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Abstract. We look at multiparticle production processes from the Information
Theory point of view, both in its extensive and nonextensive versions. Exam-
ples of both symmetric (like pp or AA) and asymmetric (like pA) collisions are
considered showing that some ways of description of experimental data used in
the literature are of more general validity than usually anticipated.
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1. Introduction

The multiparticle production processes are usually first approached by means of
statistical models [1] in order to make quick estimations of such parameters as
temperature T or chemical potential μ of the hadronizing matter (with tacit as-
sumptions that T and μ have the usual meaning in the realm of hadronic produc-
tion). It means that “thermal-like” (i.e. exponential) form of relevant distribution
(in transverse momentum pT or in rapidity y) is used to fit data,

f(X) ∼ exp [−X/Λ] . (1)

This formula occurred to be very robust, mainly because (cf., [2]) the N−1 unmea-
sured particles act as a heath bath which action on the observed particle is described
by a single parameter Λ identified (for system in thermal equilibrium) with tem-
perature T . Discrepancies from (1) observed in many places are then attributed to
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the fact that in reality such a “heath bath” is neither infinite nor homogeneous and
one needs more parameters for its description. The minimal extension would be to
regard Λ as being X-dependent, for example, Λ � Λ0 + a ·X [3], what results in

fq(X) ∼ expq [−X/Λ0]
def
= [1− (1− q)X/Λ0]

1/(1−q)
, where q = 1 + a . (2)

In the case when X is energy E and Λ is temperature T the coefficient a is just
the inverse heat capacity, a = 1/CV [3]. Such a phenomenon leads to the so-called
nonextensivity with q being the nonextensivity parameter. Notice that for q → 1 (or
for a → 0) fq(X) becomes f(X). We show here that Eqs. (1) and (2) originate in
a natural way from information theory (IT ) approach in its, respectively, extensive
(based on Shannon entropy) and nonextensive (based on Tsallis entropy) forms. In
what follows (Section 2) we shall briefly present this approach illustrating it (in
Sections 3 and 4) with some fits to the existing data.

2. Information Theory and Multiparticle Production Processes

To introduce IT in the present context let us consider typical situation: experi-
mentalists obtain some new and intriguing data. Immediately these data become
subject of interest to theoreticians and in no time a number of distinctive and unique
(as concerns assumptions and physical concepts) explanations is presented, which,
disagreeing about physical concepts used, nevertheless all fit these data. The nat-
ural question arises: which of the proposed models is the right one? The answer
is: all of them (to some extent). This is because experimental data are providing
only limited amount of information and all models mentioned here are able to re-
produce it. To quantify this reasoning one has to define, using IT,a the notion of
information. Its extensive version is based on the Shannon information entropy,

S = −
∑

i

pi ln pi , (3)

where pi denotes probability distribution of interest. The least possible informa-

tion, corresponding to equal probability distribution of N states, pi = 1/N , results
in maximal entropy, S = ln N . The opposite situation of maximal information,
when only one state is relevant (i.e. pl = 1 and pi�=l = 0) results in minimal en-

tropy, S = 0. Denoting by 〈Rk〉 a priori information available on experiment, like
conservation laws and results of measurements of some quantities Rk, one is thus
seeking probability distribution {pi} such that: i) it tells us the truth, the whole

truth about our experiment, i.e. in addition to being normalized it reproduces the
known results: ∑

i

pi = 1 and
∑

i

pi Rk(xi) = 〈Rk〉 , (4)

and ii) it tells us nothing but the truth about our experiment, i.e. it conveys the

least information (only the information contained in this experiment).
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To find such {pi} one has to maximize the Shannon entropy under the above
constraints (therefore this approach is also known as MaxEnt method). The resul-
tant distribution has familiar exponential shape

pi =
1

Z
· exp

[
−

∑
k

λk · Rk(xi)

]
. (5)

Although it looks identical to the “thermal-like” (Boltzmann–Gibbs) formula (1)
there are no free parameters here because Z is just normalization constant assuring
that

