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Abstract. The energy–momentum tensor for quasiplane and quasimonochro-
matic waves in homogeneous anisotropic dispersive media and an action four-
vector in a conservation theorem are calculated in relativistic covariant way.
The obtained form of the energy–momentum tensor is similar to that for a ho-
mogeneous particle flow in classical mechanics but with a much greater variety
of possible dispersion laws for momentum in dependence on group velocity. A
relation to quantization is obtained in a very natural way. The nonsymmetry
of the obtained energy–momentum tensor and its nonuniqueness create some
problems for Einstein’s gravitation equations.
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1. Introduction

The energy–momentum tensor belongs to the few central notions where some of the
fundamental concepts of modern physics that are, in particular, particles and fields
in the special theory of relativity and conservation theorems, the quantum theory
and Einstein’s gravitation theory (general theory of relativity) are interwoven in a
wonderful and sometimes surprising way, however, also with open problems.

The second paper of Einstein to special theory of relativity [1] deprived the
mass from its fundamental character as a conservation quantity and related it to
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the energy which together with the momentum forms a four-vector and has to be
transformed from one to another inertial system according to a Lorentz transfor-
mation. In the differential form of conservation of energy and momentum this
leads with inevitability to the energy–momentum tensor with relativistic covariant
transformation properties.

Aim of the work is the relativistic covariant derivation of the energy–momentum
tensor for homogeneous anisotropic media with spatial (wave-vector) and temporal
(frequency) dispersion (for spatial dispersion, see, e.g. [2–5]) and to reduce it to a
form similar to that for moving mass densities in classical mechanics and hydro-
dynamics but with uncommon mechanical properties. In connection with action
conservation which we formulate this leads to a deep relation to quantum theory.
Furthermore, we will show some of its consequences for Einstein’s gravitation equa-
tions.

2. Basic Equations of Macroscopic Linear Electrodynamics of

Dispersive Media

Some four- and three-dimensional (space-time) notations:

four-dimensional : r = (r, t), k = (k, ω) or rλ = (rl, r4 = ict), kλ = (kl, k4 = iω/c),
∇λ = (∇l,∇4 = −(i/c)∂/∂t) with no distinction of lower and upper indices; scalar
products kr ≡ kμrμ ≡ kr − ωt;

three-dimensional : scalar products ab (without point between three-dimensional
vectors which are boldface), vector product c = [a×b] or in vector indices ck =
εklmalbm, εklm Levi-Civita pseudo-tensor; relation between second-rank antisym-
metric tensors clm = −cml and equivalent axial vectors ck = 1

2εklmclm, clm =
εlmncn.

Our starting equations are Maxwell’s equations of macroscopic electrodynamics

[∇×E(r, t)] +
1

c

∂

∂t
B(r, t) = 0 , ∇B(r, t) = 0 ,

[∇×B(r, t)]−
1

c

∂

∂t
D(r, t) = 0 , ∇D(r, t) = 0 , (1)

where E(r, t) and B(r, t) are the averaged microscopic electric and magnetic field
(in sense of transition from microscopic to macroscopic electrodynamics). The elec-
tric induction D(r, t) contains completely the averaged microscopic current density
jmicro(r, t) and charge density �micro(r, t) with observation of the continuity equa-
tion as follows

jmicro(r, t) ≡
∂

∂t
P (r, t) , �micro(r, t) ≡ −∇P (r, t) , (2)

where P (r, t) is called the polarization and D(r, t) ≡ E(r, t) + 4πP (r, t).
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The most general linear constitutive equations for homogeneous anisotropic
dispersive media are nonlocal with kernel dependence only on the differences of
field coordinates

Di(r, t) =

∫
d3r′ ∧ dt′ε̂ij(r − r

′, t− t′)Ej(r
′, t′) ≡ εij

(
−i∇, i

∂

∂t

)
Ej(r, t) , (3)

or after Fourier transformation with respect to space and time variables

Di(k, ω) = εij(k, ω)Ej(k, ω) , εij(k, ω) ≡ δij + 4πχij(k, ω) , (4)

with εij(k, ω) the permittivity tensor and with χij(k, ω) the susceptibility tensor
in the analogous relation Pi(k, ω) = χij(k, ω)Ej(k, ω) for the polarization. The
dependence of εij(k, ω) on the wave vector k is called spatial dispersion contrary
to frequency dispersion [2–5]. Into εij(k, ω) or χij(k, ω), correspondingly, can be
included such effects as magnetic susceptibilities, optical gyrotropy, and some others
which often are treated in a more specialized way. This concept makes only some
difficulties for low frequencies and in limiting transition ω → 0 which we exclude. On
the other side, this concept of spatial and frequency dispersion is almost necessary
for our relativistic covariant derivations since the transformation formula from one
inertial system I to another inertial system I ′ moving with velocity V in I is

