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Abstract. A statistical bond-percolation model for the fragmentation has been
applied to the proton-induced reactions assuming a lattice structure to the pre­
fragment nucleus and using the Monte Carlo technique to determine the bond
to be broken. The model succeeded to reproduce the essential features of the
mass yield curves for the p-Cu reaction at 3.9 GeV and to describe qualita­
tively the charge and the multiplicity distributions of the projectile fragments
for the 28Si interactions with the quasi-free emulsion nucleon at 3.7 AGeV.
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1. Introduction

Many theoretical models have been proposed to study the multifragmentation pro­
cesses [1-7]. Among the statistical approaches, the percolation theory postulates
that the nucleus is considered as a lattice and the nucleons are distributed over
points, which are called lattice sites. Every lattice site represents a nucleon. The
occupied sites are either isolated from each other or they form small groups of
neighbors called clusters.

There are three types of percolation: the site percolation, the bond percolation
and the hybrid or site-bond percolation [8-27]. In the bond percolation [14-19], all
sites are occupied but there exists a probability for breaking the bond where the
breaking probability PB increases with increasing the incident energy and decreases
with increasing the impact parameter. The excitation energy can be converted into
a percolation bond-breaking probability [20,21] via the relation
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(1)2 (3 EB )PB = 1 - J1T r 2,0, T '

where r is the generalized incomplete gamma function, EB is the binding energy
per nucleon in the residue and T is the temperature [T = viE* Ia, where E* is the
excitation energy and a is the level density parameter (a = AI8 MeV)].

As the nucleus expands, the available space increases and the nucleons can
form clusters which can be more or less extended. The parameter PB is related
to the strength of the bonding between nucleons. For a nucleus with zero thermal
excitation energy, PB = 1, increasing E* decreases the strength of the bonds which
vanish completely when E* equals the binding energy [27]. The percolation has been
extensively discussed in Refs [13-18,23-33]. The nuclear lattice model ofthe proton­
induced multifragmentation reactions is discussed in Section 2. A purely statistical
model, which implies the bond-percolation mechanism with the minimum physical
parameters: the bond breaking and the size of the prefragment nucleus (Section 3)
has been applied to study the mass yield distribution of the fragments produced
from p-Cu reactions at 3.9 GeV (Section 4). The model has shown to be able to
describe qualitatively the charge and the multiplicity distributions of 28Si with the
quasi free emulsion at 3.7 AGeV (Sections 5 and 6).

This has been achieved by generating one thousand events for each value of
the breaking probability by the Monte Carlo technique. The effect of varying the
impact parameter has also been studied. The huge number of simulated events
gave an opportunity to study the mass yield distribution and also the dependence
of the average multiplicity of the fragments on the breaking probability. Finally,
the conclusions are given in Section 7.

2. Nuclear Lattice Model of the Proton-Induced Multi­
Fragmentation Reactions

The production of the complex fragments in the nuclear collisions at intermediate
and high energies, has received a great interest in nuclear physics. Experiments
have been carried out using both proton and heavy-ion beams and the literature is
now extensive (for a review, see e.g. Ref. [29]).

The properties of the infinite nuclear matter [34-36] indicate that a "liquid-gas"
phase transition is to be expected and that the physical conditions attainable can
probe the relevant region of the nuclear equation of state. The calculations for the
real, finite nuclei also suggest the presence of phase instability [37-40]. On the other
hand, though, investigations of the fragmentation of hot classical drops subjected
to classical molecular dynamics [41] suggest that the multifragmentation reactions
cannot be used to study the phase diagram in the region of the critical point.
Sequential evaporation has been extended to higher excitation energies [4,42] and
has shown to be useful for obtaining some information on the time development of
the system. Initially, the system is supposed to be in a state of thermal equilibrium
and the evaporation is a surface phenomenon. Different theoretical fragmentation
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models based on a droplet description of the nucleus have been proposed [43,44]'
and the liquid-gas phase transition has been studied extensively [36, 45]. Power
laws in the mass distribution, however, are by no means specific to the liquid-gas
phase transitions but can be observed in other fragmenting systems as well as have
pointed out Hufner and Mukhopadhyay [46] stating th~t