∑
pi = 1 and λk are the corresponding Lagrange multipliers to be calculated

from the constraint equations (4).b

It is worth to mention at this point [4] that the most probable multiplicity
distribution P (n) in the case when we know only the mean multiplicity 〈n〉 of
distinguishable particles is geometrical distribution P (n) = 〈n〉n/(1 + 〈n〉)(n+1)

(which is broad in the sense that its dispersion is D(n) ∼ 〈n〉). Additional knowledge
that all these particles are indistinguishable converts the above P (n) into Poissonian
form, P (n) = 〈n〉n exp(−〈n〉)/n!, which is the narrow one in the sense that now its
dispersion is D(n) ∼√

〈n〉. In between is situation in which we know that particles
are grouped in k equally strongly emitting sources, in which case one gets Negative
Binomial distribution [7]c

P (n) = Γ(k + n)/ [Γ(n + 1)Γ(k)] ·
(

k

〈n〉
)k /[

1 +
k

〈n〉
]k+n

.

The other noticeable example provided in [8] is the use of IT to find the minimal
set of assumptions needed to explain all multiparticle production data of that time.
They were equally well described by models like multi-Regge, uncorrelated jet,
thermodynamical, hydrodynamical etc., which, after closer scrutiny, turned out to
share (in explicit or implicit manner), two basic assumptions: i) that only part
W = K · √s (0 < K < 1) of the initially allowed energy

√
s is used for production

of observed secondaries (located mostly in the center part of the phase space; in
this way inelasticity K found its justification [12], it turns out that K ∼ 0.5);
ii) that transverse momenta of produced particles are limited and the resulting
phase space is effectively one-dimensional (dominance of the longitudinal phase
space). All other assumptions specific for a given model turned out to be spurious.d

Suppose now that some new data occur which disagree with the previously
established form of {pi}. In IT approach it simply signals that there is some
additional information not yet accounted for. This can be done either by adding a
new constraint (resulting in new λk+1, cf., for example [9], we shall not discuss it
here) or by using some other form of IT, for example its nonextensive version (ITq).
The later is necessary step for systems which experience long range correlations,
memory effects, which phase space has fractal character or which exhibit some
intrinsic dynamical fluctuations of the otherwise intensive parameters (making them
extensive ones, like T here). Such systems are truly small because the range of



68 O.V. Utyuzh et al.

changes is of the order of their size. In this case the Shannon entropy (3) is no longer
a good measure of information and should be replaced by some other measure. Out
of the infinitely many possibilities [10] we shall choose the Tsallis entropy [11],

Sq = − 1

1− q

∑
i

(1− pq
i )

q→1
=⇒ Sq=1 = −

∑
i

pi ln pi , (6)

which goes over to Shannon form (3) for q → 1. The {p(q)
i } are obtained in the

same way as before but with modified constraint equation:e∑
i

[pi]
q

Rk(xi) = 〈R(q)
k 〉 . (7)

This leads formally to the same formula for pi = p
(q)
i as in Eq. (5) but with

Z → Zq and exp(. . .) → expq(. . .). Because such an entropy is nonextensive,
i.e. Sq(A+B) = SqA + SqB + (1 − q)SqA · SqB [11], the whole approach became
known as nonextensive (Tsallis) statistics. It should be stressed at this point that
the nonextensivity parameter q cumulates action of all possible dynamical sources
causing deviation from the usual Boltzmann–Gibbs statistics or Shannon entropy
and as such can be considered as a useful phenomenological parameter allowing to
describe data without deciding which of dynamical models leading to the same q is
the right one [14]. However, in what follows we shall mainly address one possible
sources of q 	= 1, namely intrinsic fluctuations present in the system represented by
fluctuations of the 1/Λ parameter. This is because, as shown in [15], in this case

q = 1 ±
[〈

(1/Λ)2
〉
− 〈1/Λ〉2

]
/ 〈1/Λ〉2 , (8)

i.e. the parameter q is a measure of such fluctuations (with 〈. . . 〉 denoting the
respective averages over them.f )

3. Confrontation with Experimental Data — Symmetric Case

We shall now confront these ideas with reality. At first we shall remind shortly
main results of our recent investigations of hadronizations taking place in collisions
of symmetric systems like pp and pp̄ [12, 18, 19], heavy ions AA [5, 20, 21] or e+e−

[22]. This will be followed by some new results on collisions of asymmetric systems
exemplified by pA collisions. It must be stressed that what we are proposing is not a
new model but rather sets of least biased, most probable distributions describing data
by accounting for available information provided in terms of constraints emerging
from conservation laws and from some previously known experimental facts (or from
some assumed dynamical input, which is thus confronted with experimental data).