χ′ij
(
k
′, ω′

)
=

{
ViVk

V 2 + γ

(
δik −

ViVk

V 2 +
k′V δik − Vik

′

k

ω′

)}

·

{
VjVl

V 2 + γ

(
δjl −

VjVl

V 2 +
k′V δjl − Vjk

′

l

ω′

)}
χkl (k, ω) , (5)

where the transformations of wave-vector and frequency are

k
′ = k + (γ − 1)

kV

V 2 V − γ
ω

c2
V , ω′ = γ (ω − kV ) , γ ≡

⎛
⎝
√

1−
V 2

c2

⎞
⎠−1

. (6)

Frequency-dependent susceptibility tensors χkl(ω) only alone are too narrow since
according to (5) this generates in the moving system at once a new susceptibility
which depends on frequency and wave-vector. This also explains that spatial disper-
sion is an important effect in hot gases and hot plasmas where each particle moves
with an individual velocity with a statistics described by a partition function.

The magnetic field can be eliminated and in connection with the constitutive
equations, one obtains the following linear equation for the electric field{

−∇i∇j + ∇
2δij −

1

c2
∂2

∂t2
εij

(
−i∇, i

∂

∂t

)}
Ej(r, t) = 0 , (7)

and after Fourier transformation{
kikj − k

2δij +
ω2

c2
εij(k, ω)

}
Ej(k, ω) = 0 . (8)
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We introduce an abbreviation for the operator of this vectorial field equation. How-
ever, to obtain relativistic covariance it is necessary to divide the operator in (8) by
ω2/c2 as the investigation shows and we introduce (heuristically, c2

(
kikj − k

2δij
)
/ω2

+ δij multiplied by Ei and Ej is something like the known relativistic invariant
E2 −B2)

Lij(k, ω) ≡
c2

(
kikj − k

2δij
)

ω2
+ εij(k, ω)︸ ︷︷ ︸
= δij + 4πχij (k, ω)

. (9)

Then the vectorial equation for the electric field can be written, alternatively

Lij(k, ω)Ej(k, ω) = 0 , ⇔ Lij

(
−i∇, i

∂

∂t

)
Ej(r, t) = 0 . (10)

Now, we make the ansatz of quasiplane and quasimonochromatic waves

E(r, t) = E0(r, t) ei(k0r−ω0t) +E∗0(r, t) e−i(k∗

0
r−ω∗

0
t), (11)

and from (10) follows for the slowly varying amplitudes E0(r, t)

0 = Lij

(
k0 − i∇, ω0 + i

∂

∂t

)
E0,j(r, t)

=

{
(Lij)0 − i

(
∂Lij

∂kk

)
0

∇k + i

(
∂Lij

∂ω

)
0

∂

∂t
+ . . .

}
E0,j(r, t) . (12)

In the following first approximations, we take from the expansion on the right-hand
side only the terms up to first-order derivatives of the slowly varying amplitudes.

3. Local Conservation Laws of Action and Energy–Momentum

Local conservation theorems in form of vanishing of four-divergences of vector or
tensor fields can only be derived under the assumption of absent dissipation (in-
cluding amplification) that is the following requirement for the permittivity tensor

εij(k, ω) = (εji(k
∗, ω∗))

∗

= εji(−k,−ω) , ⇔ Lij(k, ω) = Lji(−k,−ω) . (13)

Under this assumption, it is possible to obtain exact conservation theorems contrary
to theorems where there remain terms which cannot be written as a four-divergence
and which are interpreted as four-forces. Due to these exact conservation theorems,
the known problems of the right expressions for the energy–momentum tensor, the
Abraham or the Minkowski tensor (e.g. [4]), is not relevant for our considerations.

