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Abstract. The collective motion of nucleons from high-energy heavy-ion col­
lisions is analyzed within a relativistic two-fluid model for different equations
of state (EoS). As function of beam energy the theoretical slope parameter
Fy of the differential directed flow is in good agreement with experimental
data, when calculated for the QCD-consistent EoS described by the statistical
mixed-phase model. Within this model, which takes the deconfinement phase
transition into account, the excitation function of the directed flow (Px ) turns
out to be a smooth function in the whole range from SIS till SPS energies.
This function is close to that for pure hadronic EoS and exhibits no minimum
predicted earlier for a two-phase bag-model EoS. Attention is also called to a
possible formation of nucleon antiflow (Fy < 0) at energies ~ 100 A·GeV.
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1. Introduction

Collective flows of various types (radial, directed, elliptic, ... ) observed experimen­
tally in heavy-ion collisions reveal a space-momentum correlated motion of strongly
interacting nuclear matter. This collective motion is essentially caused by the pres­
sure gradients arising during the time evolution in the collision, and hence opens
a promising way for obtaining information on the equation of state (EoS) and, in
particular, on a possible phase transition. Recently, this feature has stimulated
a large number of experimental and theoretical investigations on flow effects (cf.
review articles [1,2]).
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Manifestations of the deconfinement phase transition were considered already
some time ago by Shuryak and Zhirov [3] and van Hove [4]. Since a phase transition
slows down the time evolution of the system due to softening of the EoS, the authors
expect around some critical incident energy a remarkable loss of correlation between
the observed particle momenta and the reaction plane, and hence a reduction of
the directed flow. Assuming a first-order phase transition Hung and Shuryak [5]
and Rischke et al. [6] have recently obtained quantitative predictions for heavy-ion
collisions. For an expanding fireball Hung and Shuryak expect the softest point
effect around Elab = 30 A·GeV. In a one-fluid hydrodynamic model Rischke et al.
show that the excitation function of the directed flow exhibits a deep minimum
near Elab = 6 A·GeV. However, preliminary experimental results [7] in this energy
range do not confirm these predictions. In the following, we report on a study
of the directed flow within a two-fluid hydrodynamic model [8] for the statistical
mixed-phase EoS [9,10] which is adjusted to available lattice QCD data. Our prime
goal here is to compare predictions provided by different EoS, such as the bag­
model EoS, purely hadronic EoS, and Mixed-Phase (MP) EoS [9,10], to available
experimental data.

2. Equation of State within the Mixed-Phase Model

We would like to describe the MP EoS in more detail, as it was proposed only
recently and is less familiar as compared to the other model EoS. The MP EoS is
purely phenomenological and designed to describe the confinement-deconfinement
phase transition of QCD with the best reproduction of available QCD lattice data
[11]. The underlying assumption of the MP model [9,10] is that unbound quarks
and gluons may coexist with hadrons forming a homogeneous quark/gluon-hadron
phase. Since the mean distance between hadrons and quarks/gluons in this mixed
phase may be of the same order as that between hadrons, the interaction between
all these constituents (unbound quarks/gluons and hadrons) plays an important
role and defines the order of the phase transition.

Within the MP model [9, 10], the effective Hamiltonian is expressed in the
quasiparticle approximation with density-dependent mean-field interactions as:

H=LLjdr'I/J;(r,s) (j_\l2+Ml+Ui(p») 'l/Ji(r,s)-C(p)·V, (1)
t S

where i enumerates different sorts of particles (unbound quarks, gluons and hadrons),
s stands for their internal degrees of freedom. Here Ui is the mean field acting on
this particle i described by the field operator 'l/Ji and M i is the current mass for
quarks and gluons and the free mass for hadrons. The use of the density-dependent
Hamiltonian (1) requires certain constraints to be fulfilled, which are related to
thermodynamic consistency [9,10]. For the chosen form of the Hamiltonian these
conditions imply that Ug(p) and Uq(p), as well as the correcting function C(p) do
not depend on temperature. Under quite general requirements of confinement for
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(2)

color charges, the mean-field potential of quarks and gluons is approximated by

A
Uq(p) = Ug(p) = -; 'Y> 0

p'Y

with the total number density of quarks and gluons in the local rest frame of the
matter