Ap < AT/3, (2)

where ,\ is the exponent. In the inclusive mass yield data for the reactions of p+Kr
and p+Xe, at the energies of 80 to 350 GeV [2,5], the value of the exponent ,\ was
found to be :=:::2.6. Since the mass yield distribution for the droplets condensing at
the critical point in a Van der Waals gas follows a similar power law: a(A) ()( A-T
with a value of ~ for the critical exponent T, Hirsch et al. [47] suggested that
the nuclear multifragmentation proceeds via a liquid-gas phase transition of the
nuclear matter. Hufner and his group have therefore proposed a so-called minimum
information model [5] which uses only the charge conservation law and the principle
of maximum entropy for its predictions based on statistical calculations. Then, it
was refined [48] and extended to include the law of the total energy conservation [49].
To obtain such a method, Bauer proposed the nuclear lattice model [14-16]. In its
simplest form, the nucleons are considered to occupy the sites of a three-dimensional
simple-cubic lattice. Neighboring pairs of sites are initially connected by bonds.
Some bonds are then broken in a model-dependent manner and the size distribution
is evaluated for the connected nucleons or "clusters" and identified with nuclei. Such
a flexible model allows the study of the effects of the various assumptions. Breaking
the bonds in a random, uniform way corresponds to a purely statistical break-up,
which may be associated with the multifragmentation of a thermalized system. In
the percolation theory, the breaking probability PE is reasonably assumed to be an
increasing function of the excitation energy per nucleon E* of the target [50].

3. Percolation Model of Nuclear Fragmentation

Percolation models [10] are generally based on two points: the description of the
distribution of a set of points in a d-dimensional space and a criterion for deciding
if two given points are connected. The connection with the bond percolation theory
is established according to the fact that the target nucleons are represented by
points occupying a simple cubic three-dimensional lattice in the coordinate space.
In general, it would be possible to use any lattice structure.

The lattice spacing l can be computed approximately from the nuclear satura­
tion density l = 1/p~/3 :=::: 1.8 fm, where Po is the nucleon density near the center of
the nucleus and equals 0.165 fm- 3 .

The number of points used equals the number of the target nucleons and is
conserved during the calculations, therefore automatically satisfying the mass con-
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servation law in the fragmentation process

m

LAp(i) = AT,
i=l
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(3)

where A p (i) is the mass number of the ith fragment and m is the total multiplicity
of all the fragments.

The nucleons are connected to their nearest neighbors on the lattice via bonds
representing the short-ranged nuclear interactions. The number G of these nearest
neighbors in the simple cubic three dimensional lattice is 6, Le. G = 6. These
bonds are then broken with a probability PB , which is the percolation parameter
and depends linearly on the excitation energy per nucleon E* of the target

E* E*
PB =-= ,

E B E bond G/2
(4)

where Ebond is the energy required to break one bond and E B is the nuclear matter
binding energy per nucleon (16 MeV).

No straightforward way exists for calculating the excitation energy E* as a
function of the beam energy. Therefore, PB will be used as an adjustable parameter
to fit the experimental mass yield data. Then, Eq. (4) is used to estimate the total
excitation energy deposited in the target. This equation can only be valid for the
excitation energies E* which are smaller than the nuclear matter binding energy
EB [16].

It is interesting to notice the similarity between the Bethe-Weizsacker descrip­
tion of the nuclear binding energy and the results obtained using the Bauer approach
[16]. Using a lattice, one simulates a nucleus with Z protons and (A - Z) neutrons
where the sites occupied by the protons are randomly chosen. Each time a proton
is adjacent to a neutron, an energy VI (and Vz for the other cases) is attributed to
the corresponding bond. Calling N I the number of the proton-neutron bonds and
Nz the number of the other bonds, one can define the binding energy per nucleon
by [25]

(5)

V';; being the Coulomb energy and A is the mass number of the nucleus given by
A = ~7T"R3 , where p is the density of the nucleus.

