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Abstract. An empirical relation is established between Barrett equivalent radii
Rk,Ot and rms charge radii < r 2 >1/2 based on the results of model-independent
and Fermi model analyses of 2p -> Is transitions in muonic atoms. This
relation follows simple Z dependence, and can be usefully applied to derive
rms radii < r 2 >1/2 or differences <5AA' < r 2 >1/2 in cases where only Rk,Ot
data or isotope shifts <5AA'Rk,Ot are published. The atomic number dependence
of the Barrett parameters k(Z) and a(Z) is also given by empirical formulae.
It is shown that the Barrett moment can be expanded in a sum of integer
moments < r m > (m 2: 2) using an effective exponential parameter aeff(Z),
The moments < r m > and isotopic differences <5 < r m > of the two-parameter
Fermi distribution expressed in terms of the parameters c and a are given in
the Appendix for m = 1 - 10.
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1. Introduction

Energy levels of muonic atoms are strongly influenced by the nuclear charge dis­
tribution p(r). Consequently, the energies of gamma rays arising from transitions
between energy levels contain valuable information on the electric charge distribu­
tion. However, this information is "coded" in a form that cannot be unambiguously
translated into the usual characteristics of the charge distribution, e.g. half-density
radius, surface thickness, etc. Barrett [1] has shown that the energy of a transition
in a muonic atom is determined - to a very good approximation - by the quantity

Bk,Ot == < rke-Otr > = Jp(r)rke-Otr . dv
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independently of the form of p(r). This quantity is called now Barrett moment, and
is determined with high accuracy (:::; 0.1%). The parameters k and 0: depend on
the atomic number Z and on the specific transition nlj --+ n'lj, .

To comply with our need for illustrative models, the Barrett equivalent radius
Rk,OI is also introduced [2]. This is the radius of the uniform charge distribution
p(r)unif having the same total charge Ze and the same Barrett moment as the actual
nuclear charge distribution p(r). Formally, it is defined by the implicit equation:

Rk,c.

3 J k -0/1' 2 d BR 3 r e r· r = k,OI .

k,OI 0

(2)

Quite often, only Rk,c> or the isotopic differences 8AA'Rk,0I are given as the result
of a muonic X-ray measurement. Although this quantity is more illustrative than
the Barrett moment, the comparison of radii Rk,c> of nuclei with different atomic
number is still difficult owing to the Z dependence of the parameters k and 0:.

Other types of experiments, e.g. electr~n scattering, Kc> X-ray isotope shift
(KIS) and optical isotope shift (OIS) measurements yield the second moment < r2 >
or the isotopic difference 8 < r 2 > of the charge distribution. Therefore, it is of
importance to express the results of muonic atom experiments also in terms of
< r 2 >. Sometimes, it is determined simultaneously with Rk,OI using some model
charge distribution e.g. the two-parameter Fermi distribution (2pF) or some model­
independent procedure.

For the most important muonic transition 2p --+ Is the value of k is slightly
higher than 2 (k ;::j 2.0 - 2.3), while 0: takes on small positive values 0: ;::j 0.02 - 0.16.
Consequently, the integrand of the Barrett moment is fairly close to that of the
second moment < r 2 >, see Fig. 6 in Ref. [3], p. 187. Therefore, it is expected that
- for 2p --+ Is transitions - the ratio

v= (3)

is close to unity: v ;::j 1. (The symbol v is chosen to remind of the similar quantity
v e used in the evaluation of electron scattering measurements [4,5].) It will be seen
that v(Z) shows a fairly regular dependence on the atomic number. This can be
exploited to determine < r2 > or 8 < r 2 > in cases when only Rk,OI or 8Rk ,c> data
are known.