p = pq + Pg +L l/jPj ,
j

where Pq and Pg are the number densities of unbound quarks and gluons outside of
hadrons, while Pj is the density of hadron type j and l/j is the number of valence
quarks inside. The presence of the total number density P in (2) implies interactions
between all components of the mixed phase. The approximation (2) mirrors two
important limits of the QCD interaction. For P --+ 0, the interaction potential
approaches infinity, Le. an infinite energy is necessary to create an isolated quark
or gluon, which simulates the confinement of color objects. In the other extreme
case of large energy density corresponding to P --+ 00, we have Uq = Ug = 0 which
is consistent with asymptotic freedom.

The hadronic potential in Hamiltonian (1) is described by a non-linear mean­
field model [12] modified to include also meson-baryon interactions. Constraints
imposed by the thermodynamic consistency conditions allow one to obtain a poten­
tial form for interaction of unbound quarks/gluons with a hadron [9].

A detailed study of the pure gluonic SU(3) case with a first-order phase tran­
sition allows one to fix the values of the parameters as 'Y = 0.62 and A1/(3'Y+ 1) =
250 MeV. These values are then used for the SU(3) system including quarks. As
is shown in Fig. 1 for the case of quarks of two light flavors at zero baryon density
(ns = 0), the MP model is consistent with lattice QCD data providing a con­
tinuous phase transition of the cross-over type with a deconfinement temperature
Tdec = 153 MeV. For a two-phase approach based on the bag model a first-order
deconfinement phase transition occurs with a sharp jump in energy density e: at
Tdec close to the value obtained from lattice QCD.

Though at a glimpse the temperature dependencies of the energy density e: and
pressure p for the different approaches presented in Fig. 1 look quite similar, there
are large differences revealed when pie: is plotted versus e: (cf. Fig. 2, left panel).
The lattice QCD data differ at lowe:, which is due to difficulties within the Kogut­
Susskind scheme [14] in treating the hadronic sector. A particular feature in the MP
model is that, for ns = 0, the softest point of the EoS, defined as a minimum of the
function p(e:)/e: [5], is not very pronounced and located at comparatively low values
of the energy density: e:sp ~ 0.45 GeVIfm3 , which roughly agrees with the lattice
QCD value [13]. This value of e: is close to the energy density inside the nucleon,
and hence, reaching this value indicates that we are dealing with a single big hadron
consisting of deconfined matter. In contradistinction, the bag-model EoS exhibits
a very pronounced softest point at large energy density e:sp ~ 1.5 GeV/fm3 [5,6].

The MP model can be extended to baryon-rich systems in a parameter-free way
[9,10]. As demonstrated in Fig. 2 (right panel), the softest point for baryonic matter
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Fig. 1. The reduced energy density e/esB and pressure p/pSB (the eSB and PSB
are corresponding Stephan-Boltzmann quantities) of the SU(3) system with two
light flavors for nB = 0 calculated within the MP (solid lines) and bag (dashed
lines) models. Circles and squares are lattice QCD data obtained within the
Wilson [13] and Kogut-Susskind [14] schemes, respectively.

is gradually washed out with increasing baryon density and vanishes for nB ;c, 0.4 no
(no is normal nuclear matter density). This behavior differs drastically from that
of the two-phase bag-model EoS, where csp is only weakly dependent on nB [5,6].
It is of interest to note that the interacting hadron gas model has no softest point
at all and, in this respect, its thermodynamic behavior is close to that of the MP
model at high energy densities [10].

These differences between the various models should manifest themselves in the
dynamics discussed below.