The simulation shows that Vc ~ O.72Zz X A-I /3 and that the length scale on
the lattice corresponds to a density equal to 0.165 fm- 3 . An analytical formula
for the binding energy per nucleon EB can be obtained by simply estimating N I

and N z.
In a cubic lattice, the total number of bonds between the adjacent sites is

equal to 3A(1 - A-I/3). When the lattice is inscribed in a sphere, the surface
term increases and the corresponding total number of bonds can be fitted by the
relation: 3A(1 - 1.2A-I /3) , the neutron excess is given by J1 = (N - Z)/(N + Z),
the probabilities for a site to be occupied by a proton or a neutron are Pp =
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(6)

(1 - p)/2, Pn = (1 + p)/2, respectively, and the percentage ofn-p bonds is 2Pn Pp =
(1 - p2)/2. For the other bonds, one gets

p2 + p2 = 1 + p2
p n 2·

Using the above equations, one obtains

EB = ~(Vl + V2) - A-1/3 (1.2 X ~(Vl + V2») _(N ~ Z) 2 (~(Vl - V2»)

+A-1
/ 3 (N ~ Z) 2 (1.2 X ~(Vl _ V2 ») _0.72Z2A-4

/ 3 • (7)

The first three terms correspond to the volume, surface and asymmetry contribu­
tions, respectively and the last one is the Coulomb term.

Using the values V1 = 8.5 MeV and 112 = 2 MeV, one can fairly well reproduce
the coefficients of the standard mass formula except for the asymmetry term, which
is too low. The fourth term in Eq. (7) (mixing surface and asymmetry) does not
appear in the classical mass formula.

Calculating the binding energy per nucleon for Cu, using only the volume and
the surface term, yields

EB = 15.75 MeV - 17.8 MeV x A- 1/ 3 = 11.3 MeV,

the total number of bonds between adjacent sites is equal to 3 x 64 (1-64- 1/ 3 ) = 144
bonds, each one represents a binding energy of

Ebond = 15.75 MeV x 2/G = 5.25 MeV.

Therefore, one obtains an effective binding energy per nucleon equal to

EB = E bond X 144/64 ~ 11.81 MeV

(8)

(9)

which is quite clo~to the previously obtained value.
The breaking probability PB , given by Eq. (4), has to be dependent on the

impact parameter b of the proton and can be calculated according to Bauer [16] by
integrating over the nucleon density of the target along the path of the projectile

R J+oo [R(b)]dR
PB(b) = 0 -00 p .

r~: p[R(O)]dR
(10)

For numerical calculations, a standard Woods-Saxon parametrization of the
density p(r) is used. Thus, PB is a monotonically falling function of band PB(O) =
Po. This approach is motivated by the Glauber approximation and will be used to
describe the impact parameter dependence of PB.
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(11)

For a given PB(b), one generates a random number eijk between 0 and 1 for
every bond B ijk (where the indices correspond to the spatial location of the center
of the lattice bond) and decides if the bond will be broken or not,

c { > PB ===> Bijk unbroken,
","k

'3 S; PB ===> Bijk broken.

This means that using the breaking probability PB as an input parameter, the
Monte Carlo algorithm decides for each bond individually whether it is broken or
not. This procedure is followed by a counting algorithm, which looks for clusters
and evaluates their sizes. The cluster counting is the most time-consuming part
of any percolation-like calculation and the algorithm of [15] is used in the present
work. Let us denote the set of all grid points in an n x n x n cube by A and by
A(O) S; A the subset of sites occupied by uncounted "nucleons". Note that for each
member of A only one flag is required to indicate whether it belongs to Q = A - A (0)

or to an already-counted cluster. Initially, bonds are assumed to exist between all
neighboring pairs of sites belonging to this subset. These bonds are then "broken"
with a probability PB, and the problem is to "detect" and measure the size of the
produced clusters.

One scans A until the first point belonging to A (0) is found. This is denoted
by PI, and one must now find all the other points of A(O) connected by unbroken
bonds to PI- The C(O) = {PI} is called the zeroth generation of C, where C =
{PI, ... , Pm} represents all the sites of the cluster (of size m), of which PI is a
member. All sites neighboring PI and belonging to A(1) = A(O) - C(O) are then
examined and those connected to PI by unbroken bonds form C(l). In general the
nth generation of C, c(n) consists of all those points of A(n) = A(n-l) - c(n-l)

which are connected via bonds to at least one point of A(n-l). This procedure is
repeated and the total cluster is then given by C = UZ:o C(i). Then, a cluster
search algorithm is used to find out which nucleons are still connected via bonds
and to identify these clusters with the fragments produced by the nuclear collision.

By summing over all the impact parameters and using a large number of Monte
Carlo events, one is thus able to generate the mass inclusive mass yield distributions
which can be compared to the experimental results.