In Section 2 the derivation of v(Z) from Rk,c> and < r 2 > data is presented
together with the resulting curve and formulae. In addition, formulae for the Z
dependence of the parameters o:(Z) and k(Z) will also be given for 2p --+ Is tran­
sitions. In Section 3 a momentum expansion method is developed, which renders
possible the approximation of the Barrett moment by a sum of integral moments
< rm >. This can be applied to express the second moment < r 2 > in terms
of Bk,c> using an iteration procedure. In the expansion method and also in other



Barrett Moments and rms Charge Radii 89

applications (e.g. evaluation of KIS and OIS results) integer moments and their
isotopic differences are used. Therefore, in the Appendix a summary of expressions
for < rm > and 0< rm > (m = 1 - 10) in terms of the parameters c and a of the
2pF charge distribution is presented.

2. Interpolation Formulae for v(Z), a(Z) and k(Z)

In the literature, root-mean-square (rms) charge radii < r 2 >1/2 are derived from
the high accuracy Rk,OI. values in two ways: model-independently or using a model
function for p(r). In the model-independent procedure results from electron scat­
tering experiments are also applied: elastic scattering cross sections are used to
construct the charge distribution in a model-independent way, e.g. by determining
the coefficients of a Fourier-Bessel series [6]. Having the form of the charge density
distribution from electron scattering and the Barrett moments from muonic X rays,
< r2 >1/2 values are calculated, e.g. [7]. In the recent compilation of rms charge
radii [3] Table IX contains both Rk,OI. and < r2 > data for 20 isotopes of 9 elements
evaluated by model-independent method. The Z dependence of the ratio (3) formed
by these data shows simple, monotonic trend.
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Fig. 1. Z dependence of the ratio v, Eq. (3). Triangles: v values derived from
Rk,o< and < r2 >1/2 data; circles: calculated by the empirical formula (5).

There are much more Rk,OI. and < r2 > data based on evaluations using 2pF and
3pF (deformed) charge distributions: Tables IILA and IILC of [3] contain altogether
231 isotopes of 73 elements. Triangles in Fig. 1 show the v values calculated from
both the model-independent and from the Fermi model procedures. For elements
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where both model-independent and Fermi model results are available, the simple
average is plotted. For atomic numbers Z < 60 and Z > 77 the two data sets follow
the same smooth, slowly increasing trend, and they both can be described by the
empirical formula:

v(Z) = 1 + 0.0035 x In (0.22 x Z + 1) . (4)

This is the result of a simple least-squares fit assuming equal weights and imposing
the constraint v (0) = 1.
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Fig. 2. Z dependence of the parameter a, Eq. (1). Triangles: experimental a
values; circles: calculated by the empirical formula (8).

There are, however, significant deviations from the smooth behaviour for three
light elements (Z = 4,5 and 7) and also in the region of deformed nuclei. In the
former case, the deviations are probably caused by the limited accuracy of the
experiment for very light elements. This is supported by the observation that the
strongly correlated a and k values have both strikingly high values for these same
nuclei, see Figs 2 and 3.

In the deformed region (60 ::; Z ::; 77) the experimental v values follow a
triangular peak superimposed on the smooth, monotone trend. This can be well
described by:

V(Z)def = v(Z) + 0.00054 x min (Z - 60; 77 - Z). (5)

The deformation term reminds to that found for the description of the mass number
dependence of rms charge radii in terms of the P-factor (nucleonic promiscuity) [8].
Filled circles in Fig. 1 show v values calculated by Eq. (5).
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Fig. 3. Z dependence of the parameter k, Eq. (1). Triangles: experimental k
values; circles: calculated by the empirical formula (9).

2.1. Application and uncertainties

The main motivation for the present work was the need for accurate isotopic differ­
ences tS < r 2 >1/2 [9]. In Table V of [3] the tSRk,CJ< values are listed. Now, having
the empirical formulae (4,5) at hand, tS < r 2 >1/2 values can be derived from ORk,CJ<
simply by

(6)

Otherwise, one would have no other choice but to put tS < r 2 >1/2= vf3!5tSRk,CJ<
and to add a systematic error of about 1.0% to all isotopic differences.