3. Two-Fluid Hydrodynamic Model

In contrast to the one-fluid hydrodynamic model, where local instantaneous stop­
ping of projectile and target matter is assumed, a specific feature of the dynamical
two-fluid description is a finite stopping power. Experimental rapidity distributions
in nucleus-nucleus collisions support this specific feature of the two-fluid model. In
accordance with [8], the total baryonic current and energy-momentum tensor are
written as

(3)

(4)
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Fig. 2. The (e,p/e)-representation of the EoS for the two-flavor SU(3) system
at various baryon densities nB. Notation of data points and lines is the same as
in Fig. 1.

where the baryonic current JI; = no:u~ and energy-momentum tensor TI;I.I of the
fluid a are initially associated with either target (a = t) or projectile (a = p)
nucleons. Later on - while heated up - these fluids contain all hadronic and
quark-gluon species, depending on the model used for describing the fluids. The
twelve independent quantities (the baryon densities no:, 4-velocities u~ normalized
as UO:ILU~ = 1, as well as temperatures and pressures of the fluids) are obtained by
solving the following set of equations of two-fluid hydrodynamics [8]

0ILJf; = 0,

0ILTf;1.I F:: ,
(5)

(6)

where the coupling term

(7)

characterizes friction between the counter-streaming fluids. Here, n~ and (p - Po:)
denote respectively the scalar density of the fluid and the 4-momcntum transfer
gained by a particle of the fluid a after collision with a particle of the counter­
streaming fluid. The cross sections dCTNN-.NX take into account all elastic and
inelastic interactions between the constituents of different fluids at the invariant
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(9)

(8)

collision energy 8 1/ 2 with the local relative velocity v;.el = [8(8 - 4m~)]1/2/2m~ .
The average in (7) is taken over all particles in the two fluids which are assumed to
be in local equilibrium intrinsically [8]. The set of Eqs (5) and (6) is closed by an
EoS, which is naturally the same for both colliding fluids.

The friction term F:: in Eq. (6) originates from both elastic and inelastic N N
collisions. The latter give rise to a direct emission of mesons in addition to the
thermal mesons in the fluids. In the present version only for the pions the direct
emission is included by the additional equations

8"J~ = n;nt \ v;.elJdUNN-+1rX ) ,

8",Tf:" n;nt \ v;.el JdUNN-+1rX p~ ) ,

where p", is the 4-momentum of an emitted direct pion. These equations together
with (6) provide the total energy-momentum conservation

8 (T"''' +T"''' +T"''') = 0
'" '" pt·

(10)

It is assumed [8] that in the subsequent evolution these direct pions interact neither
with the fluids nor with each other. This is a reasonable assumption at relativistic
energies, simulating a long formation time of these direct pions. In contrast to
our model, the Frankfurt version of the three-fluid hydrodynamics [15], which is
generically similar to our model, assumes an immediate thermalization of these
direct pions into a third (pionic) fluid. We believe that the truth is somewhere
in between. Since the main part of these direct pions is quite relativistic at high
incident energies, their formation time is long enough. Therefore, they may come
into interaction and then be thermalized but only at later stages of the reaction.
Even at later stages, when the pion cloud got formed and probably thermalized,
this cloud experiences predominantly longitudinal expansion. These arguments are
in favor of effective decoupling of the direct pions from the baryonic subsystem.
Precisely this decoupling is implied by our assumption of free-streaming direct pions.
At moderate energies, where these arguments do not hold in general, the number
of direct pions is small compared to the number of thermal pions and, hence, their
effect is also negligible there.

For the calculation of the friction force (7), approximations of N-N cross­
sections are used. It was found [16] that a part of the friction term, which is
related to the transport cross-section, may be well parameterized by an effective
deceleration length Aeff with a constant value Aeff ~ 5 fm. However, there are rea­
sons to consider Aeff as a phenomenological parameter, as it was pointed out in [8].
First, the value of Aeff is highly sensitive to the precise form of parameterization of
the free cross-sections which, in addition, may be essentially modified by in-medium
effects. Furthermore, the model neglects the interactions of direct pions both with
each other and with t-, p-fluids, as well as the direct emission of other mesons which
are produced quite abundantly at SPS energies. Due to all these effects the stopping
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power at SPS energies is somewhat underestimated [8]. This shortcoming of the
model is cured by an appropriate choice of the Aeff value as

Aeff = a exp(-bVS) (11)

with a = 6.6 fm and b = 0.106 GeV- 1 adjusted to the rapidity distributions of
nucleons and pions in central Au+Au collisions at AGS and SPS energies.