We give here simplified derivations under the assumption that k and ω are
real (no evanescent waves without dissipation, e.g. total reflection) but the more
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general ones are also possible. The following combination can be represented as the
vanishing of the four-divergence of a four-vector Tλ(r)

0 =
i

4π

{
−E∗0,i(r)Lij(k0 − i∇)E0,j(r) + E0,j(r)Lij(k0 + i∇)E∗0,i(r)

}
= ∇λTλ(r) , (14)

where Tλ(r) is given in first approximation by

Tλ(r) = −
1

4π

(
∂ (Lij)

∂kλ

)
0

E∗0,i(r)E0,j(r) + . . . . (15)

With separation in three-dimensional form Tλ(r) ≡ (Tl(r, t), ics(r, t)) we have

Tl(r, t) = −
1

4π

(
∂Lij

∂kl

)
0

E∗0,i(r, t)E0,j(r, t) + . . . ,

s(r, t) =
1

4π

(
∂Lij

∂ω

)
0

E∗0,i(r, t)E0,j(r, t) + . . . , (16)

and with these terms written more explicitly by means of (9)

Tl(r, t) =
1

4π

{
c2

ω2
0

([E∗0(r, t)×[k0×E0(r, t)]]l + [E0(r, t)×[k0×E
∗

0(r, t)]]l)

−E∗0,i(r, t)

(
∂εij

∂kl

)
0

E0,j(r, t)

}
+ . . . ,

s(r, t) =
1

4π

{
2
c2

ω3
0

[k0×E
∗

0(r, t)][k0×E0(r, t)] + E∗0,i(r, t)

(
∂εij

∂ω

)
0

E0,j(r, t)

}
+ . . . . (17)

The quantity Tl(r, t) is the action flow density and s(r, t) the action density and
the conservation theorem in three-dimensional form

∇lTl(r, t) +
∂

∂t
s(r, t) = 0 , (18)

can also be generalized to inhomogeneous media (including adiabatic invariance).
By integration of (18) over the whole three-dimensional space follows the action
conservation ∂S(t)/∂t = 0 with S(t) ≡

∫
d3r s(r, t) as the integral action.

The vanishing of a four-divergence of the energy–momentum tensor Tκλ(r) with
right transformation properties is obtained by considering the following combination

0 =
i

4π

{
−E∗0,i(r) (k0,κ − i∇κ)Lij(k0 − i∇)E0,j(r)

+E0,j(r) (k0,κ + i∇κ)Lij(k0 + i∇)E∗0,i(r)
}

= ∇λTκλ(r) , (19)
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with

Tκλ(r) = −
1

4π

(
∂ (kκLij)

∂kλ

)
0

E∗0,i(r)E0,j(r) + . . . . (20)

In three-dimensional separation

Tκλ(r) ≡

⎛
⎝ Tkl(r, t) , icgk(r, t)

i

c
Sl(r, t) , −w(r, t)

⎞
⎠ , (21)

where Tkl(r, t) is the (Maxwell) stress tensor, gk(r, t) the momentum density, Sl(r, t)
the energy flow density (Poynting–Umov vector) and w(r, t) the energy density, the
differential form of conservation of momentum and of energy possesses the form

∇lTkl(r, t) +
∂

∂t
gk(r, t) = 0 , ∇lSl(r, t) +

∂

∂t
w(r, t) = 0 . (22)

One obtains for these quantities written up to the first approximation

Tkl(r, t) = −
1

4π

(
∂(kkLij)

∂kl

)
0

E∗0,i(r, t)E0,j(r, t) + . . . ,

gk(r, t) =
1

4π

(
∂(kkLij)

∂ω

)
0

E∗0,i(r, t)E0,j(r, t) + . . . ,

Sl(r, t) = −
1

4π

(
∂(ωLij)

∂kl

)
0

E∗0,i(r, t)E0,j(r, t) + . . . ,

w(r, t) =
1

4π

(
∂(ωLij)

∂ω

)
0

E∗0,i(r, t)E0,j(r, t) + . . . . (23)

For length, we do not write down here the more explicit expressions obtained by
inserting Lij ≡ Lij(k, ω) according to (9) and by forming the necessary derivatives.

4. Relation between Energy–Momentum and Action Conser-

vation and a Surprising Relation to Quantization

In the limiting transition to plane monochromatic waves, the slowly varying am-
plitudes E0(r, t) make the transition to constant amplitudes E0 and equation (12)
in operator form becomes (we write it now without indices Lij → L and Ej → E,
indices “0” mean at k = k0, ω = ω0)

L0E0 = 0 , E∗0L0 = 0 , L0 ≡ L (k0, ω0) . (24)

Using this, we find from (20) and (15) in the limiting case (our first magic trick)

Tκλ = k0,κTλ , Tλ = −
1

4π
E∗0

(
∂L

∂kλ

)
0

E0 , (25)
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or in three-dimensional form