Regarding the uncertainty of v(Z), the following observations should be taken
into account. The individual Vi values from the Fermi models (Tables lILA and
IILC of [3]) follow the smooth trend within ±0.0002, while those from the model­
independent evaluation (Table IX) have a spread of ±0.0003 - 8 around the common
v(Z) dependence. As the calculation error is about ±O.OOOI [7], these latter devi­
ations must be of physical origin; they probably reflect the effect of the individual
p(r)i charge distributions, which differ from each other as well as from the "average"
Fermi distribution.

2.2. Z dependence of the parameters a and k

The large body of data in [3] allows to derive empirical formulae for the atomic
number dependence of the parameters a and k plotted in Figs 2 and 3. Most of
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the individual 0 and k values follow the smooth behaviour. There are significant
- and probably correlated - deviations from the general trend for Z = 4, 5 and
7, and - for k - also in the region of deformed nuclei. These elements are not
included in the fit. In fitting empirical formulae to the data, the constraints

0(0) = 0, k(O) = 2, v(O) = 1 (7)

may be imposed. Imposing these constraints we have

o(Z) = 0.00316 x Z - 0.0000166 X Z2

and

k(Z) = 0.00484 x Z - 0.0000128 X Z2.

3. Expansion of the Barrett Moment in Integer Moments

(8)

(9)

In some papers [10,11], the value of Bk,o< is given as the result of the experiment.
The Barrett moment

can be simplified in two ways: the function

y(r) = r"e-O<O"

is replaced either by

y(r) = r"err

or by

,,-=k-2 (10)

(11)

(12)

(13)

The first choice results in the moment < r kerr > introduced by Ford and Wills
[12], and will not be discussed here. The second choice - not exploited until now
- has the advantage that the function (13) can be expanded into the power series

y(r) = 1 - ~ (Oeff . r) + ~ (Oeff . r)2 - + ... ,
1. 2.

i.e. the Barrett moment can be written in a series of integer moments:

(14)
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Based on this expression, and provided aeff is chosen in a way that Bo<eff = Bk.o<,
an iteration procedure can be developed for the determination of the mean-squared
radius from the experimental Bk,o< value:

2 1 3 1 2 4< r >i+l = Bk,o< + I' aeff< r >i - I' aeff< r >i - +... . (16)1. 2.

In order to carry out this program, two tasks are to be solved. First, the value
of the parameter aeff should be determined for all atomic numbers Z. Second, the
integer moments < r m >i (m 2: 3) should be expressed by < r2 >i.

3.1. Determination of the parameter aeff

The exponential function y(r) is empirically equivalent to y(r) if

B == (e-O<eff"') = Bk
Cteff ,0: (17)

12 20 28 38 42 50 56 68 80 82
Z

for the same p(r). The exact form of the charge distribution is not crucial, because
the energies of muonic X rays depend - to a good approximation - on the integral
quantity Bk,o< but not on the form of p(r). Therefore, the simple two-parameter
Fermi charge distribution (2pF) was assumed with half-value radius c = 1.1 X

Al/3 fm and with constant surface diffusity a = 0.523 fm. The value of Bk,o< was
calculated using Eqs (8) and (9) for a(Z) and k(Z), respectively. The resulting
"direct" aeff values (Fig. 4) can be well approximated by
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Fig. 4. Z dependence of the effective exponential parameter aeff. Triangles: O<eff

values derived from equating the moments Bk,Q and BQef£, Eq. (17); full curve:
empirical formula (18).
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aeff(Z) = 0.001521 x Z - 0.00001031 X Z2,

1. Angeli

(18)

where the constraint aeff(O) = 0 has been taken into account. These aeff values can
be used in the iteration Eq. (16).

