Iq2Ia12,12) == 905.27868423386

(012,12Iq21&12,12) == 905.95240153106

(a12,12I132Ia12,12) == 905.27868423386

(012,121]32\&12,12) == 905.95240153106.

We see that up to our precision, which is very high, q and p have the same
average values both in la12,12) and 1&12,12), We guess that this equality should be
exact, but were not able to prove this yet. On the other hand, average values of
squares of the operators are somewhat different in a-s and &-s but are very close
still. Also, average values of p and q are the same as average values of P and Q in
& states.

Comparisons between (a!qla), (alp!a), (alq2 Ia ), (alp2Ia), and (aIOlo), (aIPla),
(aIQ2Ia), (al?2Ia) for

11.5y11r < Rea::; 12.5y11r,

11.5y11r :S Imo ::; 12.5y11r,

are presented in Figs. 1-4.
As it should be expected these results are the closest to each other at the nodes

of the lattice. In other points of the Cl plane these differences are slightly greater
but not substantially.
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Fig. 1. Variations of ((okdQlokl) - (okdqlokl))/v'2 in the cell of the size h
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Fig. 2. Variations of ((okt!PIOkl) - (okz!plokl))/v'2 in the cell of the size h

4. Conclusions

vVe can conclude that von Neumanu's approach to construction of operators for
simultaneous unsharp measurement of coordinate and momentum and his results,
which were mainly obtained due to his enormously strong both physical and math­
ematical intuition, in historical times when general intellectual ambient was not
much receptive for such a results, are still not so well known as they deserve. They
have been confirmed theoretically, with the greatest mathematical rigor by Perelo­
1110V [2). We believe that our results give further practical support to this approach.
Also, the partitioning of phase space in cells of the size h, so often used in all quasi­
classical consideration mainly on intuitive grounds, may be now considered as fully
founded, both theoretically and practically.
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