Tkl = k0,kTl , gk = k0,k s ,

Sl = ω0Tl , w = ω0 s ,
⇒

Tkl = s k0,k Tl/s = gk Tl/s ,

Sl = s ω0 Tl/s = w Tl/s .
(26)

We now show that Tl/s is exactly equal to the group velocity v0,l in considered
point (k = k0, ω = ω0) of the dispersion surface given by |L (k, ω)| = 0 (|L| means
determinant of L). We can resolve this dispersion equation with respect to one
variable, for example in the form ω = ω(k). The group velocity is then determined
by v ≡ ∂ω/∂k. Substituting ω in |L(k, ω)| by ω = ω(k), we get the identity
|L(k, ω(k))| = 0 as a function of the wave vector k which we can differentiate and
we obtain at the considered point (k = k0, ω = ω0) of the dispersion surface (our
second magic trick)

v0,l = −

(
∂|L|

∂kl

)
0(

∂|L|

∂ω

)
0

= −

〈(
∂L

∂kl

)
0

(L)0

〉
〈(

∂L

∂ω

)
0

(L)0

〉 = −

E∗0

(
∂L

∂kl

)
0

E0

E∗0

(
∂L

∂ω

)
0

E0

=
Tl

s
. (27)

Herein, 〈A〉 means the trace of three-dimensional operators A. In the second step
it was used that the differentiation of a determinant with respect to a parameter λ
is ∂|L|/∂λ =

〈
(∂L/∂λ)L

〉
, where L denotes the complementary operator to L with

property LL = LL = |L|I and where in our case due to |L0| = 0 the complementary
operator is proportional to the dyadic product E0 ◦E

∗

0. We see that to obtain (27)
there is no reason to make any explicit calculations of the group velocity.

Thus in considered limiting case we find the factorization

Tkl = s k0,k v0,l , gk = s k0,k , Sl = s ω0 v0,l , w = s ω0 . (28)

The group velocity v as a regular velocity as is well known is not spatial part of a
four-vector and the modified four-vector u of the velocity can be defined by

u ≡

⎛
⎜⎜⎝ v√

1− v
2

c2

, i
c√

1− v
2

c2

⎞
⎟⎟⎠ , ⇒ u2 = −c2. (29)

This leads to the energy–momentum tensor (25) in the relativistic covariant form

Tκλ = s0k0,κu0,λ ,

(
s0 ≡ s

√
1−

v2
0

c2

)
, (30)

where s0 is the action density in the inertial system of resting wave and s the ac-
tion density in the considered inertial system where the wave possesses the group
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velocity v0. The tensor Tκλ for anisotropic dispersive media is, in general, nonsym-
metric (Tκλ �= Tλκ) since wave vector k0 and corresponding group velocity v0 do
not possess, in general, the same direction.

The energy–momentum tensor (30) in its structure is very similar to the energy–
momentum tensor for a homogeneous particle flow in classical mechanics and hy-
drodynamics

Tκλ = n0p 0,κu0,λ ,

(
n0 ≡ n

√
1−

v2
0

c2

)
, (31)

where p 0,κ is the four-vector of momentum and n0 the particle density in the system
where the particle rests and n the particle density in the system where it moves
with velocity v0. In reality, classical mechanics considers only the dispersion law
p 0,κ = m0uκ where m0 = m

√
1− v2/c2 is the rest mass of one particle and m the

mass in the considered system and the energy–momentum tensor becomes Tκλ =
μ0u0,κu0,λ with μ0 = n0m0 the mass density in the system of resting particles.

If we take seriously the analogue of electrodynamic (30) to mechanical energy–
momentum tensor (31), we may introduce an abbreviation � for the following quan-
tity (please, forget for a moment that it already exists!)

� ≡
s

n
=
s0
n0
≡

action density

density
= action of 1 particle . (32)

It is relativistically invariant (a relativistic scalar) and, moreover, it remains an
invariant under adiabatic changes of the system as one may realize. It also cannot
change from one to another system because in other case there would appear strange
effects at the boundary between two such systems. This suggests that it should have
a universal meaning. The energy–momentum tensor (30) can now be written

Tκλ = n0p 0,κu0,λ , p 0,κ ≡
s0
n0

k0,κ ≡ �k0,κ . (33)

Practically, with these relations we arrived at quantum mechanics (of quasiparticles)
but such a reasoning as mentioned was possible, in principle, already within the
time after the creation of special theory of relativity in 1905 and the development
of rigorous quantum theory from 1925 on.