In an attempt to study the characteristic features of the various physical mech­
anisms, it is clear that the only input for a given target mass is PB, for which
different prescriptions can be made.

Before considering the experimental data, it is worthwhile exploring the simplest
properties of the nuclear lattice model. In order to do it, let us assume that PB
is the same for each bond, independent of its position on the lattice and of the
projectile's impact parameter. Using a geometry similar to that used in the nuclear
fireball model [51], Le. assuming that the proton generates a cylindrical fireball in
the target, the breaking probability is thus taken to be constant over the spectator
nucleons. The obtained results show that the position of the fireball in the target
and the number of the nucleons contained in it are irrelevant, provided that only
p-induced reactions are considered.
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(12)

The behavior of the fragment-mass distributions for the reaction p+Cu with differ­
ent breaking probabilities from PE = 0.35 to 0.85 has been studied. In Fig. 1, four
different intervals are chosen in such a way that for each interval

l
bmax R2

~ b db = O"tot = 1T T,

2 bmin 4 4

where RT is the radius of the target nucleus and O"tot is the total cross-section.
Thus, the absolute normalization of the fragment spectra for all intervals are

readily comparable. For this reaction, AT = 64 (i.e. 4 x 4 x 4 lattice). From this
figure, it can be seen that

a) For small PE (0.35), corresponding to either a small kinetic energy of the
projectile or a high impact parameter, only small fragments are broken off the
target nucleus so there are some low-mass fragments, but the major part of
the yield lies in particles having a mass similar to that of the target nucleus
(residual nucleus). This case is similar to the spallation process.

b) At the intermediate breaking probability PE (0.60), which corresponds to an
intermediate kinetic energy of the projectile or an intermediate impact param­
eter, a V-shaped mass distribution is obtained showing that the distribution
is broad and all kinds of mass numbers are observed.

c) For high PE (0.74), which corresponds to a high kinetic energy ofthe projectile
or to a small impact parameter, no residual nucleus is present, reflecting a
complete break-up of the target.

d) For very high PE (0.85), corresponding to a very high kinetic energy of the
projectile or a very small impact parameter i.e. the collision is very violent,
showing a complete disintegration of nuclei into free nucleons and Fig. 1d is
monotonically decreasing.

e) Fig. 1e shows a comparison of the present calculations for the mass yield curve
with the experimental data of Ref. [52] for the reaction p+Cu at 3.9 GeV beam
energy. In inclusive experiments, one is only. able to measure the fragment
mass distributions that contain contributions from all the impact parameters.
Thus, one can only measure an effective exponent A which is averaged over
all the impact parameters. This has also been done for the inclusive results
of the present calculations displayed in Fig. 1e.

For the inclusive data, the effective exponent A is also found to follow a power
law. For the present data, using all the fragment masses between 1 and 21 via linear
regression the value of A is found to be 2.406 ± 0.008.

The striking feature of these results is that they show the characteristics that
have also been obtained by more complicated theories, in spite of the few assump­
tions that have been made. In particular, the present model is able to generate
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the V-shape fragment-mass distributions for the intermediate breaking probabili­
ties (Fig. 1b). One can see that the mass yield distributions for the reaction p+Cu
show a similar behavior to that of the reactions p+Xe and p+Ag [14-16].
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Fig. 2. Multiplicity distribution for the reaction p+Cu at a) Pa 0.35,
b) Pa = 0.60, c) Pa = 0.74 and d) Pa = 0.85. Also the mean value < m >
and the standard deviation SD of the multiplicity distributions are shown.

Figure 2 displays the dependence of the multiplicity distributions on the break­
ing probability PE for the reaction p+Cu, only for AF = 1. It can be seen that
the mean fragment multiplicity < m > increases monotonically with the increase of
the breaking probability, assumed to be constant over the entire lattice and inde­
pendent of the impact parameter. This monotonic increase allows the elimination
of the somewhat artificial quantity PE .
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Comparison of the experimental data [2,29,47,53-55] with the above-described
properties of the nuclear lattice model shows that it allows a qualitative description
of the available mass-yield curves.

Mainly, the study of the fragmentation processes has focused on the yield of the
medium-mass fragments (A p < AT /3), for which the data can often be described
by a power law, a(Ap) = const. A;A, then In a(Ap) = const. (- AAp) representing
a straight line in a doubly-logarithmic plot whose slope gives the exponent, -A. For
the copper target nucleus, the power law is only applicable to the fragments having
mass numbers between 1 and 21. Figure 3 displays this relation, showing that our
results do agree fairly well with the power-law fit showing the validity of the present
statistical model.