In addition to determining the values of aeff directly, it may be of interest
how it can be composed from the strongly correlated primary parameters a and "'.
Therefore, the equality of the integrals Baeff and Bk,a was also searched using the
expression

aeff(Z) = a(Z) - f x ",(Z) (19)

with f as a free parameter; Le. this is an indirect way of determining aeff. Perform­
ing the fit for a wide range of elements (Z = 6,12,20,28,38,42,50,56,68,80 and
82) the value of f varied only within the narrow interval from 0.30 to 0.35. More
exactly, the fairly smooth behaviour can be well described by the empirical formula

f = 0.3499 - 0.000826 x Z + 0.00000225 X Z2 . (20)

In calculating the effective exponential moment Baefo the direct aeff(Z) values
from Eq. (18) are used. Application of the indirect aeff(Z) values from Eqs (19)
and (20) would contain hardly traceable, correlated systematic deviations c5a and
c5k from Eqs (8) and (9). It is worth noting that the downward bending of aeff(Z)
at the highest Z values occurs both in the case of the direct and in the indirect
approach.

3.2. Expression of higher moments < 1'm > (m 2 3) in terms of < 1'2 >
Integer moments < r m > (1 ::;; m ::;; 10) of 2pF charge distributions as the func­
tion of the parameters c and a are listed in the Appendix. Starting the iteration
procedure of Eq. (16) with

(21)

and applying Eq. (37) from the Appendix, we have

(22)

This is inserted to Eqs (43, 38, ... ) to get < rm >1 for m = 3,4, .. , and with
these the second step of iteration yields

Now, C2 can be calculated by Eq. (37), and so forth.
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3.3. Uncertainties in the momentum expansion method

The relative difference of the effective exponential moment Ba.eff and the Barrett
moment Bk,a. is a few times 10-4 for light nuclei and less than 6 x 10-5 for medium
weight and heavy nuclei. (It should be reminded here that the experimental ac­
curacy of muonic X-ray energies is also less for light nuclei.) The error from the
approximation of the exponential function (13) by a finite sum of powers (aeff' r)m
in Eqs (14) and (15) can be made as small as required simply by including more
terms to the sum. That is why - to be on the safe side - the Appendix contains
moments up to m = 10.

4. Summary

The wealth of data in recent compilations allowed to develop some tools for the
further improvement in the evaluation of muonic X-ray results. In Section 2 a
quantitative relationship was found between the Barrett equivalent radius Rk,a. and
the rms radius < r 2 >1/2, see Eqs (3), (4) and (5). This relationship facilitates
the calculation of 0 < r2 >1/2 values from the published oRk,a. data, Eq. (6). At
the same time, a possible source of systematic error is avoided. In the same section
simple interpolation formulae are given for the atomic number dependence of the
Barrett parameters a(Z) and k(Z), see Eqs (8) and (9).

In Section 3 an iteration procedure is developed, defined by Eq. (16), which
connects the value of < r 2 > with the measured quantity, the Barrett moment
Bk,a.' In this procedure several integer moments (m 2:: 2) of the two-parameter
Fermi distribution (2pF) are used. Therefore, a list of explicit expressions of 2pF
moments < r m > and isotopic differences of moments 0< rm > is presented in the
Appendix for m = 1-10 making use of the parameters c, a (and also f3 == 7rajc) of
the Fermi distribution function.

Appendix: Moments of the Two-Parameter Fermi
Distribution

The Fermi integral

Moments of model charge distributions are often used in atomic and nuclear physics
both in theoretical work and in the evaluation of experimental results. For ex­
ample, the energy of transitions in muonic atoms determine the Barrett moment
< r k ·e-a.1' > [1]. In Section 3 Eq. (14) it is shown that this Barrett moment can be
approximated by a sum of integer moments < r m > (m = 2,3, ... ). An other exam­
ple: isotope shifts 01/ in optical and characteristic X-ray frequencies can be expressed
as linear combinations of differences in even moments 0 < rm > (m = 2,4, ... )
[13]. A broad, systematic review of model functions for nuclear charge distribu­
tions can be found in [14]. The simplest models are the one-parameter equivalent
uniform, and the two-parameter trapezoidal distributions. A more realistic and fre-
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quently used charge distribution is the spherically symmetric two-parameter Fermi
distribution (2pF):

PF (r' c a) - Po = Po
" - 1 + e("-c)/a - 1 + ex - k (r 2: 0) , (24)

where c is the half-density radius and a the surface diffusity. The introduction of
the dimensionless parameters x == ria, k == cia and (3 == 7r1k = 7ralc proved also to
be useful during this work.