Electrodynamics of dispersive media provides a much greater variety of possible
dispersion laws p = p(v) (or k = k(v)) than classical mechanics which only knows
p = mv with m the particle mass. By direct calculations in electrodynamics, one
usually finds primarily the dispersion law in the form v = v(k) of group velocity v
as function of wave vector k and its inversion k = k(v) is difficult and not to make
in general form for the whole variety of wave vectors k. A full analogy to classical
mechanics is only obtained for transverse waves in a cold plasma with the scalar
permittivity ε(ω) = 1−ω2

p/ω
2 (ωp is plasma frequency) where the photons possess an

equivalent scalar rest massm0 = �ωp/c
2 which tends to zero in the transition ωp → 0
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to the vacuum. Furthermore, in optics (e.g. crystal optics) of nondispersive media
(or in such approximation), we have the relation ns = (ck/ω)(v/c) = kv/ω = 1
(leading to Tkk = w) for refraction vectors n ≡ ck/ω and ray vectors s ≡ v/c which
can be continued to a whole list of dualities between description with refraction and
ray quantities (see, e.g. [7]). These duality relations are no more true for dispersive
media as, for example, the explicit calculation of their group velocities shows.

5. Nonuniqueness of the Energy–Momentum Tensor

It is known (e.g. [6]) that the energy–momentum tensor Tκλ(r) as quantity in the lo-
cal conservation theorems (22) is nonunique. The same is with the action four-vector
Tλ(r) introduced in this paper. From this arise problems in Einstein’s gravitation
equations where the energy–momentum tensor stands on the right-hand side in its
absolute form (see next section).

We begin with the action four-vector Tλ(r) which in the local conservation
theorem possesses the following nonuniqueness (i.e. ∇λT

′

λ(r) = ∇λTλ(r))

T ′λ(r) = Tλ(r) +∇μψλμ(r) , ψλμ(r) = −ψμλ(r) , (34)

where ψλμ(r) is an arbitrary second-rank antisymmetric tensor function. Written
in three-dimensional vector form this means (Tλ(r) = (Tl(r, t), ics(r, t)))

T ′(r, t) = T (r, t) + [∇×ψ(r, t)] +
∂

∂t
χ(r, t) , s′(r, t) = s(r, t)−∇χ(r, t) . (35)

with a pseudo-vector function ψl(r, t) = 1
2εlmnψmn(r, t) and a vector function

χl(r, t) = (i/c)ψ4l(r, t) = −(i/c)ψl4(r, t).
The corresponding most general nonuniqueness of the energy momentum tensor

Tκλ(r) for local conservation theorem (i.e. ∇λT
′

κλ(r) = ∇λTκλ(r)) is described by

T ′κλ(r) = Tκλ(r) +∇μψκλμ(r) , ψκλμ(r) = −ψκμλ(r) , (36)

with a third-rank four-tensor function ψκλμ(r) which is antisymmetric in the last
two indices [6]. In three-dimensional form this means for the stress tensor Tkl(r, t)
and the momentum density gk(r, t)

T ′kl(r, t) = Tkl(r, t) + εlmn∇mψkn(r, t) +
∂

∂t
χkl(r, t) ,

g′k(r, t) = gk(r, t)−∇lχkl(r, t) , (37)

and for the energy flow density Sl(r, t) and the energy density w(r, t)

S′l(r, t) = Sl(r, t) + εlmn∇mψn(r, t) +
∂

∂t
χl(r, t) ,

w′(r, t) = w(r, t)−∇lχl(r, t) , (38)
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where ψkn(r, t) ≡ 1
2εlmnψklm(r, t) and χkl(r, t) ≡ −(i/c)ψkl4(r, t) are two arbi-

trary second-rank tensor functions and ψn(r, t) ≡ 1
2εlmnψlm(r, t) and χl(r, t) ≡

−(i/c)ψl4(r, t) are two arbitrary vector functions.
As a simple example, we consider the limiting case of plane monochromatic

waves in vacuum. The energy flow density and energy density (and, analogously,
stress tensor and momentum density) derived from general relations obtained with-
out the approximation of slowly varying amplitudes possess then “high-frequency
terms” according to (the terms with only slowly varying amplitudes are announced
by points)

S′ =
c

4π

{
. . .+

c

ω0
[E0× [k0×E0]] e

i2(k0r−ω0t) + c.c.

}
,

w′ =
1

8π

{
. . .+

(
E0E0 +

c2

ω2
0

[k0×E0] [k0×E0]

)
ei2(k0r−ω0t) + c.c.

}
. (39)

If we choose

χ(r, t) =
c

4π

{
i
c

2ω2
0

[E0× [k0×E0]] e
i2(k0r−ω0t) + c.c.