Hadronization means that some invariant energy M (assumed to be known)
gives rise to a number N of secondaries (also assumed to be known) and question
asked is: in what way these secondaries are distributed in the allowed phase space?
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So far distributions in transverse momenta pT were treated separately [5, 21] from
distributions in rapidity [5, 12, 18–20], for which it was always assumed that mean
transverse mass μT =

√
m2 + 〈pT 〉2 was known, i.e. that we are working in the

effectively 1-dimensional phase space.
Concerning pT distributions, it has been shown that using q-statistics (with

q � 1.05 for AA collisions [21] to q � 1.1 for p̄p collisions [5]) one can describe data
in large domain of pT , see, for example, Fig. 1. The characteristic feature is that
now values of q are much smaller than those obtained fitting data in longitudinal
phase space (cf. [5] for discussion). Following [15, 21] (see also [3, 16, 17]) we argue
that q > 1 shows existence of the fluctuations of temperature in the hadronizing
system mentioned at the beginning. In fact, the q = 1.015 for AA collisions [21]
corresponds (according to (8)) to fluctuation of T of the order ΔT/T � 0.12, which
do not vanish with increasing multiplicity [15]. These fluctuations exist in small
parts of the hadronic system with respect to the whole system, they are not of the
event-by-event type, for which ΔT/T ∼ 0.06/

√
N → 0 for large N . It should be

stressed at this point that such fluctuations are very interesting [23] because they
provide a direct measure of the total heat capacity of the system, C:

σ2(β)

〈β〉2
def
=

1

C
= q − 1 . (9)

In fact, because C grows with the collision volume V of reaction we expect that
q(hadronic) > q(nuclear) which seems to be indeed observed (cf. also [14] where
nuclear collisions data at different centralities providing direct access to volume V
were analyzed).

When applied to rapidity distributions IT method leads to formula formally
identical with formulas used in statistical models (cf., for example, like [24]),

fN(y) =
1

Z
· exp [−β · cosh y] , where Z =

∫ YM

−YM

dy exp [−β · cosh y] . (10)

However, whereas in [24] (and in other similar models) 1/Z and β were just two free
parameters, here Z is a normalization constant and β = β(M, N, μT ) is obtained
by solving constraint equation,g∫ YM

−YM

fN(y) = 1 and

∫ YM

−YM

dy [μT · cosh y] · fN(y) =
M

N
. (11)

It means that the parameter β (inverse of the so-called partition temperature intro-
duced in [24] type of models) is connected (via IT method used) with the dynamical

input given by: the allowed energy M (usually taken as a fraction, M = K
√

s, of
the total energy of reaction with parameter K ∈ (0, 1) being the so-called inelastic-

ity of the reaction), the number of secondaries produced N and the mean transverse
mass μT . In asymmetric collisions to be discussed in the next section one would
have to add also constraint imposed by momentum conservation (which is satisfied
automatically in the case of symmetric collisions discussed at the moment).
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As detailed in [4, 12], fN(y) changes from fN=2(y) = 1
2 [δ(y−YM )+δ(y+YM)]

(with β(N → 2) → −∞) via fN0 = const. (with β(N0 � ln(M/μT )) � 0) to
fN→Nmax = δ(y) (with β(Nmax = M/μT ) = +∞). In other words, for small
multiplicities β is negative (a feature alien to any statistical model!) and it be-
comes zero only for N → N0. At this multiplicity fN (y) = const., behavior known
as Feynman scaling.h Its occurrence means that energy dependence of multiplicity
follows that of the longitudinal phase space. For N > N0 additional particles have
to be located near the middle of phase space in order to minimize energy cost of
their production. As result β > 0 now, in fact (see [4] for details) for some ranges
of 〈E〉 = M/N quantity β̄ = β〈E〉 remains approximately constant. Needless to
say that for N → Nmax all particles have to stay as much as possible at the center
and therefore β(M, N → Nmax) → +∞, whereas fN→Nmax(y) → δ(y).