Following the original paper [8], it is assumed that a fluid element decouples
from the hydrodynamic regime, when its baryon density nB and densities in the
eight surrounding cells become smaller than a fixed value nf. A value nf = 0.8no
was used for this local freeze-out density which corresponds to the actual density
of the freeze-out fluid element of about 0.5no to 0.7no.

4. Collective Flow from Heavy-Ion Collisions

For central nucleus-nucleus collisions only the isotropic transverse expansion, or
transverse radial flow, develops due to the azimuthal symmetry of a system. The
presence of the reaction plane for non-central collisions destroys this symmetry and
gives rise to various patterns of collective motion generated by compressed and
excited nuclear matter created during the collision. For example, the directed (or
Sideward) flow characterizes the deflection of emitted hadrons away from the beam
axis within the reaction plane. In particular, one defines the differential directed
flow by the mean in-plane component (Px(y)) of the transverse momentum at a
given rapidity y. This deflection is believed to be quite sensitive to the elasticity or
softness of the EoS.

The (Px(y)) distributions of baryons are shown in Fig. 3 for Au+Au collisions at
E 1ab = 10 A·GeV calculated for different EoS at an impact parameter b = 3 fm. In
general, the characteristic S-shape of the distribution is reproduced, demonstrating
a definite anti-correlation between nucleons bounced-off from the target and projec­
tile regions. One should keep in mind that the protons bound in observed complex
particles (e.g. in deuterons) are not excluded in our calculations. Therefore, all
hydrodynamic results should be compared to the triangle points in Fig. 3, where
nucleons from complex particles do contribute. The MP and interacting hadronic
modelsa give similar results, both getting into error bars of these triangle points,
though the flow in the MP model is slightly lower due to softening of EoS near
the crossover phase transition. This softening is stronger for the bag-model EoS.
However, one should note that different versions of transport codes, which do not
account for a phase transition, also give a reasonable description of (Px(y)) (e.g. see
the comparison with RQMD results in [17]). Therefore, convincing evidence on a
possible phase transition, based solely on the data at a single bombarding energy,
is hardly possible.
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Fig. 3. Differential directed flow of nucleons in the reaction plane as a function of
rapidity in semi-central (the trigger transverse energy ET = (200- 230) GeV) Au
+ Au collisions at the energy 10 A·GeV. Three curves are calculated within rela­
tivistic two-fluid hydrodynamics for an impact parameter b = 3 fm and different
EoS: for the MP model (solid line), interacting hadron gas model (dashed) and
two-phase bag model (dot-dashed). Circles are experimental points for identified
protons, triangles correspond to a nucleon flow estimate based on the measure­
ment of ET and the number of charged particles Nc [17]. Experimental points
marked by full symbols are measured directly, open ones are obtained by reflecting
at the mid-rapidity point.

The rapidity dependence of the mean in-plane transverse momentum can be
quantified in terms of the derivative at mid-rapidity

F = d (Px(y») I
Y d 'y Y=Yc.m.

(12)

which is quite suitable for analyzing the flow excitation function. The slope pa­
rameter Fy calculated with the MP-model EoS is presented in Fig. 4 (upper panel)
together with available experimental points covering the whole range of incident en-
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ergies. The results describe correctly the decrease of Fy with increasing energy and
show essentially no dependence on impact parameter for semi-central collisions. It
was shown experimentally [18] that the directed flow is larger for heavier fragments.
AB mentioned before, hydrodynamic calculations deal with primordial nucleons, and
hence they describe the mean value of Fy for free nucleons and nucleons bound in
deuterons and heavier fragments. Therefore, our hydrodynamic results lie between
the experimental points for identified protons (open circles in Fig. 4) and the data
[18] (full circles in Fig. 4) for intermediate mass fragments.b This effect is particu­
larly strong for energies below Elab ::::::; 1 A·GeV, where the baryonic flow is largest
(and heavy fragments in the mid-rapidity range are abundant).