The mth moment of the 2pF charge distribution is

m frmpF(ric,a)·dv frm+2 pp(r;c,a)·dr mFm+2 (k)
<r >== = =a,

f PF(ric,a) ·dv fr 2 pp(ri c,a)' dr F2 (k) (25)

where the Fermi integral

(26)

is introduced. The limits of integration in r and x are taken from zero to infinity.
The Fermi integral can be expressed by the sums [15] Appendix C (note the misprint
in the exponent of the last term):

k
n
+

1

+t [1 - (-1)'"] n! kn - r (1 - ~) ((r + 1)
n+l "=0 (n-r)! 2'
00 ,

"" (_1)v+n~e-vk
L.J vn+1'
v=l

(27)

where ( is the Riemann junction (see later).
In this Appendix formulae for the moments < r m > and for isotopic differences

<5 < r m > are presented from m = 1 to 10 using the parameters c, a and (3. First,
the Fermi integrals Fn(k) are derived from the general formula given by Elton; it
is shown that the sum of the exponential terms can be neglected. Then, even and
odd orders are treated separately for < 'rm > as well as for <5 < r m >i in calculating
<5 < r m > the diffusity a was assumed to be constant. Finally, the formulae for
2pF moments are compared to those based on simpler distributions: uniform and
trapezoidal.

It is worth while to estimate the value of the last sum of exponential terms

Even for the very light nucleus 4He [16] k = 1.010.32 = 3.12, i.e. e-k :::::! 0.045,
it can be seen that IEn(k)j is less than Fn(k) by two or three orders of magnitude
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(29)

depending on n. In the case of medium and heavy nuclei the difference between
IEn(k)j and Fn(k) is even higher. Consequently, the sum En(k) can be neglected.

Returning to the first sum, one can see that for even r the value of the bracket
vanishes: [1 - (-1Y] = OJ therefore, only terms with odd r remain. For odd r, i.e.
for even arguments (r + 1) the value of the Riemann ( function is [17]

(27ry+1
(r + 1) = 2(r + I)! IB,.+r1

with the Bernoulli numbers B,.+1 [17]:

B2 = 1/6, B4 = -1/30, B6 = 1/42,
Bs = -1/30, B lO = 5/66, B 12 = -691/2730;

(2) = 7r2/6, ( 4) = 7r4/90, (6) = 7r6/945,
(8) = 7rs/9450, (10) = 7r 1O /93555, (12) = 6917r12/638512875.

(30)

(31)

(The value of (12) will be necessary for the closed expression of the 9th moment
< r 9 >.)
For even n

kn+1 [ n-1" (n + 1)! (7r)"+1]
Fn(k) = n + 1 1 + L 2(2 - 1)IB,,+d (n _ r)!(r + I)! k .

,'=1,3,... (32)

Substituting numerical values for the Bernoulli numbers B"+1, we have

kn+1 [1 (n + I)! /32 7 (n + I)! /34 31 (n + 1)! /36
~ -- + + - + - -,-'---'--

n + 1 (n - 1)!3! 3 (n - 3)!5! 3 (n - 5)!7!

+ 381 (n + I)! /38 + 2555 (n + I)! /310
5 (n - 7)!9! 3 (n - 9)!11!

1414477 (n + 1)! /312 ... (... ) /3n] (33)
+ 105 (n - 11)!l3! + +

the sum in the brackets terminates with /3n. For n = 2 we have

(34)

For odd n the sum over r ends with n, the terms in the brackets contain even powers
of /3, here, too; the last term contains /3n+1.