For nonextensive approach exp(. . .) must be replaced by expq(. . .)q and N0 →
N

(q)
0 � (2 ln Nmax)

q
. As shown in [12] q acts now as a free parameter allowing for

changing separately the shape and the height of f
(q)
N (which were interlocked for the

q = 1 case). For q > 1 one enhances tails of distribution reducing at the same time
its height. For q < 1 the effect is opposite and additionally there is a kinematical
condition, 1−(1−q)βqμT cosh y ≥ 0, reducing in this case the allowed phase space.i

Fig. 1. Example of description of data on pT spectra from UA1 experiment on
p̄p collisions [5] (left panel) and data on rapidity spectra in pp and p̄p collisions
[12] (right panel)
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In [12] we have used f
(q)
N to fit p̄p and pp data introducing inelasticity K as

a free parameter to be deduced from data (cf. Fig. 1). We shall not discuss here
the inelasticity issue (see [12] for details and further references) but concentrate on
the q parameter, which turned out to follow the same energy dependence as the
experimentally deduced parameter 1/k of the Negative Binomial (NB) multiplicity
distribution [25]. This finding prompted us to argue that parameter q in this case
is accounting for a new bit of information so far unaccounted for, namely for fluc-
tuations in the multiplicity of produced secondaries (notice that in the constraint
equation for β we were using in this case experimental values of the corresponding
mean multiplicities only). In fact, it is known [7] that NB can be obtained from
Poisson distribution once one allows for fluctuations in its mean value n̄ of the
gamma distribution type, namely

P (n) =

∫ ∞

0

dn̄
e−n̄n̄n

n!
· γkn̄k−1e−γn̄

Γ(k)
=

Γ(k + n)

Γ(1 + n)Γ(k)
· γk

(γ + 1)k+n
, (12)

where

γ =
k

〈n̄〉 and
1

k
=

σ2(nch)

〈nch〉2 − 1

〈nch〉 .

Fig. 2. Example of description of data on rapidity spectra from NA49 (left
panel) for negatively charged pions produced in central PbPb collisions at different
energies [5]; the best fit for 17.3 GeV is with additional (assumed) information
of existence of two extensive sources located at y = ±Δy = 0.83 in rapidity (see
text for details). Right panel: fits to PHOBOS data for the most central Au+Au
collisions [20]
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Assuming now that these fluctuations contribute to nonextensivity defined by the
parameter q, i.e. that D(n̄) = q − 1 one gets

q = 1 +
1

k
, (13)

what we do observe (cf. also [19]).
In Fig. 2 we show comparison with AA data at SPS (NA49) [5] and RHIC

(PHOBOS) [20] energies. The NA49 data can be fitted with q = 1.2, 1.16 and 1.04
going from top to bottom and so far we do not have plausible explanation for these
number. However, it should be stressed that at highest energy two-component
extensive source is preferable. The PHOBOS data with q = 1.27, 1.26 and 1.29
going from top to bottom. Extensive fits do not work here at all. The first clear
discrepancy has been found when fitting e+e− data (see [22]) where dn/dy with
clear minimum for y = 0 cannot be reproduced in such a simple ITq approach. It is
thus obvious that there is some new information we did not accounted for. It looks
like we have two sources here separated in rapidity (two jets of QCD analysis) but
of no statistical origin (rather connected with cascading process) [22].