To our knowledge no other hydrodynamic calculations of Fy(Elab) have been
reported. Therefore, we compare our results with transport calculations in the
lower panel of Fig. 4. The ARC and ART are cascade models, while the RQMD
takes also into account mean-field effects. Though all these models agree with
experimental data at Elab ::::::; 10 A·GeV (considered as a reference point), values
of Fy at lower energies are clearly underestimated, as is evident from comparison
with preliminary results of the E895 Collaboration [7] (see empty squares in Fig. 4).
Recently, a good description of experimental points (including the E895 data) was
reported within a relativistic BUU (RBUU) model [22]. The good agreement with
experiment was achieved by a special fine tuning of the mean fields involved in the
particle propagation.

It is of interest to mention that the calculated value of Fy for the baryon flow
becomes negative (antiflow) for beam energies ~ 100 A·GeV, while the experiment
[23] gives a small but positive value even at 158 A·GeV. The reason of this anti­
flow is a wiggle in the Wx (y)) distribution arising in hydrodynamic results within
a narrow mid-rapidity interval loyl ;S 1 due to a peculiar interplay between the
transverse radial and directed flows. The possibility of such an effect was noticed
in [24] some time ago and later also observed in the UrQMD transport calculations
[25]. However, actual measurements have been taken at larger rapidities and then
extrapolated into this unmeasured region [23]. Therefore, more accurate data in
the mid-rapidity region are necessary to clarify this behavior.

The directed flow can be characterized by another quantity which is less sensi­
tive to possible rapidity fluctuations of the in-plane momentum. Such a quantity is
the average directed flow which is defined by

(13)

where the integration in the c.m. system runs over the rapidity region [0, Yc.m.].
The calculated excitation functions for the average directed flow of baryons within
different models are shown in Fig. 5. Conventional (one-fluid) hydrodynamics for
pure hadronic matter [6] results in a very large directed flow due to the inherent
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Fig. 4. Excitation function of the slope parameter F y for baryons from Au + Au colli­
sions within two-fluid hydrodynamics for the MP EoS (upper panel) and within different
transport simulations (lower panel). Open symbols are experimental points for identified
protons (see data collection in [2,18,19]), filled circles, triangles and squares correspond to
the flow parameter measured for intermediate mass fragments [18] and for light particles
p, d, a [20,21]. The results of transport calculations for three different codes are given by
the thin solid (RQMD), dashed (ARC) and dot-dashed (ART) lines (cited according to
[19]). The solid line (RBUU) is taken from [22].

instantaneous stopping of the colliding matter. This instantaneous stopping is un­
realistic at high beam energies. If the deconfinement phase transition, based on
the bag-model EoS [6], is included into this model, the excitation function of (Px )
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Fig. 5. The excitation function of the average directed flow for baryons from
Au + Au collisions. Two-fluid hydrodynamics with the MP EoS at the impact
parameter 3 fm is compared with the corresponding results of one-fluid [6] (up­
per panel) and three-fluid (lower panel) [26] hydrodynamics with the bag-model
EoS. One-fluid calculations both with and without the phase transition (PT) are
displayed.

exhibits a deep minimum near Elab ~ 6 A·GeV, which manifests the softest-point
effect of the bag-model EoS depicted in the right panel of Fig. 2.

The result of two-fluid hydrodynamics with the MP EoS noticeably differs from
the one-fluid calculations. After a maximum around 1 A·GeV, the average directed
flow decreases slowly and smoothly. This difference is caused by two reasons. First,
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as follows from Fig. 2, the softest point of the MP EoS is washed out for nB ;(,0.4.
The second reason is dynamical: the finite stopping power and direct pion emis­
sion change the evolution pattern. The latter point is confirmed by comparison to
three-fluid calculations with the bag EoS [26] plotted in the lower panel of Fig. 5.
The third pionic fluid in this model is assumed to interact only with itself neglect­
ing the interaction with baryonic fluids. Therefore, with regard to the baryonic
component, this three-fluid hydrodynamics [26,15] is completely equivalent to our
two-fluid model and the main difference is due to the different EoS. As seen in Fig.
5, the minimum of the directed flow excitation function, predicted by the one-fluid
hydrodynamics with the bag EoS, survives in the three-fluid (non-unified) regime
but its value decreases and its position is shifted towards higher energies. If one
applies the unification procedure of [26], which favors fusion of two fluids into a
single one, and thus making stopping larger, three-fluid hydrodynamics practically
reproduces the one-fluid result and predicts in addition a bump at Elab ;:::: 40 A·GeV.