Moments of 2pF charge distributions

With F2 (k) the ratio Fm+2 (k)/ F2 (k) can be formed. For 4He /3 ~ 1, while for 12C,
k = 2.36/0.52 = 4.54 [16] /3 ~ 0.69, i.e. /32 ~ 0.48. Therefore, except for the lightest
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elements, as perhaps Li, Be and B, the series expansion

1 : (32 = 1 - (32 + (34 - (36 + (38 - (310 + (312 - + . . . (35)

is valid (we will need it up to (312). Using this in Eq. (25) we have the general
formula for the mth moment

< rm > = am Fm+2(k) = _3_cm {I + [(m + 3) (m + 2) -1] (32
F2 (k) m + 3 3!

[
7(m+3)(m+2)(m+1)m _ (m+3)(m+2) 1] (34

+ 3 5! 3! +

[
31 (m+3) (m+ 2) ... (m -1) (m - 2) 7 (m+3) (m+2) (m+ l)m

+ 3 7! - 3 5!

(m + 3) (m + 2) ] (36 [381 (m + 3) ... (m - 3) (m - 4)
+ 3! -1 + 5 9!

_ 31 (m + 3) ... (m - 2) ~ (m + 3) ... m _ (m + 3) (m + 2) 1] (38 (36)
3 7! + 3 5! 3! +

[
2555 (m + 3) ... (m - 5) (m - 6) _ (381 (m + 3) ... (m - 3) (m - 4)

+ 3 11! 5 9!

... 1)] (310 [1414477 (m + 3) ... (m - 7) (m - 8)
+ + 105 13!

_ (25355(m+3) ... (~!-5)(m-6)+"'-1)](312+ ... }.

(37)

(38)

(39)

(40)

As it can be seen from this form the first (and second, ... ) terms in the bracket
multiplying (3m+4 ((3m+6, . .. ) are equal to zero, Le. the number of non-zero terms
in the brackets multiplying (3m+2 ((3m+4, ... ) remains the same; moreover, these
terms cancel each other.

Applying the above general formula to even m values we have:

< r 2 > = ~c2 (1 + ~(32) = ~c2 + ~(1ra)2 ,
5 3 5 5

< r4 > = ~C4 (1 + 6(32 + 33
1

(34) ,

1 . ( 239 381)< r
6 > = 3c6 1 + 11(32 + 5(34 + 5(36 ,

< r 8 > = ~c8 (1 + 52 (32 + 410(34 + 1636(36 + 2555(38)
11 3 3 3 3 '

< rIO > = ~c1O (1 25(32 926(34 46714(36 910573(38 19447(310) (41)
13 + + 3 + 21 + 210 + 210

Note that in the expression for the moment < rm > the coefficients of (3m+2, (3m+4,
. . . vanish exactly; the non-zero coefficients are all positive.
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(42)

<r> =

For odd m moments, the coefficients up to (3m+l are also positive; but from
(3m+2 the signs alternate, with the same non-zero absolute value. Tllis alternating
series can be written in the closed form 1/(1 + (32).

~c [1 + (32 - '!'(34 (1 - (32 + (34 - (36 + (38 + - ...)]
4 15

3( 8 (34)-c 1 + (32 - - --
4· 15 1 + (32

and similarly:

(43)

(44)

(45)

(46)

(47)

Isotopic differences 15 < rm >
Assuming a constant surface diffusity a and a mass number dependence c = roA1/3

for the half-density radius, the change in the second moment corresponding to a
change oA == A2 - Al in the mass number is

2 2 2 0A
0< r > = -c ­

5 A

and the shifts in the higher even moments:

4 oA
0< r

4 > = 7C4 (1 + 3(32) A'

s: 6 2 6 ( 22(32 239(34) oAu< r > = -c 1 + - + - -
3 3 15 A '

8 ( 205 409) oA
0< r

8 > = U e8 1 + 13/P + 3(34 + 3(36 A'

o r lO _ 10 10 (1 (32 926(34 93428(36 910573(38) oA
< > - 13 c + 20 + 5 + 105 + 1050 A .