4. Confrontation with Experimental Data — Asymmetric Case

Let us now proceed to a more complicated case of asymmetric collisions exemplified
by pA processes [26–28]. In this case: i) both colliding objects are different and
have different masses (one can therefore expect that energy transfer to the central
region from each of them is not necessary the same as it was assumed before);
ii) the pA collisions introduce a new element of uncertainty, the effective size of the
target, i.e. the number of nucleons, ν, from the nucleus A with which the impinging
nucleon is interacting and the way this interaction proceeds.j The number ν can
be estimated from measurement of the number of “gray tracks” [29], therefore it
will be included to our input information. We shall analyze data [26] in which
attempt was made to isolate dNν/dy for ν = 1, 2, 3, 4 and data [27] where only the
mean ν̄ number of collision is known together with dNν̄/dy. The a priori available
invariant energy

√
sν in such a case is equal to (we neglect all nuclear binding and

Fermi motion effects): sν = νs + (ν − 1)2m2 where s = 2m2 + 2m[p2
LAB + m2]1/2 is

the invariant energy squared for NN collisions.
The assumed knowledge of ν must be supplemented by the known dependence

of total mean multiplicity of secondaries produced in the central region, N̄ν , on the
mean number of inelastic collisions 〈ν〉, [26, 27]:

N̄ν =
1

2
(1 + 〈ν〉)N̄ (14)

(N̄ is multiplicity of particles produced in NN collisions at the same energy
√

sν=1).k

To be able to apply IT methods we must additionally decide whether pA collision is
more like a two-body collision between a kind of “tube” of mass mν = νm contain-
ing ν collectively acting nucleons and single nucleon of mass m (cf. Fig. 3(a) and
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Fig. 3. Schematic views of tube (a) and sequential (c) models of the pA collisions.
The case (b) is essentially a particular realization of the tube type of model (a)

(b)), or whether it is rather a sequence of ν consecutive collisions of the impinging
nucleon with ν nuclear nucleons (cf. Fig. 3c).

In the first case we have situation similar to considered before with the following
formula for the rapidity distribution of secondaries produced in two-body p(νN) (in
the CM frame of the NN system):

dNν

dy
= fν(y) =

1

Zν
· exp (−λνμT sinh y − βνμT cosh y) , (15)

Zν =

∫ Y (ν)
max

Y
(ν)
min

dy exp (−λνμT sinh y − βνμT cosh y) . (16)

We have now two Lagrange multipliers, λν and βν , which are given by the corre-
sponding energy and momentum conservation constraints:

∫ Y (ν)
max

Y
(ν)
min

dy e−μT [λν sinh y−βν cosh y]

{
cosh y

sinh y

}
=

Zν

NνμT

{
Wν = (νR + K)1

2

√
s

Pν = −(νR−K)1
2

√
s− 4m2

}
.

(17)
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The energy transfer from the projectile nucleon, characterized by inelasticity K,
is allowed to differ from energy transfers from the nuclear nucleons (cf. Fig. 3b)
characterized by inelasticities Ri (for simplicity we shall assume Ri = R in what
follows). The invariant mass Mν of hadronizing system is now equal to

Mν =
√

W 2
ν − P 2

ν =
√

KRνs + (νR −K)2m2 R=K
=⇒ K

√
sν , (18)

whereas the (longitudinal) phase space in which particles are produced is given by:

Y (ν)
max = Yνm − δν and Y

(ν)
min = −Yνm − δν , (19)

(Yνm is the same as YM before but calculated for Mν) where δν being the rapidity
shift between the NN and (νN)−N center-of-mass frames:

tanh δν = − Pν

Wν
=⇒ δν � 1

2
ln

[
R

K
· ν

]
R=K
=⇒ 1

2
ln ν . (20)

The apparently asymmetric form of rapidity distribution as given by Eq. (15) is,
however, an artifact connected with our choice of the reference frame. Changing
variables in Eqs. (15)–(17) from y to ỹ = y + δν , i.e. proceeding from the CMS of
NN to the CMS of (νN)−N , one gets similar distribution as before (i.e. depending
only on one Lagrange multiplier β̃ν):

fν(y) ⇒ fν(y = ỹ − δν) =
1

Z̃ν

· e−β̃νμT cosh ỹ , Z̃ν =

∫ Yνm

−Yνm

dỹe−β̃νμT cosh ỹ , (21)

∫ Yνm

−Yνm

dỹ cosh ỹe−β̃νμT cosh ỹ =
Zν

NνμT
·Mν , (22)

where Mν = Mν(K, R). It means that in such an approach we always can find
frame in which rapidity distributions fν are symmetric function given by (21). In
Fig. 4 we show examples of fits to some available data (notice that data display
clear asymmetric character which cannot be reproduced by the method used here).