From Fig. 3, it can be seen that for the low and the intermediate fragment
masses, the power law is valid. From the fitting, the exponent A (i.e. the slope) is
found to be equal to 3.650 ± 0.135, 2.092 ± 0.017, 2.110 ± 0.008, 3.535 ± 0.034 and
2.406 ± 0.008 for PB equals 0.35, 0.6, 0.74, 0.85 and their sum, respectively in a, b,
c, d and e.

In the phase-transition model for the fragmentation [45,56], it is expected that
this exponent is minimum if the fragmentation occurs at the critical temperature,
Te• Thus min(A) = A(Te ) = T, where T is a critical exponent. A compilation of the
experimental data [3] suggests that A has a minimum at the temperature of almost
12 MeV, which has therefore been identified with Te .

There has also been an attempt to explain the general behavior of A(T) using
purely Coulomb-tunneling effects [57]. The percolation model can be used to cal­
culate A as a function of PB. It is clear that there is a minimum at PB = 0.60
A = 2.092 ± 0.017. However, this result is only a consequence of the percolation-like
ingredients of this model, and no connection of PB with a "temperature" has been
made.

Figure 4 shows the exponent, A, as a function of the breaking probability, PB.

5. Comparison between Nuclear Fragmentation in Collisions
of 4.5 A GeVIc 28Si with Quasi-Free Nucleons of Emulsion
Nuclei and the Percolation Theory

In high energy nucleus-nucleus collisions, the fragments from the projectile and the
target nuclei can be well separated. The process, where a part of the nucleus is
suddenly liberated, is called fragmentation [58] and if the second nucleus acts only
as an energy injector one denotes it as limiting fragmentation [59]. If the limiting
fragmentation is fulfilled and the sources are well separated, in momentum space,
the study of the critical behavior by the percolation methods for example becomes
useful.

Attempts have been made to study the critical phenomena in nuclear emulsions
under the assumption that the projectile fragmentation products can be isolated
even in central collisions at 1 AGeV [60] with some positive conclusions concerning
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a sharp phase transition [61]. Another attempt done to use the data from the
central collisions alone which assumes initial fusion at energies between 20 AMeV
and 200 AMeV also indicates the onset of multifragmentation but not as a sharp
transition [62].

Percolation theories have been developed to mimic the critical behavior in fi­
nite systems [16,61]. The behavior near criticality has been inferred from the ex­
perimentally observed power-law dependence of the intermediate mass fragments
(3 ::; Z ::; 20) charge distributions [20,63,64]. More recently, critical exponents
have been extracted from the dependence of the moments of the charge distribution
upon some quantities, such as the charge multiplicity, that are typically associated
with temperature and/or excitation energy [65].

6. Correspondence between Nuclear Fragmentation and Per­
colation

Let us discuss the analogy between the nuclear disintegration and the percolation.
There is an obvious parallelism between the simple bond percolation and the nuclear
disintegration if the excitation energy in an excited nucleus is associated with the
number of broken bonds in a percolation simulation. It has been shown [65] that the
cross-sections of the total disintegration events should follow a geometrical formula
similar to the one suggested by Bradt and Peters [66] for the relativistic (inelastic)
nucleus-nucleus interactions,
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O'TD = (1.58A~026)2 (Aif3 + A~f3 - 0.85A~38)2, (13)

where Ap and AT denote the mass numbers of the colliding nuclei.
To study the 28Si-nucleon (quasi-free nucleon for emulsion) interaction, the

28Si nucleus is considered as a cubic lattice where each nucleon has bonds with its
nearest neighbors. Only one parameter, PB, the probability ofthe bond breaking, is
introduced after setting the dimension of the lattice. For the 28Si, the cubic 3 x 3 x 3
lattice is a good approximation.

The number of points used equals the number of the projectile nucleons and
is conserved during the calculation, therefore, automatically satisfying the mass
conservation law in the fragmentation process

m

I: Ap(i) = Ap ,
i=1

(14)

where Ap(i) is the mass number of fragment i and m is the total multiplicity of all
fragments.