(48)

(49)

(50)

(51)

Expression of 0 < r m > (m> 2) in terms of 0 < r2 >. For some applications,
e.g. for the evaluation of isotope shifts in optical and characteristic X-ray spectra
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the isotopic differences in 6 < r4 >, 8 < r6 > are expressed in terms of 6 < r 2 >
[9]. This can be done easily because Eq. (47) allows to express c2 by 6 < r 2 >:

2 5 A 2 5 Al + A2 2
C = 2" 8A 6< r > = "4 A

2
_ Al 6< r >, (52)

where A is replaced by (AI + A2 )/2. This c2 value is inserted in Eqs (48)-(51) and
the differences 6< rm > of higher order result.

For the differences of odd moments the closed forms in (3 are used:

_ 1 [ 2 8 4 1 + l(32 ] 6A
6< r > - "4c 1 - (3 + 5(3 (1 + (32)2 A'

6 3 = ~ 3 [1 ±(32 _ (34 32 (36 1 + ~(32 ] 8A
< r > 2 c + 3 + 21 (1 + (32)2 A'

6 5 _ ~ 5 [ (32 73(34 _ 17(36 128(38 1 + ~(32 ] 6A
< r > - 8 c 1 + 5 + 15 5 + 25 (1 + (32)2 A'

J: 7 7 7 [ 0(32 252(34 226(36 155(38u< r > = -c 1 + 1 + - + - - -
10 7 7 7

2560(310 1 + ~(32 ] 6A
+ 77 (1 + (32)2 A'

s: 9 3 9 [1 49(32 350(34 1154(36 3037(38u< r > = -c + - + - + -- + --
4 3 3 3 9

_ 691/310 + 1415168(312 1 + l(32 ] 8A .
3 4095 (1 + (32)2 A

(53)

(54)

(55)

(56)

(57)

Comparison to simpler distributions

The case of the uniform distribution is very simple: it can be regarded as a limiting
2pF distribution of Eq. (36) with c = R and a = 0, Le. (3 = O. In this case the
formula for the moments reduces to the first term:

3< r m > = __Rm . (58)
m+3

The sum of the subsequent terms in the 2pF moments is always positive. Therefore,
the use of the equivalent uniform distribution instead of 2pF results in a systematic
underestimation of all moments. The thicker the surface relative to the radius, i.e.
the higher (32 (light nuclei!) the stronger the deviation.

For a trapezoidal charge distribution with half-density radius CT and surface
thickness tT the mth moment is [18]:

<rm >T = _3_cm {l+ [(m+3)(m+2) -1](32 (59)
m+3 T 3! T

+ [
..:....(m_+_3..:....)(.:-m_+_2)'-'(m_+-----'-1)_m _ (m + 3) (m + 2) ] (34 }-, , +1 T+'" ,5. 3.
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where /h == tT/2cT. It can be seen that for the trapezoidal distribution both
the first term and the bracket before the quadratic term are equal to those of
the 2pF distribution. That means that the moments of the equivalent trapezoidal
distribution are much closer to those of the 2pF distribution than the moments of
the uniform distribution. .

The quantity of series expansion f3T == tT /2CT corresponds to 13 == 1ra/c of the
2pF distribution. One may look for the parameters of the trapezoidal distribution
equivalent to a 2pF distribution, in the sense that all moments should be equal up
to terms 132 (f3:f). To meet this demand CT = C and f3r = 13 should be chosen, and
from the latter

tT = 21ra (60)

follows. This equivalent surface thickness corresponds to a density decrease from
96% to 4% in the 2pF distribution - instead of the conventional s = 2In(9) x
a ::::::: 4.4 x a thickness defined by a density drop from 90% to 10%. This is an
example for defining a surface thickness based on physical requirements (equivalence
of moments) rather than on the biological accident that we happen to have ten
fingers.
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