In the second case pA scattering is assumed to proceed via sequence of the ν
two-body processes, cf. Fig. 3c. The resultant rapidity distribution fν(y) is then
composed of “elementary” distribution functions describing collisions of the imping-
ing nucleon with the subsequent nucleons in the target nucleus:

fν(y) =

ν∑
i=1

fi(y) . (23)

Contrary to (14), this formula stresses not the fact that in the pA reaction one has
ν +1 participating nucleons but that one has here ν consecutive collisions treated as
“elementary” ones. This can be visualized rewriting (14) as N̄ν = N̄1 +(ν−1)N̄2/2
where N̄1,2 are such that 2N̄1 +(ν−1)N̄2 = (ν +1)N̄ . We have thus ν “elementary”
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Fig. 4. Example of fits to pp, pAr and pXe data [27] by means of the collective
tube model approach as given by Eq. (21) with R = K (left panel) and with
R �= K for pA collisions (right panel)

collisions with a possibility that the first can differ from the remain ν−1 (in general
they all are different). As result, the elementary inelasticities (i.e. inelasticities in
subsequent collisions) are not necessarily the same. In this way one approaches as
near as possible the notion of independent production for which one demands the a

priori knowledge of energy of each reaction. Also here we shall differentiate between
the fractions of energies contributed to each fi by the nuclear nucleons, Ri=1,...,ν ,
and fractions of energies contributed by the impinging nucleon at each collision,
Ki=1,...,ν . In this case the general form of the energy–momenta (ei, pi) and (wi, vi)
flowing to the blob Mi in Fig. 3c is given by:

ei =
1

2
Ki

i−1∏
j=1

(1−Kj)
√

s ,

pi =
1

2

⎡
⎣i−1∏

j=1

(1−Kj) s− 4m2

⎤
⎦

1/2

− 1

2

⎡
⎣ i∏

j=1

(1−Kj) s− 4m2

⎤
⎦

1/2

, (24)

wi =
1

2
Ri

√
s , vi =

1

2

√
s− 4m2 − 1

2

√
(1−Ri) · s− 4m2 , (25)

with M2
i = [(ei + wi) ; (pi + vi)]

2
. Notice that the real fraction of energy deposited

by impinging nucleon in, say, second collision, is equal to K(2) = K2 · (1−K1),
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in general, K(i) = Ki ·
∏i−1

j=1 (1−Kj). We now have

fi(y) =
1

Zi
e−βiμT cosh y , (26)

Zi =

∫ Yi

−Yi

dye−βiμT cosh y ,

∫ Yi

−Yi

dy cosh ye−βiμT cosh y =
Zi

NiμT
·Mi , (27)

with Yi calculated in the same way as YM before with Mi and ni replacing W and
N , respectively. These distributions will be centered (in the CM frame of NN) at

yi � 1

2
ln

⎡
⎣Ki

Ri

i−1∏
j=1

(1 −Kj)

⎤
⎦ Ri=Ki=K

=⇒ ∝ (i− 1)

2
ln(1−K) , (28)

i.e. the expected shift in rapidity is now linear in the number of collisions, not
logarithmic one as in Eq. (20). However, for our limited values of ν this difference
is practically not visible. The last input needed to apply IT is some estimation of
multiplicities Ni. This is the most uncertain point here and can be done in many
model-dependent ways. Here we simply assumed that Ni = a ·M c

i (with a and c
being free parameters) and made use the fact that N =

∑ν
j=1 Ni = a ·∑ν

j=1 M c
j

to eliminate parameter a and to write Ni = N/[1 +
∑ν

j �=i (Mj/Mi)
c], where c =

0.556 is obtained from reproducing the observed multiplicity N (actually, logarith-
mic dependence Ni = a+b·ln Mi would work equally well). In order not to introduce
too much freedom with the choices of Ki we were proceeding in the following way:
K1 was fixed by the ν = 1 data and then used as Ki=1, then K2 was fixed by ν = 2
data and used as Ki=2 and so on up to K4, which was fixed by ν = 4 data.l On
the other hand, the fractions of energy deposited by the consecutive target nucleons
participating in the collision was kept the same for all of them and equal R = Rν .