5. Conclusions

The hydrodynamic treatment of heavy-ion collisions is an alternative to kinetic sim­
ulations. The hydrodynamic approach has certain advantages and disadvantages.
Lacking the microscopic feature of kinetic simulations, it overcomes their basic as­
sumption, Le. the assumption of binary collisions, which is quite unrealistic in dense
matter. It directly addresses the nuclear EoS that is of prime interest in heavy-ion
research. Furthermore, our two-fluid model uses only a single friction-force param­
eter (11), however incident-energy dependent, instead of a vast body of differential
cross sections of elementary processes, which are generally not known experimen­
tally. Naturally, we have to pay for all these pleasant features of hydrodynamics:
we have to suppose in advance the basic dynamics, e.g. that the non-equilibrium
stage in the collision is described by the two-fluid approximation. The freeze-out
procedure also requires further improvement [27]. However, all these assumptions
are quite transparent and can be tested numerically.

We have studied relativistic nuclear collisions within 3D two-fluid hydrodynam­
ics combined with different EoS, including that of the statistical mixed-phase model
of the deconfinement phase transition, developed in [9,10]. It has been shown that
the directed flow excitation functions Fy and (Px ) for baryons are sensitive to the
EoS, but this sensitivity is significantly masked by non-equilibrium dynamics of
nuclear collisions. Nevertheless, the results indicate that the widely used two-phase
EoS, based on the bag model [5,6] and giving rise to a first-order phase transi­
tion, seems to be inappropriate. The neglect of interactions near the deconfinement
temperature results in an unrealistically strong softest-point effect within this two­
phase EoS. In fact, its prediction of a minimum in (Px ) (E1ab) near E1ab ;:::: 6 A·GeV
has not been confirmed experimentally [7]. However, accurate experimental inves­
tigations of the differential directed flow and flow excitation functions in the energy
region between AGS and SPS are still highly demanded not only in searching for a
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shifted minimum of (Px) (Elab ), but also in clarifying the physics of a possible neg­
ative slope (antiflow) of the baryonic directed flow Fy • This antiflow is particularly
sensitive to the EoS. While for the EoS in the MP model the antiflow is predicted
at incident energies only above 100 A·GeV, it occurs already at 8 A·GeV, when the
bag EoS is used [26].

In this respect a dramatic phenomenon of the cracked nut proposed recently as
a hydrodynamic signature of the QCD phase transition at RHIC and LHC energies
[28,29] looks questionable. The authors argue that the softest point in the EoS
may lead to the development of two shells at the edge of the almond-like initial
fireball, which are then cracked by internal pressure and separated, resulting in a
specific flow pattern. However, this speculation was based on the bag-model EoS.
The application of the EoS of the MP model to this problem would be interesting.

The above discussion shows that the directed flow is a useful quantity, which
is sensitive to the EoS. Note that such a sensitivity is rare in analyses of heavy-ion
data. Indeed, the directed flow may allow us to confirm or exclude the first-order
phase transition from hadronic to quark-gluon matter. The directed flow is the first
coefficient in the Fourier decomposition of the azimuthal momentum distribution
of particles [30]. The second coefficient, the elliptic flow, is expected to be more
sensitive to the EoS and some hints of the phase transition have been indicated
by an analysis of the measured excitation function for the elliptic flow (see review
articles [1,2]). The study of the elliptic flow within two-fluid hydrodynamics for the
mixed-phase model EoS is in progress.
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Notes

a. The interaction in the hadron model is taken into account in the same manner
as that in the hadronic sector of the MP model [9,10].

b. For complex particles the value Fy was deduced from Px per baryon. The
FOPI data for intermediate mass fragments are often scaled by factor 0.7 to
make absolute values comparable to those for p, d, a [18]. We do not use this
scaling factor. Note that everywhere we deal with F y defined by Eq. (12), which
differs from the frequently used flow parameter F = Fy Yc.m .. The extra beam­
rapidity factor Yc.m. obscures a relative role of dynamical effects in the energy
dependence of the directed-flow slope parameter.
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