It is interesting to note the similarity between the Bethe-Weizsacker description
of the nuclear binding energy and the result calculated by the present approach. For
the 28Si nucleus, calculating the binding energy per nucleon using only the volume
and the surface terms of the Bethe-Weizsa.cker formula yields

EB = 15.75 MeV -17.8MeV x 27-1/ 3 ~ 9.82 MeV.

Representing the 28Si nucleus in a cubic lattice, the total number of bonds
between adjacent sites is equal to 3 x 27(1- 27-1/ 3) =54 bonds, each one represents
a binding energy of Ebond = 15.75 MeV x 2/6 = 5.25 MeV. Therefore, an effective
binding energy per nucleon of EB = 5.25 x 54/27 = 10.50 MeV is obtained which is
quite close to the value obtained above. Therefore, it can be concluded that both
approaches give almost the same value of the total binding energy provided that
the same Coulomb energy is added when considering the volume and the surface
effects only.

Figure 6 shows the charge distribution of Z 2: 2 fragments of 28Si in their
interactions with a quasi-nucleon type (nh = 0,1), i.e. only interactions with a
hydrogen nucleus or with only one bound nucleon in CNO or AgBr nuclei have been
selected and 291 such events have been found for 28Si [67], (chosen out of 1322 28Si
+ emulsion interactions at 4.5 AGeV/c, carried out in the laboratory of high energy
experimental physics in Cairo University). In the very gentle collisions characterized
by nh = 0, the energy transferred to the target nucleus is minimum. In most of these
collisions, the projectile nucleus evaporates singly or doubly charged fragments and
the residual nucleus is emitted as one big fragment. The charge yield distribution
has a U-like shape resulting from the mixture of the characteristic shapes of the
spallation and the fission mechanisms.

The best fit curve obtained with the bond percolation model is for PB = 0.58
[18], performing one thousand (1000) Monte Carlo runs, The calculated mass dis-
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the fragments in 28Si interactions
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Fig. 7. Multiplicity distribution
of the fragments with charge Z 2:
2 in interactions of quasi-nucleon
type. The curve is calculated by
the percolation model and the ex­
perimental data [67].

tribution is transformed into a charge distribution by assuming that all A = 3,4
isotopes correspond to Z = 2; and all A = 5,6 isotopes correspond to Z = 3, etc.

Figure 7 shows the multiplicity distribution for Z 2: 2 fragments nF compar­
ing the experimental data, of the multiplicity distribution of the fragments for 28Si
interactions with a quasi-nucleon type, with the curve calculated by the bond per­
colation model for PB = 0.58, performing 1000 runs. The simulated events gave
the best consistency with the experimental data at the breaking probability of 0.58
assuming a cubic lattice 3 x 3 x 3 for the 28Si nucleus.

From Figs 6 and 7, it can be seen that the multiplicity and the charge distribu­
tions of the fragments with Z 2: 6 are qualitatively described by a statistical perco­
lation model for the quasi-nucleon events where the size of the fragmenting system
is well defined. Naturally, no pre-formed alpha-substructures are introduced in the
percolation simulation. The alpha emission channel seems however to be stronger
than the prediction while the 3 ::; Z ::; 5 channels are weaker. It has been shown
earlier [68] that the ratio between helium (He) and hydrogen fragments decrease as
the overlap between the colliding nuclei increases. The cascade evaporation model
[68] does not account for the existence of such alpha-structures inside the nuclei and
it therefore significantly underestimates the yield of the doubly charged fragments.
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A statistical model implying the bond-percolation mechanism, with only two phys­
ical parameters: the bond breaking probability and the size of the prefragment nu­
cleus, has been studied. This model has successfully reproduced the mass yield dis­
tributions for the fragments emitted from the proton-copper reactions at 3.9 GeV.
This has been achieved using the Monte Carlo technique by generating one thousand
events for each value of the breaking probability. The huge number of simulated
events gave an opportunity to study the mass yield distributions and also the de­
pendence of the average multiplicity of the fragments on the breaking probability.
The distributions of the charge and the multiplicity for the interactions of 28Si with
quasi-free nucleons in emulsion at 4.5 AGeVIc have been compared with the cor­
responding ones for the events simulated by using the percolation mechanism and
using the Monte Carlo technique. The best fit has been obtained, assuming a cubic
lattice 3 x 3 x 3 for the 28Si nucleus and at a breaking probability of 0.58.
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