Notice that in the sequential model we have clearly smaller consecutive energy
transfers (as given by Ki>1) from the nucleon traversing the nucleus (this follows
observation made in [30]). On the other hand, both approaches lead to essentially
the same results. However, only sequential model is potentially able to reproduce
the visible asymmetry seen in data for larger ν because “elementary” fi enter with
different weights and cover slightly different regions of phase space. However, at
present energies the effect is not as large as expected and sequential model leads to
essentially the same results as tube model.m To account for the shift in the position
of maximum of rapidity distribution in the tube model we have to allow for K 	= R,
i.e. for different energy depositions from each of the projectiles. However, even then
we cannot produce the asymmetry of rapidity distribution seen in data, in particular
we are not able to correctly describe the part of distribution connected with the
impinging proton. It should be stressed that using in this case the nonextensive
approach ITq would not help because also in this case the obtained distributions are
symmetric in the rest frame of the hadronizing system. There is clearly difference
between the impinging proton and nuclear parts of the phase space. We conclude
therefore that, according to the rules of information theory approach, data [26, 27]
still bear some additional information, not identified so far.
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Fig. 5. Left panel: Comparison with pA data for ν [26] using tube model
(Eq. (21) and Fig. 3a) for K �= R. Notice that data for ν = 1 are not com-
patible with data for pp collisions from [27] presented in Fig. 3. Right panel:
the same but using sequential model (Eq. (23) and Fig. 3c). Ki is the fraction
of the actual projectile energy in the ith collision deposited in central region.
The fractions of energy deposited by target nucleons is kept the same and equal
R = Rν

5. Summary and Conclusions

We have demonstrated that large amount of data on multiparticle production can
be quite adequately described by using tools from information theory, especially
when allowing for its nonextensive realization based on the Tsallis entropy. We
have argued that the nonextensivity parameter q entering here can, in addition
to the temperature parameter T of the usual statistical approaches, provide us
valuable information on dynamical fluctuations present in the hadronizing systems.
Such information can be very useful when searching for phase transition phenom-
ena, which should be accompanied by some specific fluctuations of non-monotonic
character [23].

As concerns the asymmetric collisions example of pA data, we have demon-
strated that they contain additional information to the usual one used in Section 3.
The immediate candidates are the rescattering of produced secondaries in the nu-
cleus (effectively increasing values of μT and making it y-dependent and in this way
limiting rapidity space available on the nuclear side) or diffraction dissociation part
of the production (which can take different shape than in the pp collisions), but
they can be other possibilities as well [5].
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Finally let us comment shortly on the inelasticities in pA collisions obtained.
In the tube model they are, in general, increasing (or, at least, non-decreasing)
with A or with ν, cf. Figs. 3, 4 and 5. Notice that for K 	= R case the effective
inelasticity, which is of interest for any statistical model approach (i.e. the part
of the total energy available for production of secondaries in the central region
of reaction) is Keff =

√
K ·R. In the sequential model this inelasticity is clearly

decreasing with the consecutive collisions (in agreement with what was found in
[30]). However, the more precise statement could be only done with a data taken at
much higher energies. Notice that we did not present fits to pAr and pXe data [27]
in this case because we would have to introduce here another piece of additional
information represented by distribution of number of collisions, P (ν), which is a
model dependent quantity. The high energy counterpart of data [26] would be
therefore most welcome. The point is, however, that in addition one should also
have data taken for pn inelastic collisions (possibly with the help of deuterons) as
it is possible that at least a part of the inconsistency between the pp data from [27]
(cf. Fig. 4) and the ν = 1 data from [26] in Fig. 5 is because the latter contain also
contribution from pn reactions.n