}
, (40)

and calculate ∂χ(r, t)/∂t and −∇χ(r, t), we find that the high-frequency terms in
(39) can be removed. One has to be a little careful with these relations because
one has to suppose in these derivations that the amplitudes E0 are slowly varying
quantities and then we have further terms which are derivatives of these amplitudes.
However, they may be considered in first approximation as small terms which vanish
in the limiting transition to plane monochromatic waves. This means that the
nonuniqueness functions among other actions play a role to reduce the energy–
momentum tensor to forms without the high-frequency and high-wave-vector terms.

6. Problems with Einstein’s Gravitation Equation

The basic equation of Einstein’s gravitation theory is [8] (and, e.g. [6])

Rκλ −
1

2
gκλR =

8πγ

c4
Tκλ , (41)

where Rκλ ≡ gμνRμκνλ is the Ricci tensor (field) (Rμκνλ is the Riemann curvature
tensor (field)), gκλ the metric tensor (field), Tκλ the energy–momentum tensor
(field) and γ the gravitation constant. The Riemann curvature tensor is defined
by the metric tensor and by its not higher than second-order derivatives and this
continues to the Ricci tensor (see, e.g. [6] for full definitions). Both tensors, the
Ricci tensor and the metric tensor are by definition symmetric (i.e. Rκλ = Rλκ and
gκλ = gλκ). Therefore, Einstein’s equations are finitely second-order differential
equations for the 10 independent components of the metric tensor gκλ for known
energy–momentum tensor Tκλ as the source of gravitational field.
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For unity of physics, one has to suppose that on the right-hand side of (41)
stands the full energy–momentum tensor Tκλ consisting of the tensor for the mov-
ing mass distributions plus the tensor of the electromagnetic field. From this arise
two problems. The first problem is that the tensor of the electromagnetic field
for dispersive media is, in general, nonsymmetric (Tκλ �= Tλκ with 16 independent
components), whereas the Ricci tensor Rκλ and the metric tensor gκλ are by defini-
tion symmetric (10 independent components) and a general equality in (41) is not
possible. The second problem is that the energy–momentum tensor as a quantity in
the local conservation theorem is not uniquely defined. This nonuniqueness should
not have influence on the metric tensor gκλ. It is not proved to our knowledge (and
apparently wrong) that the arbitrary nonuniqueness functions ψkn(r, t), χkl(r, t)
and ψn(r, t), χl(r, t) (see Section 5) do not have influence via equation (41) on the
metric tensor gκλ. Usually, this problem is not considered by assuming the symmet-
ric tensor Tκλ(r, t) = μ(r, t)uκuλ as the right form of the energy–momentum tensor
for a moving mass distribution (μ(r, t) mass density). Concerning electrodynam-
ics in vacuum, there are made great efforts to show that the energy–momentum
tensor is equivalent to a symmetric one, mostly already before the treatment of
Einstein’s gravitation equations (41) where the problem of nonuniqueness is then
usually no more mentioned (see, e.g. [6]). On the other side, one could think that
the nonuniqueness of the energy–momentum tensor Tκλ which for homogeneous
anisotropic dispersive media is basically obtained as a nonsymmetric one could be
used to make this tensor to a symmetric tensor. However, it seems that the energy–
momentum tensor for such media is intrinsically nonsymmetric and we did not find
a possibility to make it to a symmetric one using the nonuniqueness functions.

Although one is surely far from measurability of the influence of dispersive
media on the gravitational field, the unity of physical laws to which one believes
suggests that there are some problems with Einstein’s gravitation equations (41) in
connection with the energy–momentum tensor Tκλ of anisotropic dispersive media.
We cannot solve here and to this time these problems and could only mention them.

7. Conclusion

We have calculated in relativistic covariant way the action four-vector and the
energy–momentum tensor for homogeneous anisotropic dispersive media in macro-
scopic electrodynamics and have discussed relations to quantization and to problems
for Einstein’s gravitation equation. For spatially and (or) temporally inhomoge-
neous and dispersive media, the energy–momentum tensor in electrodynamics is no
more a quantity in a conservation theorem and only the action-four-vector remains
to be such a conservation quantity. We hope that we can show this in future al-
though there is yet the difficulty that we do not have in this more general case such
basic solutions as the plane monochromatic waves for homogeneous media which
we can separate from slowly varying amplitudes as made in the derivations. It is
intended to write an article with more details and references and also with more
results which were not possible to discuss here.
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