We close with the statement that the results presented here are very encouraging
and call for further systematic effort to describe the existing data in terms of (T, q)
for different configurations and energies in order to find possible regularities in their
system and energy dependencies and possible correlations between them.
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Notes

a. The complete list of references concerning IT relevant to our discussion and
providing the necessary background can be found in [4, 5]. The value of the
Boltzmann constant is set to unity, k = 1.

b. Notice that using the entropic measure S =
∑

i [pi ln pi ∓ (1 ± pi) ln (1 ± pi)]
(which, however, has nothing to do with IT ) would result instead in Bose–

Einstein and Fermi–Dirac formulas: pi = (1/Z) · [exp[β(εi − μ)]∓ 1]
−1

, where
β and μ are obtained solving two constraint equations given, respectively, by
energy and number of particles conservation [6]. It must be also stressed that the
final functional form of pi depends also on the functional form of the constraint
functions Rk(xi). For example, R(x) ∝ ln(x) and ln(1−x) type constrains lead
to pi ∝ xα

i (1 − xi)
β distributions.
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c. It is straightforward to check that the Shannon entropy decreases from the
most broad geometrical distribution towards the most narrow Poissonian dis-
tribution.

d. The most drastic situation was with the multi-Regge model in which, in addition
to the basic model assumptions, two purely phenomenological ingredients have
been introduced in order to get agreement with experiment: i) the energy s was
used in the scaled (s/s0) form (with s0 being a free parameter, this works the
same way as inelasticity) and ii) the so-called “residual function” factor eβ·t was
postulated (t = −(pi−pj)2 and β being a free parameter) to cut the transverse
part of the phase space. Therefore s0 and β were the only relevant parameters.

e. For our purpose this is sufficient and there is no need to use more sophisticated
approaches exploring escort probabilities formalism, see [12] (for the most recent
discussion of different constraints and their meaning see [13], and references
therein).

f. Strictly speaking in [15] it was shown only for fluctuations of 1/Λ given by
gamma distribution. However, it was soon after generalized to other form of
fluctuations and the word superstatistics has been coined to describe this new
phenomenon [16]. Another generalization of this idea can be found in [17].

g. Notice that the y space is limited to y ∈ (−YM , YM ), where (with μT =√
m2 + 〈pT 〉2 being the mean transverse mass and M ′ = M − (N − 2)μT ac-

cessible kinetic energy) the limits are given by

YM = ln
{
M ′/(2μT )

[
1 +

(
1− 4μ2

T /M ′2
)1/2

]}
.

h. It was jus a coincidence that at ISR energies this condition was satisfied. But
because such a behavior of N as function of energy was only some transient
phenomenon, there will never be scaling of this type at higher energies, notwith-
standing all opinions to the contrary heard from time to time.

i. In [18] we have fitted data on p̄p with q < 1 being the only parameter and
M =

√
s. The q < 1 was cutting off the available phase space playing effectively

the role of inelasticity K. This result has provided the cosmic ray physicist
community the justification of the empirical formula they used, namely that
f(x) ∝ (1− a · x)n, where x is the Feynman variable, x = 2E/

√
s, and where a

and n are free parameters. They turned out to be both given by the parameter
q only [18].

j. In what follows only interactions resulting in the production of particles in the
central region of reaction are of interest to us, elastic and diffractive dissociation
collisions will not be considered.

k. Although this regularity has been observed only for charged secondaries, we
shall assume here its validity both for the total number of produced particles
as well as for the fixed number of collisions ν.

l. Notice that such a procedure is possible only under the assumption of indepen-
dent collisions.
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m. We would like to stress at this point that our approach to pA using IT concepts
and tube model differs from that of [28] because we have only one parameter,
inelasticity K = R, with both the normalization, shift of the momenta and
“partition temperature” being fixed by it, whereas in [28] they are all free
parameters.

n. We shall not pursue further this problem, which in our opinion can be investi-
gated in the spirit of IT only when the same experiment will provide data both
for different and well defined values of ν and for 〈ν〉, i.e. averaged over different
ν (such a possibility was apparently under consideration by NA49 Collabora-
tion [31]). We are also aware of potentially interesting new data from RHIC on
dAu collisions [32] and recent attempts of their description [33] and we plan to
address this issue using IT approach elsewhere.
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